
'

&

$

%

LEARNING EMBEDDINGS FOR INDEXING,

RETRIEVAL, AND CLASSIFICATION, WITH

APPLICATIONS TO OBJECT AND SHAPE

RECOGNITION IN IMAGE DATABASES

VASSILIS ATHITSOS

Dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

BOSTON

UNIVERSITY

BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

LEARNING EMBEDDINGS FOR INDEXING, RETRIEVAL, AND

CLASSIFICATION, WITH APPLICATIONS TO OBJECT AND

SHAPE RECOGNITION IN IMAGE DATABASES

by

VASSILIS ATHITSOS

B.S., University of Chicago, 1995,
M.S., University of Chicago, 1997

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2006

c© Copyright by
VASSILIS ATHITSOS
2006

Approved by

First Reader

Stan Sclaroff, PhD
Associate Professor of Computer Science

Second Reader

George Kollios
Assistant Professor of Computer Science

Third Reader

Margrit Betke
Associate Professor of Computer Science

Acknowledgments

First of all I thank my advisor, Stan Sclaroff, for his guidance and patience throughout

my PhD studies, and especially for giving me the freedom to pursue my own interests

and learn from my own mistakes. My thesis co-advisor, George Kollios, has offered me

invaluable help in many areas, and most importantly should be credited with introducing

me to embedding-based nearest neighbor retrieval, which turned out to be my thesis topic.

I thank Professor Margrit Betke for participating in my committee, and for providing many

helpful comments that helped me improve the quality of the document. I am also grateful

to my other committee members, Professor Bill Freeman and Professor Tom Huang, for

taking time out of their extremely busy schedules to go over my thesis and participate in

my defense.

I have worked closely with many members of the IVC group, and I want to thank

everyone in the group for providing me with such an enjoyable and stimulating working

environment. I also want to thank the tens of students, professors, and staff that I have

interacted with in the Computer Science Department, for all the times they have helped

and supported me.

My friends in Boston and outside Boston have made a big difference in my life through-

out my PhD studies. There is not enough space and time to list everyone who deserves

to be mentioned here. However, I should especially thank Nenad Dedic, the Fishers in

Morrison, IL, and Ella Averbukh, who have been an important part of my life.

I am grateful to my mother, father, and brother, for their unwavering support during

my studies. I am also grateful to Viki and my little nephew, who are relative newcomers

in my life but have made a big difference in helping me go through the last few months.

Finally, I want to thank Joni Alon, my good friend and primary research collaborator

over the last several years. The core contributions of this thesis have evolved through the

numerous discussions that we have had. This thesis, and my entire research agenda, would

have been very differen without Joni.

iv

LEARNING EMBEDDINGS FOR INDEXING, RETRIEVAL, AND

CLASSIFICATION, WITH APPLICATIONS TO OBJECT AND

SHAPE RECOGNITION IN IMAGE DATABASES

(Order No.)

VASSILIS ATHITSOS

Boston University, Graduate School of Arts and Sciences, 2006

Major Professor: Stan Sclaroff, Department of Computer Science

ABSTRACT

Nearest neighbor retrieval is the task of identifying, given a database of objects and a query

object, the objects in the database that are the most similar to the query. Retrieving

nearest neighbors is a necessary component of many practical applications, in fields as

diverse as computer vision, pattern recognition, multimedia databases, bioinformatics, and

computer networks. At the same time, finding nearest neighbors accurately and efficiently

can be challenging, especially when the database contains a large number of objects, and

when the underlying distance measure is computationally expensive. This thesis proposes

new methods for improving the efficiency and accuracy of nearest neighbor retrieval and

classification in spaces with computationally expensive distance measures. The proposed

methods are domain-independent, and can be applied in arbitrary spaces, including non-

Euclidean and non-metric spaces. In this thesis particular emphasis is given to computer

vision applications related to object and shape recognition, where expensive non-Euclidean

distance measures are often needed to achieve high accuracy.

The first contribution of this thesis is the BoostMap algorithm for embedding arbitrary

spaces into a vector space with a computationally efficient distance measure. Using this

v

approach, an approximate set of nearest neighbors can be retrieved efficiently - often or-

ders of magnitude faster than retrieval using the exact distance measure in the original

space. The BoostMap algorithm has two key distinguishing features with respect to exist-

ing embedding methods. First, embedding construction explicitly maximizes the amount of

nearest neighbor information preserved by the embedding. Second, embedding construc-

tion is treated as a machine learning problem, in contrast to existing methods that are

based on geometric considerations.

The second contribution is a method for constructing query-sensitive distance measures

for the purposes of nearest neighbor retrieval and classification. In high-dimensional spaces,

query-sensitive distance measures allow for automatic selection of the dimensions that

are the most informative for each specific query object. It is shown theoretically and

experimentally that query-sensitivity increases the modeling power of embeddings, allowing

embeddings to capture a larger amount of the nearest neighbor structure of the original

space.

The third contribution is a method for speeding up nearest neighbor classification by

combining multiple embedding-based nearest neighbor classifiers in a cascade. In a cascade,

computationally efficient classifiers are used to quickly classify easy cases, and classifiers

that are more computationally expensive and also more accurate are only applied to objects

that are harder to classify. An interesting property of the proposed cascade method is that,

under certain conditions, classification time actually decreases as the size of the database

increases, a behavior that is in stark contrast to the behavior of typical nearest neighbor

classification systems.

The proposed methods are evaluated experimentally in several different applications:

hand shape recognition, off-line character recognition, online character recognition, and

efficient retrieval of time series. In all datasets, the proposed methods lead to significant

improvements in accuracy and efficiency compared to existing state-of-the-art methods.

In some datasets, the general-purpose methods introduced in this thesis even outperform

domain-specific methods that have been custom-designed for such datasets.

vi

Contents

1 Introduction 1

1.1 Nearest Neighbor Retrieval: Issues and Applications 1

1.2 Nearest Neighbor Classification . 4

1.3 Computationally Expensive Distance Measures 7

1.4 Main Contributions . 14

1.5 Overview of Thesis . 19

2 Background 20

2.1 Some Basic Definitions and Notation . 20

2.2 Measures of Embedding Quality . 23

2.3 Embedding Methods for Indexing . 24

2.4 Embedding Application: Filter-and-Refine Retrieval 28

3 Related Work 31

3.1 Indexing Methods for Vector Spaces . 32

3.2 Indexing Methods for Non-Vector Spaces . 34

3.3 Methods for Efficient Nearest Neighbor Classification 38

3.4 Summary of Related Work . 39

4 BoostMap: A Machine Learning Method For Embedding Construction 41

4.1 Associating Embeddings with Classifiers . 42

4.2 Reducing Embedding Construction to a Boosting Problem 48

4.3 The Embedding Construction Algorithm . 50

4.4 Properties of BoostMap Embeddings . 59

4.5 Summary of the BoostMap method . 63

vii

5 Query-Sensitive Embeddings 65

5.1 Some Additional Related Work . 66

5.2 Motivation for Query-Sensitive Distance Measures 67

5.3 Constructing a Query-Sensitive Embedding 71

5.4 Properties and Discussion of the Method . 78

5.5 Summary of Query-Sensitive Embeddings 79

6 Efficient Nearest Neighbor Classification Using Cascades of Approximate

Classifiers 81

6.1 Some Additional Related Work . 82

6.2 Optimizing for Classification Accuracy . 83

6.3 Overview of Cascades of Classifiers . 85

6.4 Constructing a Cascade of Approximate Nearest Neighbor Classifiers 88

6.5 Discussion of the Cascade Method . 93

7 Experiments 96

7.1 Datasets . 96

7.2 Evaluation Methodology and Parameter Choices 102

7.3 Methods Used for Comparison Purposes . 104

7.4 Evaluation of the Original BoostMap Method 106

7.5 Evaluation of Query-Sensitive Embeddings 108

7.6 Experiments on Nearest Neighbor Classification 127

7.7 Summary of Experimental Results . 136

8 Discussion and Conclusions 140

8.1 Discussion of Contributions . 140

8.2 Broader Issues and Future Work . 143

8.3 Conclusions . 147

References 149

viii

List of Tables

2.1 Table of the main symbols used throughout this thesis, part 1. 21

2.2 Table of the main symbols used throughout this thesis, part 2. 22

3.1 A list of methods for efficient nearest neighbor netrieval, and some of their

key characteristics. 40

7.1 Comparison of BoostMap, FastMap, random reference objects (RRO), ran-

dom line projections (RLP), and VP-trees, on the ASL handshape dataset. 113

7.2 Comparison of BoostMap, FastMap, random reference objects (RRO), ran-

dom line projections (RLP), and VP-trees, on the MNIST dataset. 113

7.3 Comparison of BoostMap, FastMap, random reference objects (RRO), ran-

dom line projections (RLP), and VP-trees, on the UNIPEN dataset. 114

7.4 Comparison of BoostMap, FastMap, random reference objects (RRO), ran-

dom line projections (RLP), and VP-trees, on the time series dataset. . . . 114

7.5 Comparison of Ra-QI, Ra-QS, Se-QI, and Se-QS on the MNIST dataset

based on 10,000 query objects and the time series dataset based on 1,000

query objects. 121

7.6 Comparison of Se-QS, FastMap, random reference objects (RRO), random

line projections (RLP), and VP-trees, on the MNIST dataset based on 10,000

query objects and the time series dataset based on 1,000 query objects. . . 125

7.7 The sequences P of filter-and-refine processes that were passed as input to

Algorithm 3 for the MNIST and UNIPEN datasets. 131

ix

7.8 Speeds and error rates achieved by different approximate and exact nearest

neighbor classification methods on the MNIST dataset, using 10,000 test

objects and 20,000 database objects. 134

7.9 Speeds and error rates achieved by different approximate and exact nearest

neighbor classification methods on the UNIPEN dataset. 139

x

List of Figures

1·1 Handwritten digit recognition using a nearest neighbor classifier and the

MNIST database of 60,000 training images. 4

1·2 Estimating 3D hand pose using nearest neighbors. 5

1·3 An illustration of how simple linear-time distance measures can fail to cap-

ture intuitive notions of edge image similarity. 8

1·4 An illustration of the chamfer distance and the Hausdorff distance. 10

1·5 An illustration of the need for string alignment in order to compute a mean-

ingful distance between strings. 11

1·6 Four sample frames from video sequences of native sign language speakers

communicating in ASL. Computationally expensive distance measures can

be useful at various stages in an automated ASL recognition system. 12

2·1 A Lipschitz embedding of the plane into the real line. 25

2·2 Computing a “line-projection” 1D embedding. 27

4·1 An example of an embedding and its associated classifier. 44

4·2 The AdaBoost algorithm. 50

5·1 A toy example illustrating the use of query-sensitive embeddings. 70

7·1 The 20 handshapes used in the ASL handshape dataset. 97

7·2 Examples of different appearance of a fixed 3D hand shape, obtaining by

altering camera viewpoint and image plane rotation. 97

7·3 Example images from the MNIST dataset of handwritten digits. 100

7·4 Example of a normalized Unipen digit. 101

xi

7·5 Comparing methods BoostMap, FastMap, RRO, RLP, and VP-trees, on the

ASL handshape dataset, using the chamfer distance as the exact distance

measure. 109

7·6 Comparing methods BoostMap, FastMap, RRO, RLP, and VP-trees, on the

MNIST dataset, using shape context matching as the exact distance measure.110

7·7 Comparing methods BoostMap, FastMap, RRO, RLP, and VP-trees, on the

UNIPEN dataset, using DTW as the exact distance measure. 111

7·8 Comparing methods BoostMap, FastMap, RRO, RLP, and VP-trees, on the

time series database, using constrained DTW as the exact distance measure. 112

7·9 Comparing BoostMap as described in this thesis to a modified version of

BoostMap, where training triples are chosen randomly. Here we show results

on the ASL handshape dataset, using the chamfer distance as the exact

distance measure. 115

7·10 Comparing BoostMap as described in this thesis to a modified version of

BoostMap, where training triples are chosen randomly. Here we show results

on the MNIST dataset, using shape context matching as the exact distance

measure. 116

7·11 Comparing methods BoostMap, FastMap, RRO, RLP, and VP-trees, on the

UNIPEN dataset, using DTW as the exact distance measure. 117

7·12 Comparing BoostMap as described in this thesis to a modified version of

BoostMap, where training triples are chosen randomly. Here we show results

on the time series database, using constrained DTW as the exact distance

measure. 118

7·13 Comparing methods Ra-QI, Ra-QS, Se-QI and Se-QS on the MNIST dataset,

using shape context matching as the exact distance measure. 119

7·14 Comparing methods Ra-QI, Ra-QS, Se-QI and Se-QS on the time series

dataset, using constrained Dynamic Time Warping as the exact distance

measure. 120

xii

7·15 Comparing methods Se-QS, FastMap, random reference objects, random

line projections, and VP-trees, on the MNIST dataset, using shape context

matching as the exact distance measure. 123

7·16 Comparing methods Se-QS, FastMap, random reference objects, random line

projections, and VP-trees, on the time series database, using constrained

Dynamic Time Warping as the exact distance measure. 124

7·17 Comparing classification accuracy vs. efficiency trade-offs achieved by the

BoostMap, RRO, and RLP methods on the ASL handshape dataset. 128

7·18 Comparing classification accuracy vs. efficiency trade-offs achieved by the

BoostMap, RRO, and RLP methods on the MNIST dataset. 129

7·19 Error rates attained using BoostMap and BoostMap-C, without a cascade,

vs. number of exact distance evaluations per test object, on the MNIST

dataset. 130

7·20 Error rates attained by cascade classifiers vs. average number of exact dis-

tance evaluations per test object, for the MNIST dataset. 132

7·21 Comparing classification accuracy vs. efficiency trade-offs achieved by the

BoostMap, RRO, and RLP methods on the UNIPEN dataset. 137

7·22 Error rates attained using BoostMap and BoostMap-C, without a cascade,

vs. number of exact distance evaluations per test object, on the UNIPEN

dataset. 138

7·23 Error rates attained by cascade classifiers vs. average number of exact dis-

tance evaluations per test object, for the UNIPEN dataset 138

xiii

List of Abbreviations

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

AESA Approximating and Eliminating Search Algorithm

ASL American Sign Language

Boost-NN Boosted Nearest Neighbors

CNN Condensed Nearest Neighbor

CPU Central Processing Unit

CSDTW Cluster Generative Statistical Dynamic Time Warping

DNA Deoxyribonucleic Acid

DP Dynamic Programming

DTW Dynamic Time Warping

EMD Earth Movers Distance

KL Kullback-Leibler

k-nn k-nearest neighbors

LAESA Linear Approximating and Eliminating Search Algorithm

LLE Locally Linear Embedding

LSH Locality Sensitive Hashing

MDS Multidimensional Scaling

xiv

MNIST Modified NIST

NIST National Institute of Standards and Technology

MVP Multiple Vantage Point

OCR Optical Character Recognition

PCA Principal Component Analysis

RLP Random Line Projections

RRO Random Reference Objects

QI Query-Inensitive

QS Query-Sensitive

SC Shape Context

VA-File Vector-Approximation File

VP Vantage Point

xv

1

Chapter 1

Introduction

This thesis proposes novel methods for improving the accuracy and efficiency of near-

est neighbor retrieval and classification in spaces with computationally expensive distance

measures. Before describing those methods in detail, we first need to take a look at the

problem we are trying to solve. In this chapter we briefly introduce the concepts of nearest

neighbor retrieval and classification, and we outline some of the numerous applications of

nearest neighbor methods. We highlight application areas that require the use of compu-

tationally expensive distance measures, and can thus benefit from the work presented in

this thesis. We also provide a brief overview of the main contributions of this thesis.

1.1 Nearest Neighbor Retrieval: Issues and Applications

In recent years, the capacity of digital storage systems has increased dramatically. The

ability to create large databases containing vast amounts of data has been exploited in a

wide range of domains and applications. Internet search engines store enormous amounts of

Web content in large databases, and help Internet users quickly identify content of interest.

Large databases of biological data are used to store the wealth of information obtained by

analyzing biological structures and processes in different species [Boeckmann et al., 2003].

In computer vision, large image databases have been used for object and shape recognition,

in applications as diverse as face recognition [Phillips et al., 2003], body pose estimation

[Shakhnarovich et al., 2003], and optical character recognition [Belongie et al., 2002].

In many applications the primary purpose of a database is to provide specific informa-

tion on a need-to-know basis. The information that we need to extract depends on the

specific task that we must perform at the current moment, and that task is not known

2

to the database system in advance. For example, we may want to find web pages similar

to a particular page, proteins that are similar to a particular protein, or “mugshots” of

a particular person. Naturally, the database system cannot know in advance which web

page, protein, or person the user will be interested in. An important issue that arises in

such applications is that, as the amount of stored data gets bigger, it becomes increasingly

challenging to extract specific pieces of information from the database. The specific data

that we are interested in at a particular moment is typically a small fraction of the entire

database. The larger the database, the deeper the few items of interest are “buried” inside

the database, and the harder we have to look to identify those items.

The three example tasks mentioned above, i.e., finding web pages, proteins, and mugshots

of interest, are cases where we want to perform nearest neighbor retrieval: we have a

database of “objects,” there is a particular query object that we are interested in, and we

want to retrieve the database objects that are the most similar to the query object. Two

key measures of performance that we use to evaluate a retrieval system are accuracy and

speed. Naturally, we want the retrieved objects to indeed be the database objects that are

the most similar to the query, with as few omissions as possible and as few inclusions of

unrelated objects as possible. At the same time, we want retrieval to be fast and efficient,

in order to minimize both the time the user has to wait and the required CPU processing

time.

Nearest neighbor retrieval has many uses in a wide range of domains and applications,

beyond the example applications in Web browsing, biological databases and face recognition

that we have already mentioned. Some additional examples include:

• Optimizing network usage in peer-to-peer computer networks. When a host requests

to download some specific content, network performance is optimized if we can iden-

tify nearby network locations (using some measure of network proximity) that can

provide that content [Hildrum et al., 2002].

• Content-based access in large multimedia databases. Users of such databases often

3

need to identify and efficiently retrieve database entries that are similar to a particular

document [White and Jain, 1996, Shen et al., 2005].

• In the medical domain, improving diagnosis and prognosis. Given a new case, it

is often beneficial to identify the most similar cases in a database of case histories,

in order to better analyze the current symptoms and evaluate different treatment

options [Borst et al., 2000].

• Analyzing and predicting time series data, such as stock prices, weather and climate

data, or trajectories of moving objects. An important tool in processing time series

data is comparing that data with similar items in databases of known examples

[Keogh, 2002, Vlachos et al., 2003].

• Clustering applications. Many widely used clustering methods, such as K-means

clustering and agglomerative clustering, require large numbers of nearest neighbor

retrieval operations, in order to decide what cluster each object should be assigned

to, or what clusters should be merged together [Everitt et al., 2001].

• Visualization applications. When visualizing high-dimensional or non-Euclidean data,

it is often important to identify the nearest neighbors of each object and to try to

display objects in such a way that they are shown close to their nearest neighbors

[Vlachos et al., 2002].

A general application of nearest neighbor retrieval that is of particular interest to

the fields of computer vision and pattern recognition is nearest neighbor classification.

While the methods proposed in this thesis can be used in many of the above retrieval

applications, the main motivation for developing these methods has been to improve the

accuracy and efficiency of nearest neighbor classifiers that use computationally expensive

distance measures. We will now proceed to take a closer look at the topic of nearest

neighbor classification.

4

Figure 1·1: Handwritten digit recognition using a nearest neighbor classi-
fier and the MNIST database of 60,000 training images [LeCun et al., 1998,
Belongie et al., 2002, Athitsos et al., 2005a]. Given a query image that we
want to classify, the system retrieves the nearest neighbor of the query in
the database, and assigns the class of the retrieved nearest neighbor to the
query image.

1.2 Nearest Neighbor Classification

Suppose we want to build a system that can recognize images of isolated digits, from 0 to 9,

as shown in Figure 1·1. A straightforward approach is to use a nearest neighbor classifier.

To design such a classifier, we first create a database of training objects, i.e., a database

of images of digits in this example. For each training image we need to also store its class

label, i.e., we must specify which digit is actually displayed in that image. Finally, we need

to specify a distance measure that can be used for evaluating similarity between images.

Then, given a test image to recognize, the system simply finds the nearest neighbor of

that image in the database, and classifies the test image as belonging to the same class as

its nearest neighbor. This process is illustrated in Figure 1·1. Alternatively, the system

can retrieve the k nearest neighbors (for some parameter k) and classify the test image as

belonging to the class that is the most common among those k nearest neighbors.

As another example, suppose we want to build a system that takes as input the image

5

Figure 1·2: Estimating 3D hand pose using nearest neighbors. Given a
query image of a hand, the system finds the most similar images in a large
database of computer-generated images of hands. The 3D hand poses of
the retrieved images are output by the system as plausible estimates for the
3D hand pose of the query. The figure displays a query image, the nearest
neighbor of the query in the database, and some other, randomly selected
database images.

of a hand and produces as output the most plausible estimates of the 3D hand pose, i.e.

estimates of the joint angles and the 3D orientation of the hand. This problem can also be

tackled by finding the nearest neighbors of the test image in a database, as described in

[Athitsos and Sclaroff, 2003, Athitsos et al., 2004] and illustrated in Figure 1·2. We build,

using computer graphics, a large database containing pictures of hands with different joint

angle configurations and 3D orientations. For each picture, we also store the 3D hand

pose that was used to create that picture. Then, given a test image, the system finds the

nearest neighbors of that image in the database, and uses the hand poses corresponding to

the nearest neighbors to generate estimates of the hand pose in the test image.

Nearest neighbor classification is a popular technique in computer vision and pattern

6

recognition. One of the main attractions of nearest neighbor classifiers is their simplicity.

All we need to do to design such a classifier is provide a database of training objects and

specify a distance measure. At the same time, nearest neighbor classifiers can be very

powerful and have some very desirable properties:

• Nearest neighbor classifiers can easily be applied to problems with an arbitrary num-

ber of classes, such as the problem of recognizing the faces of hundreds or thousands

of individuals, or the problem of estimating the pose of an articulated object. Many

popular methods, such as AdaBoost [Schapire and Singer, 1999] and support vector

machines [Vapnik, 1995], are not well-suited for such problems because they do not

scale well with the number of classes.

• Even in problems with a small number of classes, such as optical character recognition,

nearest neighbor classifiers can be very powerful, because of their ability to model

complex, non-parametric distributions.

• A well-known theoretical property of k-nearest neighbor classifiers is that their classi-

fication accuracy becomes asymptomatically optimal as the training size approaches

infinity [Duda et al., 2001].

In practice, nearest neighbor classifiers are often more accurate than other, significantly

more complicated classification methods. As an example, nearest neighbor classification

using shape context matching as a distance measure produced a lower error rate than a

large number of competing methods for the problem of handwritten digit recognition, as

measured on the popular MNIST dataset [Belongie et al., 2002]. At the same time, nearest

neighbor classifiers are often impractical for real applications, because they are too com-

putationally expensive. The handwritten digit recognition system in [Belongie et al., 2002]

showcases that problem: classifying a single object takes over 20 minutes on a modern PC

using an optimized C++ implementation. The dilemma with nearest neighbor classifiers is

that, as the number of available training objects increases, classification accuracy improves,

but processing time increases as well because it takes longer to find nearest neighbors.

7

This problem is exacerbated in domains where we need to use computationally expen-

sive distance measures. In the experiments section we will apply the domain-independent

methods proposed in this thesis to speed up the handwritten digit recognition system of

[Belongie et al., 2002], from over 20 minutes per test image to about 5 seconds per test

image with virtually no loss of accuracy.

The main focus of this thesis is on improving nearest neighbor retrieval and classification

performance in spaces with computationally expensive distance measures. In the next

section we provide some additional motivation for our methods, by illustrating several

examples where we need to use expensive distance measures, in order to capture intuitive

notions of similarity that more efficient distace measures fail to capture. We also discuss

the problems that arise when using such measures.

1.3 Computationally Expensive Distance Measures

Determining whether a distance measure is computationally expensive or not is to a large

extent a subjective decision, and also depends on application-specific settings and param-

eters. At the same time, we can provide a rule of thumb that frequently agrees with our

intuitive judgement of when a distance measure is expensive. Our rule of thumb is the fol-

lowing: we consider a distance measure to be computationally expensive when measuring

a single distance between two objects takes time that is superlinear to the length of these

objects. A family of measures that are not computationally expensive, according to this

rule of thumb, are the Lp metrics defined on any real vector space R
d. The most common

Lp metrics are the L2 metric, which is the Euclidean distance, and the L1 metric, which is

often called the Manhattan distance. Evaluating Lp distances in R
d takes O(d) time, which

is linear to the length of the objects. Naturally, if the dimensionality d is very large, then

our rule of thumb breaks down and Lp start taking “too long” to compute. However, for all

practical purposes within the scope of this thesis, Lp distances are considered to be efficient

alternatives, compared to the various computationally expensive distance measures that

we need to use.

8

X1 X2 X3

Figure 1·3: An illustration of how simple linear-time distance measures
can fail to capture intuitive notions of edge image similarity. Images X1, X2,
and X3 are 8×8 edge images, where background pixels contain value 0 and
are shown as black, and edge pixels contain value 1 and are shown as white.
To a human, X1 and X2 are more similar to each other than to X3, because
in X1 and X2 the edge pixels are closer to each other and the overall shapes
are much more similar. Using any Lp metric (for 0 < p < ∞), however, X1

and X2 are closer to X3 than to each other. For example, for the Manhattan
metric L1, we get: L1(X1, X2) = 20, L1(X1, X3) = 15, L1(X2, X3) = 13,.

As a first example of a space where it is beneficial to use a computationally expensive

distance measure, consider the space of binary edge images. One way to represent a binary

edge image is as a binary vector, with one dimension per image pixel. In each dimension we

store value 1 if the corresponding pixel is an edge pixel, and value 0 otherwise. Matching

edge images can be useful for various applications, such as optical character recognition

(Figure 1·1), and hand pose estimation (Figure 1·2). One possible distance measure we can

use for edge images is the Euclidean distance between the binary vector representations of

those images. However, the problem with the Euclidean distance is that it fails to capture

our intuitive notions of when two edge images should be considered similar, as illustrated

in Figure 1·3. In that figure, we see that we often want to consider two edge images similar

(images X1 and X2 in the figure) even when there is zero overlap between the edge pixels

in one image and the edge pixels in the other image.

Two alternative distance measures we can use for comparing edge images are the cham-

fer distance [Barrow et al., 1977] and the Hausdorff distance [Huttenlocher et al., 1993]

9

(Figure 1·4). The directed chamfer distance from edge image A to edge image B is the

average distance from each edge pixel in A to its nearest edge pixel in B. The undirected

chamfer distance, which is often referred to simply as chamfer distance, is the sum of the

two directed distances, from A to B and from B to A. The Hausdorff distance is the

maximum distance between an edge pixel in one image and its nearest edge pixel in the

other image. Figure 1·4 illustrates how these distances are computed.

Compared to Lp distances, the chamfer distance and the Hausdorff distance are much

closer to our intuitive notions of similarity between edge images. Even when the edge

pixels from the two images do not overlap, it is still possible for the two images to have a

small distance to each other, as long as edge pixels in one image are close to edge pixels

in the other image. For example, for the images shown in Figure 1·3, using the Euclidean

distance to measure distances between pixel locations, the chamfer distances are: 2.04

between X1 and X2, 4.52 between X1 and X3, and 3.56 between X2 and X3. Consequently,

in contrast to Lp measures, the chamfer distance captures our intuition that X1 is more

similar to X2 than to X3. However, the chamfer distance and the Hausdorff distance take

superlinear time to compute: they require O(d log d) time for images with at most d edge

pixels [Huttenlocher et al., 1993]. The reason is that, for both distance measures, we need

to find for each edge pixel x in one image the closest edge pixel in the other image. That

operation takes O(log d) time for a single edge pixel x, using a two-dimensional version of

binary search.

We should note that the chamfer distance and the Hausdorff distance can be computed

in an alternative way, that takes O(d) time, if we have precomputed, for each edge image,

the so-called distance transform of that image [Breu et al., 1995]. The distance transform

stores in every image pixel the distance of that pixel to its nearest edge pixel. However,

since edge images are typically sparse, computing and storing distance transforms for a large

database of edge images can increase the memory and disk storage requirements of that

database by orders of magnitude, and thus using distance transforms is often impractical.

Another example case where it is beneficial to use a computationally expensive distance

10

Figure 1·4: An illustration of the chamfer distance and the Hausdorff
distance. The left image shows two sets of points. Points in the first set are
shown as circles, points in the second set are shown as squares. Each set
of points could be, for example, the set of edge pixels in one image. The
middle image shows a link between each circle and its closest square. The
circle-to-square directed chamfer distance between the set of circles and the
set of squares is the average distance between a circle and its closest square,
so it is the average length of the links shown in the middle image. The right
image shows a link between each square and its closest circle. The square-
to-circle directed chamfer distance is the average length of those links. The
(undirected) chamfer distance between squares and circles is the sum of the
two directed distances. The Hausdorff distance between squares and circles
is simply the length of the longest link in the middle and right images.

measure is the space of strings. A naive way to measure distances between two strings is

to simply compare the letter in each position of the first string with the letter in the

same position of the second string. As Figure 1·5 illustrates, this simple way of measuring

distances again fails to capture our intuitive notion of when two strings are similar. A

more meaningful, and popular, measure of the distance between two strings is the edit

distance [Levenshtein, 1966], which counts the minimum amount of insertions, deletions

and letter changes that are needed to convert one string into the other string (Figure 1·5).

This distance is computed using dynamic programming and takes time O(d2) for strings

of at most d letters. Essentially the distance is computed by finding an optimal alignment

between the two strings. A popular application of the edit distance is the UNIX/LINUX

diff utility, that finds the minimal set of changes that can be applied to convert one file to

another file.

The Smith-Waterman algorithm is a variant of the edit distance that is used for match-

11

fores t

deforest

fores t

per i sh per i sh

defores t

fores t

deforest

fores t

per i sh per i sh

defores t

a

b

Figure 1·5: An illustration of the need for string alignment in order to
compute a meaningful distance between strings. The words “forest” and
“deforest” are much more similar to each other than to the word “perish.”
However, a naive linear-time distance measure, that simply compares let-
ters in the same position, would output that “forest” and “deforest” are
more similar to “perish” than to each other, because, as shown in (a), for
“forest” and “deforest” there is no position where they have the same let-
ter, whereas for both words there are positions where they have the same
letter as the word “perish.” The edit distance is a quadratic-time distance
measure that finds an optimal correspondence between letters in the two
words, as shown in (b), and considers the distance between strings to be
the minimum number of letter changes, insertions, and deletions that are
needed to convert one string to the other. Using the edit distance as D,
D(forest,deforest) = 2, D(forest,perish) = 4, and D(deforest,perish) = 5.
For similar reasons, meaningful distance measures for proteins and dynamic
gestures also depend on finding an optimal alignment between objects, and
thus take superlinear time.

ing proteins and DNA sequences [Smith and Waterman, 1981]. Dynamic programming is

also used in computing Dynamic Time Warping (DTW) [Kruskall and Liberman, 1983],

which is a distance measure between time series. DTW is frequently used for recognizing

gestures and time series (Figure 1·6). Distance measures that are defined based on dy-

namic programming also include Dynamic Space-Time Warping [Alon et al., 2005c], and

the shape context matching method described in [Thayananthan et al., 2003].

A third example of a computationally expensive distance measure is bipartite matching

[Kuhn, 1955]. Suppose that we want to compare two images, and from each image we have

extracted a set of d features. Furthermore, suppose that we have defined an auxiliary dis-

12

Figure 1·6: Four sample frames from video sequences of native sign lan-
guage speakers communicating in ASL. Computationally expensive distance
measures can be useful at various stages in an automated ASL recognition
system. Recognizing hand pose, which is important for discriminating be-
tween different signs, can be achieved using a distance measure like the
chamfer distance, that aligns hand features from the image with hand fea-
tures from database images. Recognizing an actual ASL utterance (word
or phrase), represented as a time series of extracted features, can be done
using Dynamic Time Warping, a distance measure that uses Dynamic Pro-
gramming to align two sequences with each other.

tance measure for comparing features with each other. In bipartite matching, the distance

between the two feature sets is the minimum sum of distances between corresponding fea-

tures, over all possible one-to-one correspondences we can define between features in one set

and features in the other set. The optimal set of one-to-one correspondences can be found

using the Hungarian algorithm, which takes time O(d3) for sets of d features [Kuhn, 1955].

In all three examples we have listed so far, the computationally expensive distance

measures we have considered are computed by finding an optimal alignment, i.e., by finding

13

optimal correspondences (one-to-one, or many-to-many) between components of the two

objects. Searching to find an optimal alignment takes time that is superlinear to the length

of the objects and that leads to distance measures that are computationally expensive. In

contrast, when we measure Lp distances between vectors in R
d, we align those vectors in

a trivial way: the i-th coordinate of one vector simply corresponds to the i-th coordinate

of any other vector. If j 6= i, the difference between the i-th coordinate of one vector and

the j-th coordinate of another vector does not affect the distance between the two vectors.

The fact that vectors have a fixed 1-1 correspondence between their coordinates allows us

to compute Lp distances in linear time.

Computationally expensive distance measures can also be encountered in domains

where aligning objects is not an issue. An example of such a domain is a peer-to-peer

network [Hildrum et al., 2002]. Intuitively, the distance between two network nodes is a

number that describes how efficient it is to move content from one node to the other. Ef-

ficiency is mainly measured in terms of bandwidth and round-trip time. If a node Q in

the network needs to download some content, it is beneficial to identify, among all nodes

that store that content, the node that is the “closest” to Q, so as to maximize network

efficiency. The naive, brute-force way of finding the closest node is for Q to simply com-

municate with all nodes and measure bandwidth and round-trip time. However, these

measurements would generate a large amount of network traffic and would defeat the pur-

pose of maximizing network efficiency. Furthermore, such measurements would also take

“too long” to complete in many practical scenarios.

We should note that distances between network nodes also deviate from the rule of

thumb we proposed in the beginning of this section, which stated that expensive distance

measures are the ones that take time superlinear to the length of the objects. That rule

of thumb refers to distances that are evaluated algorithmically, and objects that are el-

ements of an abstract space and can be specified with a set of numbers or symbols. In

contrast, network distances are physical, not algorithmic, measurements, and the network

nodes are actual physical objects. Actually, the methods proposed in this thesis can be

14

applied to map network nodes into vectors, and to approximate network distances with

distances between vectors, thus addressing both the problem of how to represent network

nodes symbolically/numerically, and the problem of how to approximate network distances

efficiently and without generating large amounts of network traffic.

Some additional examples of computationally expensive distance measures that we can

mention briefly are shape context matching [Belongie et al., 2002] for comparing edge im-

ages, the Earth Mover’s Distance (EMD) [Rubner et al., 1998] and the Kullback-Leibler

(KL) distance [Cover and Thomas, 1991] for comparing distributions, and Dynamic Space

Time Warping [Alon et al., 2005c] for comparing dynamic gestures. Overall, using compu-

tationally expensive distance measures in a large database makes nearest neighbor retrieval

challenging. Developing appropriate indexing methods can significantly expand the range

of practical applications where such measures can be employed, and this has been a primary

motivation behind the work described in this thesis.

1.4 Main Contributions

In this section we briefly go over the main contributions of this thesis. In order to put

these contributions in context, we first take a look at the issues that arise when we want

to perform nearest neigbhor retrieval in spaces with computationally expensive distance

measures.

1.4.1 Overview of the Problem

The most straightforward algorithm for nearest neighbor retrieval is brute-force search: we

simply measure the distance between the query object and each database object. The time

complexity of brute-force search is linear to two quantities: the number of database objects,

and the average time it takes to measure the distance between two objects. Clearly, as

the number of database objects increases, brute-force search can become computationally

demanding, or even impractical for particular applications. As discussed in the previous

section, this problem is exacerbated in domains where evaluating the distance between two

15

objects is computationally expensive.

What complicates matters is that computationally expensive distance measures are

typically not Lp measures, and the majority of existing indexing tools are applicable

only to Lp measures [Böhm et al., 2001, White and Jain, 1996]. Furthermore, while sev-

eral metric indexing methods have been proposed that can, in theory, be used with ar-

bitrary distance measures, many popular distance measures violate the triangle inequal-

ity, and are thus non-metric. Examples of non-metric measures are the chamfer distance

[Barrow et al., 1977], Dynamic Time Warping [Kruskall and Liberman, 1983], shape con-

text matching [Belongie et al., 2002], and the Kullback-Leibler (KL) distance [Cover and Thomas, 1991].

Applying metric methods to such measures is heuristic, and there is a need for principled

indexing methods that do not rely on metric assumptions. The focus of this thesis is on

designing principled and general methods for efficient nearest neighbor retrieval in non-

Euclidean and non-metric spaces with computationally expensive distance measures.

1.4.2 The Contributions

This thesis proposes indexing methods that can be applied in general metric and non-

metric spaces with computationally expensive distance measures and achieve state-of-the-

art performance in several experimental datasets. The proposed methods do not rely on any

geometric assumptions and directly maximize the amount of nearest neighbor information

preserved by the indexing structure, in both metric and non-metric spaces.

More specifically, in this thesis we propose methods for defining, and optimizing, novel

types of embeddings for approximating computationally expensive distance measures. Em-

beddings are a general family of methods that can be used for efficient nearest neighbor

retrieval in arbitrary spaces. Embeddings are simply functions that map an original space

and distance measure to a target space and target distance measure. Typically the target

space is the d-dimensional real vector space R
d, and the target distance measure is the

Euclidean distance or some alternative Lp metric. Our goal is to construct embeddings

such that the target distance measure is significantly more efficient computationally than

16

the original distance measure. If an embedding F satisfies that requirement, then given a

database U and a query object Q, instead of performing brute-force search for the nearest

neighbors of Q in U, it is much more efficient to perform brute-force search for the nearest

neighbors of F (Q) in F (U). Furthermore, if the target space is a real vector space, we can

make the search for the nearest neighbors of F (Q) even more efficient, by taking advantage

of the numerous indexing tools that have been developed for vector spaces with Lp metrics.

In order for embedding-based retrieval and classification to be useful, a necessary con-

dition is that the nearest neighbors of F (Q) are, at least in most cases, the mappings of the

nearest neighbors of Q. In other words, embeddings must preserve a large amount of the

nearest-neighbor structure of the original space. At the same time, embeddings are used

as components of retrieval and classification processes that must be as computationally

as efficient as possible. In this thesis, we introduce two novel methods for the prob-

lem of maximizing the amount of nearest neighbor structure preserved by an embedding:

the BoostMap method, which is a machine learning method for optimizing embeddings,

and query-sensitive embeddings, which automatically identify, for each query, the embed-

ding coordinates that are the most informative for that query. We also introduce a novel

method for speeding up nearest neighbor classification, by designing a cascade of approx-

imate nearest neighbor classifiers. We now proceed to briefly describe each of these three

contributions.

BoostMap

BoostMap is a general method for constructing and optimizing embeddings for the purpose

of nearest neighbor retrieval, that is applicable to arbitrary spaces and distance measures.

One key differentiating feature of BoostMap with respect to other embedding methods is

that it optimizes a direct measure of how well the embedding preserves the nearest neighbor

structure of the original space. The optimization criterion is valid in any space and does

not rely on any Euclidean or metric assumptions. Consequently, the embedding optimiza-

tion method can be used in both metric and non-metric spaces. From another perspective,

17

BoostMap is different than existing embedding methods because its formulation is based on

machine learning. In the BoostMap method, embeddings are treated as binary classifiers,

and embedding optimization is performed using the popular boosting methodology from

machine learning. De-emphasizing reliance on geometric properties and formulating em-

bedding construction as a machine learning problem is an important step towards creating

principled indexing methods for non-Euclidean and non-metric spaces whose geometry is

only poorly understood.

The key intuition behind the BoostMap method is that any embedding F can be treated

as a binary classifier that predicts, for any three objects X,A,B, if X is closer to A or to B,

by simply checking if F (X) is closer to F (A) or to F (B). If F never makes any mistakes,

then F perfectly preserves nearest neighbor structure. We show that the error rate of F on

a specific set of triples (X,A,B) is a direct measure of the the amount of nearest neighbor

structure preserved by F . The building blocks that we use for embedding construction

are simple, one-dimensional (1D) embeddings that have been previously proposed and

used in the literature [Faloutsos and Lin, 1995, Hjaltason and Samet, 2003a]. We treat

these 1D embeddings as weak classifiers, and we use AdaBoost [Schapire and Singer, 1999]

to combine many such weak classifiers into a strong classifier. We show that the strong

classifier constructed by AdaBoost naturally corresponds to a multidimensional embedding.

Query-Sensitive Embeddings

Query-sensitive embeddings are a novel type of embeddings that can be used to im-

prove the accuracy and efficiency of embedding-based nearest neighbor retrieval. What

differentiates query-sensitive embeddings from previously proposed types of embeddings

[Hjaltason and Samet, 2003a, Roweis and Saul, 2000, Tenenbaum et al., 2000, Young and Hamer, 1987]

is the distance measure that is used in the target space of embedding. As is typical in

embedding methods, query-sensitive embeddings map objects into a vector space with a

weighted Lp distance measure. What is different in query-sensitive embeddings is that the

weights of this Lp measure are not fixed, but depend on the query object. A query-sensitive

18

distance measure improves embedding quality, by providing a natural way to identify, for

each query object, the embedding dimensions that are the most useful for retrieving the

nearest neighbors of that query.

Identifying the most informative dimensions is an important issue that arises when

objects are represented as high-dimensional vectors [Aggarwal, 2001]. For the purposes

of efficient retrieval, query-sensitive embeddings are able to preserve a larger amount of

nearest neighbor information compared to their query-insensitive counterparts. This ad-

ditional modeling power translates in practice to significantly better trade-offs between

retrieval accuracy and efficiency.

Cascades of Approximate Nearest Neighbor Classifiers

An exact nearest neighbor classifier classifies a test object based on the class labels of

its true nearest neighbors. However, in many practical applications, particularly when

non-metric distance measures are used, the only method that guarantees retrieval of the

true nearest neighbors is brute-force search. An approximate nearest neighbor classifier

classifies a test subject based on the class labels of the approximate nearest neighbors

retrieved using some indexing scheme. In our method, using BoostMap embeddings, we

construct a sequence of approximate nearest neighbor classifiers. The first approximation in

that sequence classifies objects relatively fast, but also has a relatively high error rate. Each

successive approximation in the sequence is slower and more accurate than the previous

one. These approximations are combined in a cascade structure, whereby easy cases are

classified by earlier classifiers, and harder cases are passed on to the slower but more

accurate classifiers. An interesting empirical property of classification using such cascades

is that, in our experiments, both classification time and error rate actually decrease as the

size of the database increases. This behavior is in stark contrast to the behavior of typical

nearest neighbor classification systems, where classification time increases with the size of

the database.

19

1.5 Overview of Thesis

Chapter 2 establishes some standard terminology and notation, defines basic concepts, and

offers a brief survey of existing embedding methods that can be used for speeding up nearest

neighbor retrieval. Chapter 3 takes a look at existing methods for efficient nearest neighbor

retrieval and classification and outlines the main differentiating features and advantages of

the methods proposed in this thesis.

Chapters 4, 5 and 6 described the three main contributions of this thesis. Chapter 4

describes the BoostMap method for embedding construction. We show that constructing

embeddings for efficient retrieval can be framed as a machine learning problem, and we

propose a learning-based embedding construction algorithm that directly maximizes the

amount of nearest neighbor structure preserved by the embedding. Chapter 5 defines

query-sensitive embeddings, discusses the properties of those embeddings, and describes

how to apply the BoostMap method for producing such embeddings. Chapter 6 discusses

cascades of approximate nearest neighbor classifiers, and describes how to construct and

use such cascades in order to achieve efficient classification.

In Chapter 7, the proposed methods are evaluated experimentally on several different

applications: 3D hand pose estimation, off-line character recognition, online character

recognition, and efficient retrieval of time series. In all data sets, the proposed methods

lead to significant improvements in accuracy and efficiency compared to existing state of

the art methods. In some datasets, the general-purpose methods introduced in this thesis

even outperform domain-specific methods that were specifically designed to work well with

such datasets.

20

Chapter 2

Background

This chapter provides some background on embedding-based methods for efficient nearest

neighbor retrieval in non-Euclidean spaces. Section 2.1 provides a formal definition of

embeddings and establishes notation for some of the key concepts. Section 2.2 discusses

various measures of embedding quality that have been previously used in the literature.

Section 2.3 reviews existing methods for constructing embeddings that can be used for an

efficient retrieval. Finally, Section 2.4 describes the filter-and-refine retrieval framework,

a popular retrieval framework that embedding methods are typically used in conjunction

with. For reference, a list of symbols that are used throughout the thesis is provided in

Tables 2.1, 2.2.

2.1 Some Basic Definitions and Notation

Let X be a space of objects, and D be a distance measure in X. Distance D can be metric

or non-metric. Let database U be a finite subset of X, containing |U | objects. Let Q ∈ X

be a query object, and suppose we want to find the k nearest neighbors of Q in U. The

brute-force method is to measure the distance D(Q,U) between the query and every U ∈ U.

Obviously, brute-force search requires |U | distance evaluations.

If |U | is large and D is computationally expensive to compute, brute-force search can

be too slow to be practical. A way to speed up retrieval is to construct an embedding

that maps objects into another space, where distances can be computed more efficiently.

Typically we construct an embedding F : X → R
d into the d-dimensional real vector

space R
d, where distances are measured using a weighted Minkowski (Lp) metric like the

Euclidean (L2) distance or the Manhattan (L1) distance.

21

Symbol Meaning

A object of space X.

Ai(Q) query-sensitive weight of the i-th embedding dimension, for query Q.

Amin(h, j, l) value of α ≥ l that minimizes Zj(h, α).

B object of space X.

c variable ranging between 1 and Kj−1.

C object in X, in Chapter 4.
class label, in Chapter 6.

c1
1
c1

is the minimum scaling of the original distance measure by the embedding.

c2 maximum scaling of the original distance measure by the embedding.

C candidate objects used by the training algorithm.

Cj candidate pairs of pivot objects at training round j.

d number of dimensions of the embedding target space.

D distance measure in the original space X of the embedding.

e error threshold in the cascade construction algorithm.

f aggregate function, computes the aggregate of a set of features, in alignment-based
embeddings.

F embedding from original space X to a vector space.

Fout embedding constructed by the training algorithm.

F̃ classifier of triples of objects defined using embedding F .

F ′ one-dimensional embedding.

Fj set of candidate 1D embeddings to try at training round j.

Fj1 set of reference-object embeddings to try at training round j.

Fj2 set of line projection embeddings to try at training round j.

g index used to specify weak classifiers selected before training round j.

G(F̃ , X, A, B) measure of the classification error of F̃ on triple (X, A, B).

G set of training objects for AdaBoost.

H strong classifier produced by AdaBoost.

Hj strong classifier assembled by AdaBoost after the first j training rounds.

Hj set of classifiers that pass the training error test at training round j.

h weak classifier.

hi weak classifier for feature selection in alignment-based embeddings.

hj weak classifier selected by AdaBoost at training round j.

h′

j j-th unique weak classifier appearing in strong classifier H.

J total number of training rounds performed by AdaBoost.

k number of nearest neighbors to retrieve, especially for k-nearest neighbor
classification.

kmax maximum number of nearest neighbors we want to retrieve in an application.

K(Q, Pi) measure of confidence in the classification of query Q.

Kj number of unique weak classifers selected during the first j training rounds.

l specifies a minimum value for the weight of a weak classifier.

m dimensionality of Euclidean space that FastMap assumes the original space is equal
to, in Chapter 2.
index of coordinates in Chapter 5.

oi i-th training object in AdaBoost.

p parameter for the refine step of filter-and-refine retrieval.

P reference object, element of X.

P reference set, subset of X.

Table 2.1: Table of the main symbols used throughout this thesis, part 1.

22

Symbol Meaning

Q the query object, element of X.

R the set of real numbers.

s number of classifiers in a cascade of approximate nearest neighbor classifiers.

S(Q) splitter: a function mapping each query Q to either 0 or 1.

ti threshold for the i-th step in the cascade.

T training set, used for selecting training triples.

u vector in R
d.

U database, subset of X.

v vector in R
d.

V set used to define a splitter.

wi,j weight of i-th training object during j-th training round.

W normalization factor for making an embedding contractive.

W (Q) normalization factor for making a query-sensitive embedding contractive.

W (A,B) alignment of objects A and B: set of pairs of correspondences between features
of A and features of B.

X element of X.

X original space of an embedding.

Y set of all class labels for a particular classification problem.

y(X) class label of X.

zj constant used for normalizing training weights, equal to Zj(hj , αj).

Zj(h, α) a measure of how useful it is to set hj = h, αj = α, at the j-th training round of
AdaBoost.

Zmin(h, j, l) a measure of how useful it is to set hj = h, at the j-th training round of AdaBoost.

Zmax we stop AdaBoost when zj ≥ Zmax.

αj weight of weak classifier hj .

α′

j training weight for unique classifier h′

j , also weight of j-th coordinate or L1 distance
measure.

β number of training triples used in the training algorithm for embedding construction.

γ number of classifiers to consider at each training round.

Γ query-sensitive classifier of triples of objects.

∆ distance in the target space R
d of the embedding.

δ number of classifiers selected based on training error at each training round of
AdaBoost.

Λj(h) training error of weak classifier h at round j.

τ threshold used to define a splitter.

Table 2.2: Table of the main symbols used throughout this thesis, part 2.

23

Let ∆ denote the distance measure used in R
d. In addition to the notation F : X → R

d,

we will also frequently use the notation F : (X, D) → (Rd,∆), to emphasize that an

embedding F is not fully specified without ∆. The embedding construction algorithms

proposed in chapters 4 and 5 optimize simultaneously both an embedding F and the

corresponding distance measure ∆.

2.2 Measures of Embedding Quality

An embedding F : (X, D) → (Rd,∆) is called isometric when it perfectly preserves dis-

tances, i.e., when it holds for all X1, X2 ∈ X that

D(X1, X2) = ∆(F (X1), F (X2)) . (2.1)

An embedding F is called proximity preserving when it perfectly preserves proximity rela-

tions between triples of objects, i.e., when it holds for all X1, X2, X3 ∈ X that

D(X1, X2) ≤ D(X1, X3) ⇔ (2.2)

∆(F (X1), F (X2)) ≤ ∆(F (X1), F (X3)) .

In most cases it is impossible to find isometric or proximity-preserving embeddings from

a non-Euclidean space X to Rd, regardless of the value of d. In such cases, it is typically

desired that the distances ∆(F (X1), F (X2)) in R
d closely approximate distances D(X1, X2)

in X. Different measures can be used to evaluate how good those approximations are. The

most commonly used such measures are distortion and stress. We will define those measures

following (up to some changes in notation) the description in [Hjaltason and Samet, 2003a].

The distortion of embedding F is defined as the lowest value c1c2 that guarantees that

1

c1
· D(X1, X2) ≤ ∆(X1, X2) ≤ c2 · D(X1, X2) , (2.3)

for all pairs of objects X1, X2 ∈ X. Note that F is isometric if and only if the distortion is

equal to 1.

24

Whereas the distortion measures the worst-case deviation of distances, stress is a mea-

sure of the average deviation. One common definition of stress is:

∑

X1,X2
(∆(F (X1), F (X2)) − D(X1, X2))

2

∑

X1,X2
D(X1, X2)2

. (2.4)

Clearly, if an embedding F is isometric then it has stress equal to 0.

2.3 Embedding Methods for Indexing

Several existing embedding methods can be used for speeding up nearest neighbor retrieval.

In this section we briefly go over Lipschitz embeddings, SparseMap, FastMap, and Met-

ricMap. The reader is referred to [Hjaltason and Samet, 2003a] for a thorough analysis of

these methods.

2.3.1 Lipschitz Embeddings

Given any space X with a distance measure D, we can extend the definition of D so as to

define a distance between elements of X and subsets of X. Let X ∈ X and P ⊂ X. Then,

D(X, P) = min
P∈P

D(X,P) . (2.5)

Given a subset P ⊂ X, a simple one-dimensional Euclidean embedding F P can be

defined as follows:

F P(X) = D(X, P) . (2.6)

The set P that is used to define F P is called a reference set. In many cases P can consist

of a single object P , which is typically called a reference object or a vantage object. In that

case, we denote the embedding as F P :

FP (X) = D(X,P) . (2.7)

If D obeys the triangle inequality, F P maps nearby points in X to nearby points on

the real line R. In quantitative terms, it can be shown using the triangle inequality that,

25

R
2 (original space) R (target space)

Figure 2·1: An embedding F r of five 2D points (shown on the left) into the
real line (shown on the right), using r as the reference object. The target
of each 2D point on the line is labeled with the same letter as the 2D point.
We see that F maps all pairs of points closer to each other than they are in
the original space. As a result, nearby points in R

2, like a and b, are always
mapped to nearby points in R. At the same time, points that are relatively
far from each other in R

2 may also be mapped to nearby points in R, as is
the case for points b and c.

for any X1, X2 ∈ X, |F P (X1) − F P (X2)| ≤ D(X1, X2). In many cases D may violate

the triangle inequality for some triples of objects (an example is the chamfer distance

[Barrow et al., 1977]), but F P may still map nearby points in X to nearby points in R, at

least most of the time. On the other hand, distant objects may also map to nearby points,

if they happen to have similar distances to the reference set P (Figure 2·1).

In order to reduce the likelihood that distant objects get mapped to nearby points, we

can define a multidimensional embedding F : X → R
d, by choosing d different reference

sets P1, ..., Pd:

F (x) = (F P1(x), ..., F Pd(x)) . (2.8)

These embeddings are called Lipschitz embeddings [Bourgain, 1985, Hristescu and Farach-Colton, 1999,

Hjaltason and Samet, 2003a]. Bourgain embeddings [Bourgain, 1985, Hjaltason and Samet, 2003a]

are a special type of Lipschitz embeddings. Given a database U ⊂ X, such that U contains

n objects, we choose blog nc2 reference sets. In particular, for each i = 1, ..., blog nc we

choose blog nc reference sets, each with 2i elements. The elements of each reference set are

picked randomly. Bourgain embeddings are optimal in some sense: on the task of embed-

26

ding metric spaces to a Euclidean space, Bourgain embeddings achieve O(log n) distortion,

and there exist finite spaces U for which no better distortion can be achieved. More details

can be found in [Hjaltason and Samet, 2003a] and [Linial et al., 1994].

A weakness of Bourgain embeddings is that, in order to compute the embedding of

a query object Q, distances D between Q and almost all objects in database U must be

computed. The reason for that is that there are blog nc reference sets containing 2blog nc

objects each, and 2blog nc ≥ n
2 . Computing distances between the query object and the

majority of database objects is exactly what we want to avoid, in order to achieve better

efficiency than brute-force search. Consequently, Bourgain embeddings, at least in their

original formulation, are not useful for speeding up nearest neighbor retrieval. SparseMap

[Hristescu and Farach-Colton, 1999] is a heuristic simplification of Bourgain embeddings, in

which the embedding of an object can be computed by measuring only O(log2 n) distances

to database objects. Since SparseMap can compute the embedding of a query by comparing

the query to only a small fraction of the database, SparseMap can be used for speeding up

nearest neighbor retrieval.

It is important to note that Bourgain embeddings can also be applied in non-metric

spaces, but no theoretical bounds on distortion can be provided for Bourgain embeddings

of arbitrary non-metric spaces.

A simple and attractive alternative to Bourgain embeddings is to simply use Lipschitz

embeddings in which all reference sets are singleton. In particular, if P1, . . . , Pd ∈ U, we

can define an embedding F (X) as follows:

F (X) = (D(X,P1), . . . , D(X,Pd)) . (2.9)

With this type of embeddings, in order to compute a d-dimensional embedding of a previ-

ously unseen object Q we only need to compute the distance between Q and the d reference

objects P1, . . . , Pd.

27

A

B CD{
F (X)X1 , X2

Figure 2·2: Computing F X1,X2(X), as defined in Equation 2.10: we
construct a triangle ABC so that the sides AB, AC, BC have lengths
D(X,X1), D(X,X2) and D(X1, X2) respectively. We draw from A a line
perpendicular to BC, and D is the intersection of that line with BC. The
length of the line segment BD is equal to F X1,X2(X).

2.3.2 FastMap and MetricMap

A family of simple one-dimensional embeddings is proposed in [Faloutsos and Lin, 1995]

and used as building blocks for FastMap. The idea is to choose two objects X1, X2 ∈ X,

called pivot objects, and then, given an arbitrary X ∈ X, define the embedding F X1,X2

of X to be the projection of X onto the “line” X1X2. As illustrated in Figure 2·2, the

projection can be defined by treating the distances between X, X1, and X2 as specifying

the sides of a triangle in R
2:

FX1,X2(X) =
D(X,X1)

2 + D(X1, X2)
2 − D(X,X2)

2

2D(X1, X2)
. (2.10)

If X is Euclidean, then F X1,X2 corresponds indeed to a projection of X to the line passing

through X1 and X2. Therefore, If X is Euclidean, F X1,X2 maps nearby points in X to

nearby points in R. In practice, even if X is non-Euclidean, F X1,X2 often still preserves

some of the proximity structure of X.

FastMap [Faloutsos and Lin, 1995] uses multiple pairs of pivot objects to project a

28

database U ⊂ X into R
d. The first pair of pivot objects (X1, X2) is chosen using a heuris-

tic that tends to pick points that are far from each other. Then, the rest of the distances

between objects in U are “updated,” so that they correspond to projections into the “hyper-

plane” perpendicular to the line X1X2. Those projections are computed again by treating

distances between objects in U as Euclidean distances in some space R
m of unspecified

dimensionality m. After distances are updated, FastMap is recursively applied again to

choose a next pair of pivot objects and apply another round of distance updates. Com-

puting the embedding of the entire database requires measuring only O(d|U|) distances

between pairs of objects. Given a previously unseen query X ∈ (X − U), computing the

embedding of Q requires measuring only 2d distances. Although FastMap treats X as a

Euclidean space, the resulting embeddings can be useful even when X is non-Euclidean, or

even non-metric. We have seen that in our own experiments (Chapter 7).

MetricMap [Wang et al., 2000] is an extension of FastMap, that maps X into a a pseudo-

Euclidean space. The experiments in [Wang et al., 2000] report that MetricMap tends to

do better than FastMap when X is not Euclidean.

2.4 Embedding Application: Filter-and-Refine Retrieval

Suppose that, using some embedding method, we have constructed an embedding F from a

space X with a computationally expensive distance measure D to vector space R
d with dis-

tance measure ∆ = Lp for some value of p. The question is: how can we use F to speed up

retrieval of the k-nearest neighbors of some query object Q? A popular and commonly used

answer to this question is the filter-and-refine framework [Hjaltason and Samet, 2003a], in

which retrieval is done as follows:

• Offline preprocessing step: compute and store vector F (U) for every database object

U ∈ U.

• Online retrieval, given a query object Q, number k of nearest neighbors to retrieve,

and a free parameter p:

29

– Embedding step: compute F (Q).

– Filter step: rank all database objects in increasing order of the distance of their

embeddings from F (Q).

– Refine step: rerank the p highest-ranked database objects by evaluating the

exact distance D between those objects and Q.

– Output: return the k highest-ranked database objects.

The filter step provides an approximate preliminary ranking of database objects by

comparing d-dimensional vectors using distance measure ∆. The refine step applies D only

to the top p candidates. Assuming that ∆ is significantly more efficient than D, filter-

and-refine retrieval is much more efficient than brute-force retrieval, in which we compute

distance D between Q and every database object.

It is important to note that, in the general case, filter-and-refine retrieval does not

guarantee that the correct k nearest neighbors will be retrieved. If X is one of the k

nearest neighbors of Q, and p ≥ k, X will be retrieved if and only if it is included in

the p objects that survive the filter step. In other words, X will be correctly retrieved

if and only if F (X) is one of the p nearest neighbors of F (Q) among the embeddings of

all database objects. Clearly, parameter p provides a trade-off between retrieval accuracy

and efficiency. Given a query, as p increases it becomes increasingly likely that the true k

nearest neighbors of the query will be included in the top p candidates found at the filter

step. At the same time, as p increases, more exact distances D must be computed at the

refine step.

In an implementation of embedding-based filter-and-refine retrieval, two parameters

must be specified: parameter p, which is the number of exact distances to compute at the

refine step, and parameter d, which is the dimensionality of the embedding. As d increases,

the embedding step becomes more expensive, since typically embedding a query object

requires O(d) distances. Comparing d-dimensional vectors also becomes more expensive.

At the same time, using a higher-dimensional embedding may yield more accurate results

30

in the filter step, thus allowing a smaller value for p. The best choice of p and d will depend

on domain-specific parameters like the desired number k of nearest neighbors, the time it

takes to compute a single distance D, the time it takes to compare d-dimensional vectors,

and the desired retrieval accuracy, i.e. how often we are willing to miss some of the true k

nearest neighbors.

We should emphasize that filter-and-refine retrieval is a general framework, and a va-

riety of different methods can be used for the filtering step, including methods that are

not embedding-based. In principle, for filtering we can use any method that can efficiently

eliminate database objects from the nearest neighbor search without needing to measure

exact distances. In the next chapter, where we overview existing methods for nearest neigh-

bor retrieval, we will provide more examples of methods that can be used for the filtering

step.

31

Chapter 3

Related Work

Various methods have been employed for speeding up nearest neighbor retrieval in high-

dimensional and non-Euclidean spaces. The reader can refer to [Böhm et al., 2001, Hjaltason and Samet, 2003a,

Hjaltason and Samet, 2003b, White and Jain, 1996] for comprehensive reviews of existing

nearest neighbor methods. Existing methods can be classified into different categories,

according to the following criteria:

• Assumptions made about the space and distance measure. A method may be ap-

plicable to Euclidean spaces, vector spaces with general Lp metrics, metric spaces,

arbitrary spaces with arbitrary (even nonmetric) distance measures, or specific spaces

and distance measures.

• Exact or approximate results. Some methods guarantee retrieval of the true nearest

neighbors, while other methods only provide approximate results.

• Pruning-based or approximation-based retrieval. Pruning-based methods use pruning

strategies to eliminate from consideration large portions of the database during the

search for nearest neighbors. Such methods can achieve retrieval time complexity

that is sublinear to the number of database objects. Approximation-based methods,

on the other hand, achieve computational savings by computing a fast approximate

distance measure, or lower/upper bounds of the distance between objects, instead of

computing the original, computationally expensive distance measure. The complexity

of these methods is linear to the number of database objects, as in brute-force search.

However, using fast approximate estimates of distances can lead to speed-ups of orders

of magnitude in practice, compared to brute-force search.

32

We will first go over indexing methods that are only applicable in vector spaces, then

we will survey methods that are applicable in non-vector spaces, and finally we will briefly

discuss methods that can be used for speeding up nearest neighbor classification.

3.1 Indexing Methods for Vector Spaces

A large amount of work focuses on efficient nearest neighbor retrieval in multidimensional

vector spaces. Methods that provide exact results are proposed in [Weber et al., 1998,

Sakurai et al., 2000, Chakrabarti and Mehrotra, 2000]. In [Weber et al., 1998] exact re-

trieval is performed efficiently using an indexing structure called “vector-approximation

files”, or “VA-files” in short. The data space is divided into 2b rectangular cells, where b is a

user-specified number of bits to describe each cell. Every object is represented simply by the

bits that describe what cell it belongs to. At the filtering step, upper and lower bounds can

be derived for the distance between the query and each object using the bits that represent

each database object. An alternative method, A-trees, is proposed in [Sakurai et al., 2000],

where a tree indexing structure stores bounding rectangle information about subregions of

the database and individual data points. In [Chakrabarti and Mehrotra, 2000], clustering

is used to identify subsets of the database where the objects are correlated. PCA is applied

to each of the clusters separately, and a separate indexing structure is built for each clus-

ter. By applying dimensionality reduction separately to each cluster, this method achieves

higher efficiency than methods that apply global dimensionality reduction.

Approximate methods are proposed in [Li et al., 2002, Egecioglu and Ferhatosmanoglu, 2000,

Kanth et al., 1998, Weber and Böhm, 2000, Koudas et al., 2004, Tuncel et al., 2002]. Clin-

dex [Li et al., 2002] is a method that clusters the data and then builds an index structure

that identifies the clusters of interest given a query object. In [Egecioglu and Ferhatosmanoglu, 2000]

inner products of high-dimensional vectors are efficiently approximated using a relatively

low-dimensional representation of each object. In [Kanth et al., 1998] an efficient method

is proposed for nearest neighbor retrieval in dynamic datasets. In particular, an approx-

imation of the singular value decomposition of the database is efficiently recomputed,

33

thus addressing the limitation of other dimensionality reduction methods that assume

that the database is known in advance. A modified version of VA-files is described in

[Weber and Böhm, 2000], that derives approximate lower bounds for the distance between

the query and database objects. Compared to the original VA-files, this method sacrifices

the guarantee of always producing correct retrieval results, but achieves significant im-

provements in retrieval efficiency. In [Koudas et al., 2004] each object is represented with

a set of bits, and subsets of those bits are used to prune out large portions of the database

given a query object. The binary representation is constructed by clustering the database

objects and then comparing each object in each dimension with each cluster center. An al-

ternative to VA-files is proposed in [Tuncel et al., 2002], where vector quantization is used

instead of the fixed grid-based partition used in VA-files.

Particular mention should be made to Locality Sensitive Hashing (LSH) [Gionis et al., 1999],

an approximate nearest neighbor method for vector spaces that has been shown theoreti-

cally to scale well with the number of dimensions and has produced good results in prac-

tice, even in very high-dimensional spaces [Frome et al., 2004, Grauman and Darrell, 2004,

Shakhnarovich et al., 2003]. LSH constructs multiple hashing functions, where each hash-

ing function maps objects into binary strings. Ideally, given a query object Q and one of

its near neighbors A (where “near neighbor” is simply an object within some pre-specified

distance from the query), the desired behavior of a hashing function is to map both Q and

A to the same binary string. We say that two objects “collide” under a hashing function

when that function maps them to the same binary string. Given Q and an object B that

is not a near neighbor of Q, ideally we want Q and B not to collide. In LSH, after the

query is mapped to a binary string by each hashing function, exact distances are computed

between the query and all database objects that collide with the query under at least one

hashing function. By appropriately choosing the length of the binary strings and the num-

ber of hashing functions to construct, the probability that the query will collide with one

of its near neighbors under at least one hashing function becomes relatively high, while

the overall number of database objects colliding with the query under at least one hashing

34

function remains relatively low. Consequently, by only evaluating exact distances between

the query and objects that the query collides with, a near neighbor can be retrieved with

high probability, without needing to consider the vast majority of database objects.

For the purposes of this thesis, the key limitation of all the methods we have discussed

in this section is that they are mainly applicable to vector spaces with Lp metrics, and

they are not designed for arbitrary distance measures. Such methods cannot be applied to

the non-vector spaces induced by computationally expensive distance measures such as the

measures described in Section 1.3. In contrast, the methods proposed in this thesis can be

applied to arbitrary spaces with computationally expensive distance measures.

3.2 Indexing Methods for Non-Vector Spaces

A more general class of spaces, that includes real vector spaces with Lp metrics, is the

class of metric spaces, i.e., spaces with a metric distance measure. A distance measure D

is metric if it is symmetric (D(A,B) = 0 iff A = B), reflexive (D(A,B) = D(B,A)) and

obeys the triangle inequality (D(A,X)+D(X,B) ≥ D(A,B)). Examples of metric distance

measures are the edit distance for strings [Levenshtein, 1966], the Hausdorff distance for

edge images [Huttenlocher et al., 1993], bipartite matching for sets [Kuhn, 1955], or the

Earth Mover’s Distance (EMD) [Rubner et al., 1998] for distributions with equal mass. A

number of nearest neighbor methods have been designed that are applicable to arbitrary

metric spaces. We will discuss some of those methods in the next paragraphs; the reader

is referred to [Hjaltason and Samet, 2003b] for a comprehensive survey of such methods.

VP-trees [Yianilos, 1993] hierarchically partition the database into a tree structure by

partitioning, at each node, the set of objects based on whether they are closer than a thresh-

old to a specific object, called a pivot object. A similar structure, called metric trees, has

been proposed independently in [Uhlman, 1991]. MVP-trees [Bozkaya and Özsoyoglu, 1999]

are an extension of VP-trees, where multiple pivot points are used at each node. M-trees

[Ciaccia et al., 1997] are a variant of metric trees explicitly designed for dynamic databases.

Slim-trees [Jr. et al., 2000] further improve on M-trees by minimizing the overlap between

35

nodes. While the above methods are exact, an approximate variant of M-trees is proposed

in [Zezula et al., 1998], that can achieve significant additional speed-ups by sacrificing the

guarantee of always retrieving the true nearest neighbors.

The above tree-based methods for nearest neighbor retrieval in metric spaces are prun-

ing based. An alternative class of methods are approximation-based methods, where every

database object is considered during the search for the nearest neighbor of a particular

query object, but most database objects are eliminated using efficiently computed ap-

proximations or bounds of the true distance between those objects and the query. AESA

[Vidal, 1994] and LAESA [Micó and Vidal, 1994] compute the exact distance between the

query and a small set of database objects and then use the triangle inequality to establish

lower bounds of the distance between the query and the rest of the database objects.

In domains where the distance measure is computationally expensive, significant com-

putational savings can be obtained by constructing a distance-approximating embedding

that maps objects into another space with a more efficient distance measure. A number

of methods have been proposed for embedding arbitrary spaces into a Euclidean or pseudo-

Euclidean space [Bourgain, 1985, Faloutsos and Lin, 1995, Hristescu and Farach-Colton, 1999,

Roweis and Saul, 2000, Tenenbaum et al., 2000, Wang et al., 2000, Young and Hamer, 1987].

Some of these methods, in particular MDS [Young and Hamer, 1987], Bourgain embeddings

[Bourgain, 1985, Hjaltason and Samet, 2003a], LLE [Roweis and Saul, 2000] and Isomap

[Tenenbaum et al., 2000] are not targeted at speeding up nearest neighbor retrieval for

previously unseen query objects, because to embed the query those methods still need to

evaluate exact distances between the query and most or all database objects. Online queries

can be efficiently handled by Lipschitz embeddings [Hjaltason and Samet, 2003a], FastMap

[Faloutsos and Lin, 1995], MetricMap [Wang et al., 2000], and SparseMap [Hristescu and Farach-Colton, 1999],

as described in Chapter 2.

Embedding methods are typically used within the filter-and-refine retrieval framework

[Hjaltason and Samet, 2003a]. In filter-and-refine retrieval a computationally efficient ap-

proximation of the original distance (obtained, for example, using embeddings) is utilized

36

in the filtering step, in order to prune a large part of the search space. Then, the original,

accurate but more expensive distance measure is applied to the few remaining candidates,

during the refine step. Usually, the target distance measure of the embedding is designed

to be metric, even if the original distance is not, so that traditional indexing techniques

can be applied to index the database in order to speed up the filtering stage as well.

If the distance measure in the original space is metric, then SparseMap (as modified in

[Hjaltason and Samet, 2003a]) and Lipschitz embeddings satisfy a property called contrac-

tiveness, discussed in Section 4.4.1. Contractive embeddings can be used in a way that

guarantees retrieval of the true nearest neighbors after the refine step. FastMap and Met-

ricMap, on the other hand, are not contractive, and thus using those methods within

filter-and-refine retrieval there are no guarantees of retrieving the true nearest neighbors.

BoostMap, and its query-sensitive extension, which are two of the three main con-

tributions of this thesis, were introduced in [Athitsos et al., 2004, Athitsos et al., 2005b]

and belong to the same family of approaches as the methods in [Faloutsos and Lin, 1995,

Hjaltason and Samet, 2003a, Hristescu and Farach-Colton, 1999, Wang et al., 2000]; they

are embedding methods designed for achieving efficient nearest neighbor retrieval. Like

SparseMap and Lipschitz embeddings, BoostMap is contractive and can be used for exact

retrieval in metric spaces. A key difference between BoostMap and existing embedding

methods is that, in BoostMap, embedding construction optimizes a direct measure of the

amount of nearest neighbor structure preserved by the embedding.

As noted in Section 1.3, there are many situations in pattern recognition where we

need to use distance measures that are non-metric. Methods that are designed for general

metric spaces can still be applied when the distance measure is non-metric. However,

since the metric assumptions are violated, applications of metric methods to non-metric

spaces are heuristic. Methods that are exact for metric spaces become approximate in

non-metric spaces. No theoretical guarantees of accuracy can be made for arbitrary non-

metric spaces, since in arbitrary non-metric spaces the distances between the query and

database objects do not have to satisfy any constraints. Like other existing methods,

37

BoostMap can offer no guarantees of performance in arbitrary non-metric spaces. However,

a fundamental difference between BoostMap and other nearest neighbor methods is that

the embedding optimization criterion used in the BoostMap algorithm is equally valid for

arbitrary spaces, including metric and non-metric spaces. Therefore, even in non-metric

spaces, the algorithm maximizes the amount of nearest neighbor structure preserved by

the embedding that is being constructed.

In several domains where BoostMap is applicable, domain-specific methods have been

proposed for speeding up similarity queries. For time series databases, various techniques

have appeared in the literature for robust evaluation of similarity queries when using non-

metric distance functions [Keogh, 2002, Vlachos et al., 2003, Yi et al., 1998]. These tech-

niques use the filter-and-refine approach, and use efficient distance approximations in the

filter step.

One of the distance measures that we applied BoostMap to in the experiments is shape

context matching [Belongie et al., 2002]. Several methods have been proposed for speed-

ing up similarity matching and classification using shape context. In [Mori et al., 2001],

efficient retrieval is attained by pruning based on comparisons of a small subset of shape

context features, and also using vector quantization on the space of those features. In

[Grauman and Darrell, 2004] shape context features are matched based on the Earth Mover’s

Distance (EMD). The EMD is efficiently approximated using an embedding, and then Lo-

cality Sensitive Hashing is applied on top of the embedding. In [Zhang and Malik, 2003]

a discriminative classifier is learned based on correspondences of shape context features

between the test object and a small number of prototypes per class.

A fundamental difference between our method and the above-mentioned methods for

speeding up time series matching and shape context matching is that our method is domain-

independent, and treats the underlying distance measure as a black box. It is natural that

a method that uses domain-specific knowledge can sometimes lead to better performance

than a domain-independent method. At the same time, our method does outperform some

domain-specific methods [Zhang and Malik, 2003, Vlachos et al., 2003] in our experiments

38

with shape context matching and time series, and thus may be a viable alternative in

applications where currently domain-specific methods are being used to improve efficiency.

3.3 Methods for Efficient Nearest Neighbor Classification

The third main contribution of this thesis is a method for speeding up nearest neighbor

classification using cascades of approximate nearest neighbor classifiers. This method was

first introduced in [Athitsos et al., 2005a]. An alternative family of methods that can also

be used to improve the efficiency of nearest neighbor classifiers are condensing methods

[Devi and Murty, 2002, Gates, 1972, Hart, 1968]. Those methods try to identify and re-

move training objects whose removal does not negatively affect classification accuracy. In

principle, condensing methods are orthogonal to indexing methods, and could be used to-

gether to further increase efficiency. However, a weakness of many condensing methods

is that, although the objects they remove do not affect classification accuracy as mea-

sured on the training set, they generalize poorly and they often lead to significantly worse

classification accuracy on objects not included in the training set. This is illustrated in

our experiments, where we compare our method to the condensing method described in

[Hart, 1968].

A recently proposed method for efficient nearest neighbor classification is the Pyra-

mid Match Kernel [Grauman and Darrell, 2005], which is applicable to spaces where ob-

jects are represented as sets of features. The Pyramid Match Kernel compares two im-

ages in time linear to the number of features, thus providing an efficient alternative to

computationally expensive distance measures that take superlinear time. Computational

savings are obtained by matching features hierarchically, in a coarse-to-fine manner, us-

ing multiple feature histograms of different granularity. One limitation of the Pyramid

Match Kernel is that it cannot enforce certain constraints that are often useful to impose

on feature correspondences, such as the temporal monotonicity constraint in time series

[Kruskall and Liberman, 1983], or ordering constraints in strings and biological sequences.

In addition, the embedding-based methods described in this thesis can also be applied in

39

domains where distance measures are not based on feature correspondences, such as peer-

to-peer networks. At the same time, methods for efficient approximate feature matching,

where applicable, are an alternative to combining indexing methods with computationally

expensive distance measures, which is the focus of this thesis.

3.4 Summary of Related Work

Tables 3.1 summarizes the methods for efficient nearest neighbor retrieval that we have

gone over in this chapter. Overall, the key differentiating features of the methods proposed

in this thesis are the following:

• The proposed methods can be applied to non-vector spaces, whereas the majority of

efficient retrieval methods can only be applied to vector spaces.

• Existing methods for non-vector spaces are based on Euclidean or metric assumptions,

although these methods can sometimes produce useful results even when heuristically

applied in spaces that violate those assumptions. In contrast, the methods proposed

in this thesis do not make any assumptions about the geometry of the space.

• With respect to methods for efficient nearest neighbor classification, such methods

typically focus on reducing the size of the database by attempting to identify objects

that can be discarded without negatively affecting classification accuracy. The meth-

ods proposed in this thesis are orthogonal to such methods, and can be applied to

further speed up nearest neighbor retrieval in the reduced datasets.

40

Methods for Efficient Nearest Neighbor Retrieval

method Applicability Assumptions Exact Pruning

Weber 1998 vector spaces yes no

Sakurai 2000 vector spaces yes yes

Chakrabarti 2000 vector spaces yes yes

Li 2002 vector spaces no yes

Egecioglu 2000 vector spaces no no

Kanth 1998 vector spaces no no

Weber 2000 vector spaces no no

Koudas 2004 vector spaces no yes

Tuncel 2002 vector spaces no yes

LSH vector spaces no yes

VP-trees arbitrary spaces metric yes

MVP-trees arbitrary spaces metric space metric yes

M-trees arbitrary spaces metric space metric yes

Slim-trees arbitrary spaces metric space metric yes

Zezula 1998 arbitrary spaces metric space no yes

AESA arbitrary spaces metric space metric no

LAESA arbitrary spaces metric space metric no

Lipschitz embeddings arbitrary spaces metric space metric no

FastMap arbitrary spaces metric space no no

SparseMap arbitrary spaces Euclidean space metric no

MetricMap arbitrary spaces metric space no no

BoostMap arbitrary spaces none metric no

Query-Sensitive arbitrary spaces none metric no
BoostMap

Table 3.1: Methods for efficient nearest neighbor netrieval, and some
of the key properties of each method: what spaces it is applicable to,
whether it guarantees retrieving the exact nearest neighbors, geometric as-
sumptions that the method is based on, and whether it is pruning-based
or approximation-based. Under the “Exact” column, a method denoted
as “metric” guarantees retrieval of exact nearest neighbors only in metric
spaces.

41

Chapter 4

BoostMap: A Machine Learning Method For

Embedding Construction

As mentioned in Section 2.2, an embedding F : (X, D) → (Rd,∆) is called proximity-

preserving if it holds that D(X1, X2) ≤ D(X1, X3) ⇔ ∆(F (X1), F (X2)) ≤ ∆(F (X1), F (X3))

for all X1, X2, X3 ∈ X. We say that an embedding F fails on triple (X1, X2, X3) if

D(X1, X2) < D(X1, X3) and ∆(F (X1), F (X2)) > ∆(F (X1), F (X3)), or D(X1, X2) >

D(X1, X3) and ∆(F (X1), F (X2)) < ∆(F (X1), F (X3)). In typical cases, as illustrated in

our experiments in Chapter 7, embeddings of a non-Euclidean space X into a vector space

R
d with an Lp distance measure are not proximity-preserving. In the BoostMap method

that we describe in this chapter, the goal is to construct an embedding that is as close to

being proximity-preserving as possible, i.e., an embedding that fails on as few triples as

possible. We will show that, for the purpose of speeding up nearest neighbor retrieval, it

is sufficient to limit our attention to triples (X1, X2, X3) of a specific type, as discussed in

Section 4.1.3.

The question then becomes how to construct an embedding according to the above

criterion, so that it should fail on as few triples as possible. We will provide an answer

to that question by making a key observation: deciding, for a triple (X1, X2, X3) if X1 is

closer to X2 or to X3 is essentially a binary classification problem, since there are two main

options: X1 is either closer to X2 or to X3 (we assume that cases where X1 is equally far

from X2 and X3 are rare, and we ignore such cases). Any embedding F defines a binary

classifier F̃ that decides if X1 is closer to X2 or to X3 by simply checking if F (X1) is closer

to F (X2) or to F (X3). Constructing an embedding F that fails on as few triples as possible

42

is equivalent to constructing the associated classifier F̃ to be as accurate as possible.

The BoostMap algorithm constructs an embedding F by minimizing the error rate

of the associated classifier F̃ . Embedding F is a multidimensional embedding, and each

of its dimensions is a 1D embedding defined using a reference object or a pair of pivot

objects, as specified by Equations 2.7 and 2.10. We will show that the task of selecting

1D embeddings for each of the dimensions of F is equivalent to the task of designing an

accurate binary classifier of triples (X1, X2, X3) as a linear combination of weak classifiers

corresponding to 1D embeddings. The latter task is a natural fit for boosting methods pro-

posed in the machine learning literature, and we use for that task the AdaBoost algorithm

[Schapire and Singer, 1999].

4.1 Associating Embeddings with Classifiers

In this section we formally define a classifier F̃ for every embedding F , and we show

that any linear combination of such classifiers F̃ also corresponds to an embedding. In

addition, we specify a set of triples such that filter-and-refine retrieval accuracy using F is

only affected by misclassifications of triples belonging to that set.

4.1.1 From Embeddings to Classifiers

As in previous sections, X is a space of objects and D is a distance measure defined on X.

Now, let (X,A,B) be a triple of objects in X. For that triple, one of the following three

cases must be true:

• X is closer to A than to B.

• X is equally far from A and B.

• X is closer to B than to A.

In order to denote, for each triple (X,A,B), which of those three possibilities is true, we

define the proximity order P of triple (X,A,B) to be a function that outputs 1 when X is

43

closer to A than to B and −1 when X is closer to B than to A. In case of a tie, P (X,A,B)

is zero.

P (X,A,B) =

1 if D(X,A) < D(X,B) .

0 if D(X,A) = D(X,B) .

−1 if D(X,A) > D(X,B) .

(4.1)

We consider the case P (X,A,B) = 0 (where X has exactly the same distance from A

and B) to be a relatively rare, borderline case. In spaces where distances can take any

value within some range of real numbers, it is typically unusual for an object to have the

exact same distance to two database objects. Based on these considerations, we will largely

ignore the case where P (X,A,B) = 0 from this point forward. The cases P (X,A,B) = 1

and P (X,A,B) = −1 are the only two cases that we worry about. Consequently, we

consider the task of estimating P (X,A,B) to be a binary classification task.

Let F be an embedding that maps (X,D) to (Rd,∆). If we know F (X), F (A), and

F (B), we can guess whether X is closer to A or to B, by checking whether F (X) is closer

to F (A) or to F (B). More formally, for every embedding F we define a proximity classifier

F̃ , that estimates the proximity order P (X,A,B) as follows:

F̃ (X,A,B) = ∆(F (X), F (B)) − ∆(F (X), F (A)) . (4.2)

If we define sign(x) to be 1 for x > 0, 0 for x = 0, and −1 for x < 0, then sign(F̃ (X,A,B))

is an estimate of P (X,A,B).

Given a set of triples T ⊆ X
3, the error rate of F̃ on that set is essentially the fraction

of triples misclassified by F̃ . We will provide a formal definition G(F̃ , T) for the error rate

that is just slightly more complicated, because it treats errors where P (X,A,B) = 0 or

F̃ (X,A,B) = 0 as only half-errors. First, as auxiliary notation, we define the classification

error G(F̃ ,X,A,B) of applying F̃ on a particular triple (X,A,B) as:

G(F̃ ,X,A,B) =
|P (X,A,B) − sign(F̃ (X,A,B))|

2
. (4.3)

44

R
2 (original space) R (target space)

Figure 4·1: An embedding F P of five 2D points (shown on the left) into the
real line (shown on the right), using P as the reference object. The target of
each 2D point on the line is labeled with the same letter as the 2D point. The
classifier F̃P (Equation 4.2) classifies correctly 46 out of the 60 triples we can
form from these five objects (assuming no object occurs twice in a triple).
Examples of misclassified triples are: (B,A,C), (C,B,D), (D,B,R). For
example, B is closer to A than it is to C, but F P (B) is closer to F P (C)
than it is to F P (A).

In the above definition, essentially G = 0 if the embedding successfully predicts the prox-

imity order of the triple, and G = 1 when the embedding makes the wrong prediction. The

only exceptions are cases where X is equally far from A and B or F (X) is equally far from

F (A) and F (B), in which case G has a value of 0 if classification is correct, or a value of

0.5 if classification is incorrect.

The overall classification error rate G(F̃ , T) is defined to be the expected value of

G(F̃ ,X,A,B), over all triples (X,A,B) ∈ T:

G(F̃ , T) =

∑

(X,A,B)∈T
G(F̃ ,X,A,B)

|T|
, (4.4)

where |T| denotes the number of triples in T.

Figure 4·1 illustrates an example of a 1D embedding, and triples of objects that are

misclassified by the classifier corresponding to that embedding.

45

4.1.2 From Classifiers to Embeddings

At this point we have established that every embedding F : (X, D) → (Rd,∆) corresponds

to a binary classifier F̃ of triples of objects, i.e., a classifier that decides for any three

objects X,A,B ∈ X if X is closer to A or to B. A natural question to ask is whether

the converse also holds, i.e., whether it holds that for every binary classifier H of triples

(X,A,B) ∈ X
3 we can find F, d, and ∆ such that F : (X, D) → (Rd,∆) and H = F̃ . The

answer to that question is negative, and here is a simple counterexample: suppose we have

a classifier H of triples, giving the following answers:

H(X,A,B) = 1 .

H(X,B,C) = 1 .

H(X,A,C) = −1 .

Classifier H predicts that X is closer to A than to B, X is closer to B than to C, and X

is closer to C than to A. If classifier H did correspond to an embedding F and a distance

measure ∆, so that H(X,A,B) = ∆(F (X), F (B))−∆(F (X), F (A)), then we would arrive

at the following contradiction:

∆(F (X), F (A)) < ∆(F (X), F (B)) < ∆(F (X), F (C)) < ∆(F (X), F (A)) ⇒

∆(F (X), F (A)) < ∆(F (X), F (A)) .

Therefore, there can be no F and ∆ such that F : (X, D) → (Rd,∆) and H = F̃ .

At the same time, given a space X and distance measure D, there exists a family H

of classifiers for which we can easily show that each classifier H ∈ H corresponds to an

embedding F and a distance measure ∆. We define H to be the set of all classifiers H that

can be written in the following form:

H(X,A,B) =
J

∑

j=1

(αjF̃j(X,A,B)) , (4.5)

46

where J is any positive integer and each Fj is an embedding mapping X and D to some

real vector space R
dj and some distance measure ∆j.

Proposition 1 If classifier H is of the form of Equation 4.5, then we can construct an

embedding F and distance measure ∆ such that F : (X, D) → (Rd,∆) and H = F̃ , for

some integer d. Furthermore, if each Fj is a 1D embedding mapping (X, D) to (R, Lp), for

any p > 0, then ∆ is a weighted L1 distance measure.

Proof: Given that H(X,A,B) =
∑J

j=1(αjF̃j(X,A,B)), we define F and ∆ as follows:

F (X) = (F1(X), . . . , FJ(X)) .

∆(F (X1), F (X2)) =
J

∑

j=1

(αj∆j(Fj(X1), Fj(X2))) .

Embedding F maps X into a d-dimensional vector space, where d =
∑J

j=1 dj , and ∆ is the

sum of individual distances ∆j that correspond to embeddings Fj .

Given these definitions, the proof that H = F̃ can be obtained in a few simple steps,

by starting from the definition of F̃ in Equation 4.2:

F̃ (X,A,B) = ∆(F (X), F (B)) − ∆(F (X), F (A))

=

J
∑

j=1

(αj∆j(Fj(X), Fj(B))) −

J
∑

j=1

(αj∆j(Fj(X), Fj(A)))

=

J
∑

j=1

(αj(∆j(Fj(X), Fj(B)) − ∆j(Fj(X), Fj(A))))

=
J

∑

j=1

(αjF̃j(X,A,B)) = H(X,A,B) .

If each Fj is a 1D embedding mapping (X, D) to (R, Lp), for any p > 0, then it

holds that ∆j(Fj(X1), Fj(X2)) = |Fj(X1) − Fj(X2)|. Therefore, ∆(F (X1), F (X2)) =
∑J

j=1(αj |Fj(X1)−Fj(X2)|), which means that ∆ is a weighted L1 distance measure, with

weights αj.

�

We have shown that if classifier H is a weighted linear combination of classifiers cor-

47

responding to embeddings, then H itself is equivalent to a specific embedding F and a

specific distance measure ∆. By the word ”equivalent” we mean that, for any (X,A,B)

such that X is closer to A than to B, H misclassifies (X,A,B) if and only if F fails on that

triple, i.e., if and only if F maps X closer to B than to A according to distance measure

∆.

The significance of this equivalence is that it allows us to map the problem of embed-

ding optimization to the problem of optimizing a weighted linear combination of binary

classifiers, which is exactly the problem that boosting methods are designed to solve.

4.1.3 Choosing a Set of Triples

In the BoostMap algorithm, embedding construction is formulated as the problem of con-

structing an embedding F in such a way that the classification error G(F̃ , T) of the em-

bedding is minimized on a specific set T of triples. We will now take a look at the issue of

how to choose this set T of triples.

We denote by X3 the set of all possible triples we can form using objects from X. If

F̃ classifies correctly all triples in X
3, then F is proximity-preserving. In that case, if X

is the k-nearest neighbor of Q in X, F (X) is the k-nearest neighbor of F (Q) in F (X),

for any value of k. Overall, the classification error G(F̃ , X3) is a quantitative measure of

how closely the approximate similarity rankings obtained in F (X) will resemble the exact

similarity rankings obtained in X.

Suppose that we have a finite database U ⊆ X, and we know that in our application we

are only interested in retrieving up to kmax nearest neighbors for each query object Q ∈ X.

An example of such an application is k-nearest neighbor classification, where for every test

object we want to retrieve k database objects, so kmax = k in that case. We will denote

the set of the kmax nearest neighbors of Q in database U as NN (Q, U, kmax). In order to

achieve perfect retrieval accuracy of up to kmax nearest neighbors using an embedding F ,

it is sufficient that classifier F̃ be perfect on a restricted set of triples Tkmax defined as

48

follows:

Tkmax = {(Q,A,B)|Q ∈ X, A ∈ NN (Q, U, kmax), B ∈ U} . (4.6)

If F̃ makes no mistakes on triples in Tkmax then for any query object Q and any

k ∈ {1, . . . , kmax}, X is the k-nearest neighbor of Q in U iff F (X) is the k-nearest neighbor

of F (Q) in F (U). Therefore, using F for the filtering step of filter-and-refine retrieval, and

setting parameter p of the refine step to 0, which is the setting that minimizes retrieval

time, we can always retrieve successfully up to kmax nearest neighbors for any query object.

If F̃ misclassifies triples that are not in Tkmax , retrieval accuracy is not affected. Based

on the these considerations, assuming that we are given parameter kmax, the goal of our

formulation is to construct an embedding Fout in a way that minimizes G(F̃out, Tkmax).

It is interesting to compare the measure of embedding quality we have proposed, i.e., the

classification error on the set Tkmax , with the measures of stress and distortion described

in Section 2.2. A key difference is that the measure proposed here is fundamentally a

local measure: we only care that nearest neighbors remain nearest neighbors under the

embedding. The vast majority of triples of objects (Xi, Ai, Bi) are such that neither Ai

nor Bi is one of the nearest neighbors of Xi, and therefore we are not concerned about

classifying such triples correctly. In contrast, stress and distortion are global measures, that

are affected by every pair of objects, although the vast majority of pairs of objects (Xi, Ai)

are such that Xi and Ai are not nearest neighbors of each other. Arguably a method that

minimizes stress and distortion spends most of its effort on pairs of objects that have no

bearing on how well the embedding preserves nearest neighbor structure. In contrast, the

measure proposed here is tightly connected with the amount of nearest neighbor structure

preserved by the embedding.

4.2 Reducing Embedding Construction to a Boosting Problem

As stated in Section 4.1.3, our goal is to construct an embedding Fout : (X, D) → (Rd,∆)

in a way that minimizes the classification error of classifier F̃out on a specific set of triples.

Using the correspondences we have established between embeddings and classifiers, we

49

can reduce the problem of embedding optimization to an equivalent problem of classifier

optimization, and in particular to the problem of optimizing a weighted linear combination

of binary classifiers. This reduction is based on the following three observations:

• Given a large database U, we can define a large pool of 1D embeddings, either by

picking any database object as a reference object and applying Equation 2.7, or by

picking any pair of database objects as pivot objects and applying Equation 2.10.

• Since every embedding corresponds to a classifier, having a large pool of 1D embed-

dings means we also have a large pool of classifiers. These classifiers are based on

simple 1D embeddings and we do not expect these classifiers to be very accurate.

At the same time, as long as the simple 1D embeddings defined by Eqs. 2.7 and

2.10 have the property of mapping nearby objects to nearby points on the real line,

we expect such embeddings to preserve at least a small amount of the structure of

the original space. In that case, the classifiers corresponding to such embeddings

should behave as weak classifiers [Schapire and Singer, 1999], meaning that even if

they have a high error rate, they should classify correctly more than half the triples,

and thus perform better than a random guess. A simple example is shown in Figure

4·1, where the classifier corresponding to a 1D embedding correctly classifies 46 out

of 60 possible triples of objects.

• If we start with weak classifiers corresponding to 1D embeddings, and we manage to

linearly combine many such classifiers into an aggregate classifier that achieves a low

error rate, then we can use Proposition 1 to convert the aggregate classifier into an

embedding. Consequently, the problem that we are trying to solve, i.e., constructing

an embedding whose corresponding classifier has a low error rate, can be reduced to

the problem of finding a good linear combination of weak classifiers corresponding to

1D embeddings.

Naturally, the problem of linearly combining weak binary classifiers into a strong classi-

fier with low error rate is exactly the problem that classical boosting methods like AdaBoost

50

Given: (o1, y1), . . . , (ot, yt); oi ∈ G, yi ∈ {−1, 1}.
Initialize wi,1 = 1

t
, for i = 1, . . . , t.

For training round j = 1, . . . , J :

1. Train weak learner using training weights wi,j, and obtain weak classifier hj : G → R,
and a corresponding weight αj ∈ R.

2. Set training weights wi,j+1 for the next round as follows:

wi,j+1 =
wi,j exp(−αjyihj(oi))

zj
. (4.7)

where zj is a normalization factor (chosen so that
∑t

i=1 wi,j+1 = 1).

Output the final classifier:

H(x) =

J
∑

j=1

αjhj(x). (4.8)

Figure 4·2: The AdaBoost algorithm. This description is largely copied
from [Schapire and Singer, 1999].

[Schapire and Singer, 1999] and LogitBoost [Friedman et al., 2000] have been designed to

solve. Therefore, we can directly use one of these methods to construct an optimized high-

dimensional embedding using 1D embeddings as building blocks. In our implementation

we have chosen to use the AdaBoost algorithm.

4.3 The Embedding Construction Algorithm

The AdaBoost algorithm is shown in Figure 4·2. The inputs to AdaBoost are a set of

objects oi, together with their corresponding class labels yi. Labels yi are equal either to

−1 or to 1. The objects oi should not be confused with the objects of space X. As we

will see shortly, actually each oi corresponds to a triple of objects of X. AdaBoost assumes

that we have a “weak learner” module, which we can call at each round to obtain a new

weak classifier and a weight for that classifier. The goal is to construct a strong classifier

that achieves much higher accuracy than the individual weak classifiers.

Overall, the AdaBoost algorithm performs a number J of training rounds. At each

51

round j, AdaBoost picks a weak classifier hj , and determines a weight αj for that classifier,

by calling the weak learner. Then, AdaBoost defines new training weights wi,j+1 to be used

in the next training round. The training weights are adjusted so that training objects that

are misclassified by the chosen weak classifier hj have a higher weight in the next round.

The influence that each training object has on the output of the weak learner at round j

is proportional to the weight of that object at round j.

At an intuitive level, in any training round, the highest training weights correspond

to objects that have been misclassified by many of the previously chosen weak classifiers.

Because of the training weights, the weak learner is biased towards returning a classifier

that tends to correct mistakes of previously chosen classifiers. Overall, weak classifiers

are chosen and weighted so that they complement each other. The ability of AdaBoost

to construct highly accurate classifiers using highly inaccurate weak classifiers has been

demonstrated in numerous applications, and the reader can refer to [Tieu and Viola, 2000]

and [Viola and Jones, 2001] for two examples.

The BoostMap algorithm is an adaptation of AdaBoost to the problem of embedding

construction. The goal of BoostMap is to construct an embedding from an arbitrary space

X to d-dimensional Euclidean space R
d. In order to apply AdaBoost to our problem we

need to perform some preprocessing before invoking AdaBoost, we need to specify how

to implement the first step of the AdaBoost algorithm shown in Figure 4·2, we need to

specify how to decide J , i.e., the number of training rounds to perform in AdaBoost, and

finally we need to postprocess the output of AdaBoost and convert that output into an

embedding. We now proceed to describe in detail how we perform each of these steps.

4.3.1 Inputs and Preprocessing

The inputs to the BoostMap algorithm are the following:

• A database U of objects in some space X with distance measure D.

• A positive integer kmax specifying the maximum number of nearest neighbors we will

be interested in retrieving using the resulting embedding.

52

• A set C ⊂ U of candidate reference and pivot objects. Elements of C will be used to

define 1D embeddings.

• A set T ⊂ U of training objects. Elements of T will be used to form training triples,

i.e., the oi’s used by AdaBoost. We should note that we use the term “training

objects” for the elements of T, and not for the oi’s, which are typically called “training

objects” in existing literature. For the oi’s we will use the term “training triples.”

• A matrix of distances from each X1 ∈ C to each X2 ∈ C.

• A matrix of distances from each X1 ∈ C to each X2 ∈ T.

• A matrix of distances from each X1 ∈ T to each X2 ∈ T.

In addition, we need to specify a few parameters that are useful for controlling the

running time of the training algorithm. For reference, we provide here the list of all

parameters needed by the training algorithm. The role that these parameters play will be

fully explained in the description of the training algorithm.

• The size β of the set G of training triples.

• The number γ of weak classifiers to consider at each training round.

• The number δ of classifiers selected after a quick scan at each training round j. These

selected classifiers are then evaluated more thoroughly in order to choose the best

weak classifier hj and weight αj .

• A parameter Zmax that will be used for deciding when to stop the training algorithm.

The goal of the training algorithm is to construct an embedding Fout in a way that

minimizes the classification error of the corresponding classifier F̃out on Tkmax , the set of

triples defined in Equation 4.6. As a reminder, a triple (X,A,B) is in Tkmax if X is any

object of X, A is one of the kmax nearest neighbors of X in the database U, and B is any

database object. Ideally the training set of triples should be obtained by sampling from

53

the set Tkmax . In practice, at least with the datasets that we have experimented, it is more

convenient to choose training triples (X,A,B) such that X is a database object, as opposed

to choosing X from objects that are not in the database, for two reasons: first, we often

do not have enough non-database objects to use for training, and second, we want to use

the non-database objects that we have for performance evaluation of the system.

An additional consideration is that choosing training triples (X,A,B) without imposing

some restrictions on X, A and B increases the memory requirements of the algorithm,

because we need to pass as an input a matrix of distances from all objects in C to all

objects used to form training triples. This is the reason we require that, for any training

triple (X,A,B), X,A and B must be elements of a smaller set T that is a subset of database

U. Now, in order to simulate sampling from Tkmax , given set T we choose β training triples

(Xi, Ai, Bi) as follows:

1. Choose Xi randomly from T.

2. Set k′ = kmax|T|
|U| .

3. Choose Ai randomly from the k′ nearest neighbors of Xi in T − {Xi}.

4. Choose Bi randomly from T − {Xi, Ai}.

5. Set training triple oi to (Xi, Ai, Bi).

6. Set class label yi of oi to the proximity order P (oi) of the triple, where the proximity

order is as defined in Equation 4.1. As a reminder, we always assume that Xi is

not equally far from Ai and Bi, so that yi(oi) equals either −1 or 1. If a triple

(Xi, Ai, Bi) happens to be such that Xi is equally far from A and B, the algorithm

simply discards that triple.

The formula we use for setting k′ makes the training triple selection process simulate

uniform sampling from Tkmax as closely as possible, under the constraint that each Xi, Ai

and Bi must be an element of T.

54

We have now specified the inputs and parameters that must be provided to the training

algorithm. Next, we will specify how to implement the training algorithm, i.e., how to

implement Step 1 of the algorithm (Step 2 is fully specified in Figure 4·2), and how to

decide when to stop training.

4.3.2 The Training Algorithm

Evaluating Weak Classifiers

At training round j, given training weights wi,j, the weak learner is called to provide us

with a weak classifier hj and a weight αj. In our implementation, the weak learner simply

evaluates a large number of weak classifiers, and finds the best classifier and best weight

for that classifier. For the purposes of the original BoostMap algorithm described in this

chapter, each weak classifier is a classifier F̃i where Fi is a 1D embedding. In Chapter

5 we will describe an alternative family of weak classifiers that can also be used with

the algorithm described here. In [Athitsos and Sclaroff, 2005] and [Alon et al., 2005b] we

have desribed additional alternative families of weak classifiers that can be used within the

context of this algorithm.

The number of classifiers to evaluate is specified by parameter γ of the algorithm. Of

these γ classifiers, half are reference-object embeddings of the form shown in Equation 2.7

and half are line-projection embeddings of the form shown in Equation 2.10. We will define

two alternative ways to evaluate a classifier h at training round j. The first way is the

training error Λ:

Λj(h) =

t
∑

i=1

wi,jG(h,Xi, Ai, Bi) , (4.9)

where G(h,Xi, Ai, Bi) is the error of h on the i-th training triple, as defined in Equation

4.4. Note that this training error is weighted based on wi,j, and therefore Λj(h) will be

different at each training round j.

A second way to evaluate a classifier h is suggested in [Schapire and Singer, 1999]. The

function Zj(h, α) gives a measure of how useful it would be to choose hj = h and αj = α

55

at training round j:

Zj(h, α) =
t

∑

i=1

(wi,j exp(−αyih(Xi, Ai, Bi))) . (4.10)

Note that, in the above equation, yi is in the class label of training triple (Xi, Ai, Bi).

When yi has a different sign than h(Xi, Ai, Bi) then Zj receives a contribution greater

than or equal to wi,j for that training triple, and the contribution increases, in that case,

with the absolute value of h(Xi, Ai, Bi). Therefore, the more badly a triple is misclassified

by h, the more it contributes to Zj . The full details of the significance of Zj can be found

in [Schapire and Singer, 1999]. Here it suffices to say that if Zj(F̃ , α) < 1 then choosing

hj = h and αj = α is overall beneficial, and is expected to reduce the training error. Given

the choice between two weighted classifiers αh and α′h′, we should choose the weighted

classifier that gives the lowest Zj value. Given hj , we should choose αj to be the α that

minimizes Zj(hj , α).

Finding the optimal α for a given classifier h and computing the Zj value attained

using that optimal α are very common operations in our algorithm, so we will define

specific notation for those operations:

Amin(h, j, l) = argminα∈[l,∞)Zj(h, α) . (4.11)

Zmin(h, j, l) = min
α∈[l,∞)

Zj(h, α) . (4.12)

In the above equation, j specifies the training round, and l specifies a minimum value

for α. Amin(h, j, l) returns the α that minimizes Zj(h, α), subject to the constraint that

α ≥ l. Argument l will be used to ensure that no classifier has a negative weight. In

Section 5.3.2 we will use classifier weights to define a weighted L1 distance measure ∆ in

R
d, and non-negative weights ensure that ∆ is a metric, so that we can apply any of the

numerous indexing methods available for L1 metrics to further speed up the filtering step

of filter-and-refine retrieval.

56

Choosing the Next Weak Classifier and Weight

We denote with Hj the classifier assembled by AdaBoost after j training rounds, so that

Hj =
∑j

i=1 αihi. We now describe how to obtain Hj given Hj−1. At a high level, at

training round j, Hj is obtained from Hj−1 by performing one of the following operations:

• Remove one of the already chosen weak classifiers. To accomplish this, we simply

add to the strong classifier the negation of the weak classifier we want to remove.

• Modify the weight of an already chosen weak classifier. To accomplish this, we simply

add to the strong classifier the weak classifier we want to modify, with a weight equal

to the desired modification.

• Add in a new weak classifier.

First we check whether a removal or a weight modification would improve the strong

classifier. If this fails, we add in a new classifier. Removals and weight modifications that

improve the strong classifier are given preference over adding in a new classifier because

they do not increase the complexity of the strong classifier.

It is possible that some weak classifier occurs multiple times in Hj, i.e., that there

exist i, g < j such that hi = hg. Without loss of generality we assume that we also have

an alternative representation of Hj−1 as a weighted linear combination of unique weak

classifiers. We denote that representation as Hj−1 =
∑Kj−1

i=1 α′
i,j−1h

′
i,j−1. By saying that

each classifier h′
i,j−1 is unique we mean that if g 6= i then h′

g,j−1 6= h′
i,j−1. Kj−1 is simply

the number of unique weak classifiers occurring in Hj−1. The reason we need subscripts

i and j − 1 to specify a unique classifier and its weight is that the weight of a classifier

hi,j−1 can be different at different training rounds, since it changes at every training round

j where that classifier is selected as hj .

Our exact implementation of Step 1 of the AdaBoost algorithm of Figure 4·2 is shown

in Algorithm 1. In Step 8 of the algorithm, using a small δ reduces training time, because

it lets us evaluate Amin only for δ classifiers. In general, evaluating the weighted training

57

error Λj for a classifier h is faster (by a factor of ten to twenty in our experiments) than

evaluating Amin, because in Amin we need to search for the optimal value α that minimizes

Zj(h, α). If we do not care about speed, we should set δ = γ and γ = |C|.

Note that, as specified in Step 11 of Algorithm 1, the algorithm terminates when, at a

given round j, we get select a new weak classifier hj for which Zj(hj , αj) ≥ Zmax, meaning

that we have failed to find a weak classifier that would be more than marginally beneficial

to add to the strong classifier.

4.3.3 Postprocessing: Defining an Embedding and a Distance Measure

The output of AdaBoost is a strong classifier H. Without loss of generality, we can write H

as H =
∑d

c=1 α′
cF̃c, where each F̃c is associated with a unique 1D embedding Fc. Classifier

H has been trained to estimate, for triples of objects (X,A,B), if X is closer to A or to

B. However, our final goal is to construct not a classifier, but an embedding. To achieve

that we use Proposition 1, to convert H into an embedding Fout : X → R
d and a distance

measure ∆, as follows:

Fout(x) = (F1(x), ..., Fd(x)) . (4.13)

∆((u1, ..., ud), (v1, ..., vd)) =
d

∑

c=1

(α′
c|uc − vc|) . (4.14)

∆ is a weighted Manhattan (L1) distance measure. ∆ is a metric, because the training

algorithm ensured that all αc’s are non-negative. By ensuring that ∆ is a metric, we can

apply to the resulting embedding any additional indexing, clustering and visualization tools

that are available for L1 metric spaces.

4.3.4 Using Alternative Families of Weak Classifiers

Steps 5, 6, and 7 of Algorithm 1 are the only steps that depend on the family of weak clas-

sifiers that we want to use as building blocks for the strong classifier. In this chapter the

weak classifiers are of the form F̃ where F is a 1D reference-object or line-projection embed-

ding. In Chapter 5, we will propose a different family of weak classifiers, that can be used

to improve embedding accuracy. We have described additional families of weak classifiers

58

1. Let z = minc=1,...,Kj−1
Zj(h

′

c,j−1,−α′

c,j−1).

2. If z < 1:

• Set g = argminc=1,...,Kj−1
Zj(h

′

c,j−1,−α′

c,j−1).

• Set hj = h′

g,j−1, αj = −α′

g,j−1.

• Go to Step 12.

Comment: If z < 1, we effectively remove h′

g,j−1 from the strong classifier.

3. Let z = minc=1,...,Kj−1
Zmin(h

′

c,j−1, j,−α′

c,j−1).

4. If z < Zmax:

• Set g = argminc=1,...,Kj−1
Zmin(h′

c,j−1, j,−α′

c,j−1).

• Set hj = h′

g,j−1.

• Set αj = Amin(h
′

g, j,−α′

g,j−1).

• Go to Step 12.

Comments: Here we modify the weight of h′

g,j−1, by adding αj to it. The third arguments used
when calling Zmin and Amin ensure that αj ≥ −α′

g,j−1, so that αj + α′

g,j−1 is guaranteed to be
non-negative. Note that αj + α′

g,j−1 will be the new weight α′

g,j of h′

g. Also, note that we check
if z < Zmax. In principle, if z < 1 then this weight modification is beneficial. By using Zmax as a
threshold we avoid minor weight modifications with insignificant numerical impact on the accuracy
of the strong classifier.

5. Choose randomly γ/2 reference objects P1, . . . , Pγ/2 from the set C of candidate objects. Construct
a set Fj1 = {F Pi |i = 1, . . . , γ/2} of 1D embeddings using those reference objects .

6. Choose randomly a set Cj = {(X1,1, X1,2), ..., (Xγ/2,1, Xγ/2,2)} of pairs of elements of C, and con-
struct a set of embeddings Fj2 = {F x1,x2 | (x1, x2) ∈ Cj}, where F X1,X2 is as defined in Equation
2.10.

7. Define Fj = Fj1 ∪ Fj2. We set F̃J = {F̃ | F ∈ Fj}.

8. Evaluate Λj(h) for each h ∈ F̃J , and define a set Hj that includes the δ classifiers in F̃J with the
smallest Λj(h).

9. Set hj = argminh∈Hj
Zmin(h, j, 0).

10. Set αj = Amin(hj , j, 0).

Comment: The third argument to Zmin and Amin in the last two steps is 0. This constrains αj to
be non-negative.

11. If Zj(hj , αj) ≥ Zmax then terminate the training algorithm, and output Hj−1 as the output strong
classifier.

12. Set zj = Zj(hj , αj).

13. Set training weights wi,j+1 for the next round using Equation 4.7.

14. Set j = j + 1. Go to Step 1.

Algorithm 1: The main loop of the BoostMap training algorithm. Steps
1-10 implement Step 1 of the AdaBoost algorithm shown in Figure 4·2.

59

that can be used with the BoostMap training algorithm in [Athitsos and Sclaroff, 2005]

and [Alon et al., 2005b]. In order to make the training algorithm work with those different

families of weak classifiers, the only change we need to make to the training algorithm

is modify Steps 5, 6, and 7. The modifications simply need to ensure that, after Step 7,

set Fj, which is the pool of classifiers from which the next weak classifier will be chosen,

contains only classifiers from the alternative family of weak classifiers that we want to use.

4.4 Properties of BoostMap Embeddings

In this section we take a closer look at some properties of query-sensitive embeddings and

the proposed algorithm for constructing such embeddings.

4.4.1 Contractiveness

Contractiveness is an important property of some types of embeddings. When it holds,

contractiveness can be used to guarantee that filter-and-refine retrieval will always return

the true k-nearest neighbors, for any query [Hjaltason and Samet, 2003a]. An embedding

F : (X, D) → (Rd,∆) is contractive if for any X1, X2 ∈ X it holds that ∆(F (X1), F (X2)) ≤

D(X1, X2). As explained in [Hjaltason and Samet, 2003a], when an embedding is contrac-

tive, then the refine step of filter-and-refine retrieval can automatically decide how many

exact distance computations it needs to perform, given a query, in order to guarantee

correct results.

The output embedding Fout : (X, D) → (Rd,∆) of the BoostMap algorithm, constructed

as described in Section 4.3.3, can be made contractive by dividing ∆(Fout(X1), Fout(X2))

with a normalization term, provided that D is metric. If Fout contains no line projection

embeddings, the normalization term W that should be used is:

W =

d
∑

i=1

α′
i , (4.15)

where α′
i are the weights used in Equation 4.14 to define ∆.

60

Proposition 2 Let X1, X2 ∈ X. Suppose that α′
i ≥ 0 for all i, and suppose that D

is metric. If all dimensions of Fout are reference-object embeddings, then the following

property holds:
1

W
∆(Fout(X1), Fout(X2)) ≤ D(X1, X2) . (4.16)

Proof: If each dimension of Fout is a reference-object embedding, then Fout can be repre-

sented as Fout = (F P1 , . . . , F Pd), where d is the dimensionality of Fout and Pi are reference

objects. We will denote Fout(X1) as (x1,1, . . . , x1,d) and Fout(X2) as (x2,1, . . . , x2,d). First,

based on the triangle inequality, we can easily see that:

|x1,i − x2,i| = |D(X1, Pi) − D(X2, Pi)| ≤ D(X1, X2) . (4.17)

Using this observation, we can complete the proof:

1

W
∆(F (X1), F (X2)) =

1

W

d
∑

i=1

(α′
i|x1,i − x2,i|)

≤
1

W

d
∑

i=1

(α′
iD(X1, X2))

=
1

W
D(X1, X2)

d
∑

i=1

αi

=
1

W
D(X1, X2)W

= D(X1, X2) .

�

If Fi, the i-th dimension of Fout, is a line-projection embedding, then it is shown in

[Hjaltason and Samet, 2003a] that |Fi(X1)−Fi(X2) ≤ 3D(X1, X2). Therefore, if we divide

∆(X1, X2) by 3W , then Fout is contractive even in the case where some of its dimensions

are line-projection embeddings.

We should point out that the distance measures D used in the experiments do not

obey the triangle inequality, and thus are non-metric. Consequently, contractiveness does

not hold in the resulting embeddings, and the system can fail to retrieve the true nearest

61

neighbor(s). No existing domain-independent embedding method [Faloutsos and Lin, 1995,

Hristescu and Farach-Colton, 1999, Wang et al., 2000] is contractive in non-metric spaces.

Since perfect accuracy is not guaranteed, the goal of embedding optimization in non-metric

spaces is to provide as good trade-offs as possible between accuracy and efficiency. This

is exactly what our algorithm achieves, by maximizing the amount of nearest neighbor

structure preserved by the embedding. We will see in the experiments that, in all the

datasets we have tried, embeddings produced using this algorithm achieved better accuracy-

efficiency trade-offs than any alternative embedding method we have implemented.

4.4.2 Complexity

At each training round we evaluate a number of weak classifiers by measuring their perfor-

mance on β training triples, in order to choose the best weak classifier. If γ weak classifiers

are evaluated at each round, the computational time per training round is O(γδ). In con-

trast, FastMap [Faloutsos and Lin, 1995], SparseMap [Hristescu and Farach-Colton, 1999],

and MetricMap [Wang et al., 2000] do not require training at all.

Before we even start the training algorithm, we need to compute three distance matrices

to pass as input to BoostMap: distances between objects in C, distances between objects

in T, and distances from objects in C to objects in T. Computing all those distances can

sometimes be the most computationally expensive part of the algorithm, depending on the

computational complexity of the distance measure D.

If time and memory resources are not limited, then we can set both C and T equal to

the entire database. Otherwise, we need to create C and T by sampling randomly from

the database. If (as in our experiments) C and T have an equal number of elements, then

the number of distances that we need to precompute is quadratic to |C|.

We should emphasize that both the cost of precomputing distances and the cost of the

training algorithm are one-time preprocessing costs. In many applications, spending the

extra hours or days needed for this type of preprocessing is an acceptable cost, as long

as it results in a higher-quality embedding, i.e., an embedding that leads to faster online

62

retrieval without sacrificing retrieval accuracy.

With respect to the online filter-and-refine retrieval cost, computing the d-dimensional

embedding of a query object takes O(d) time and requires between d and 2d evaluations

of D. The number of distance evaluations depends on the number of line-projection 1D

embeddings that are used in the d-dimensional embedding: for each such 1D embedding

we need to compute two distances, whereas for each reference-object 1D embedding we

only need to compute one distance. Comparing the embedding of the query to the em-

beddings of n database objects takes time O(dn). For a fixed d, these costs are within a

factor of 2 of the corresponding costs using FastMap [Faloutsos and Lin, 1995], SparseMap

[Hristescu and Farach-Colton, 1999], and MetricMap [Wang et al., 2000]. To be exact, the

number of distance evaluations required by these methods to embed a query is: 2d for

FastMap, d for SparseMap, and d + 1 for MetricMap.

We should also note that, as d increases, the filter step also becomes more expensive,

because we need to compare vectors of increasingly high dimensionality. However, in our

experiments so far, with embeddings of up to 1,000 dimensions, the filter step always takes

negligible time; retrieval time is dominated by the few exact distance computations we

need to perform at the embedding step and the refine step.

In cases (not encountered in our experiments) when the filter step takes up a signifi-

cant part of retrieval time, one can apply vector indexing techniques [Böhm et al., 2001,

Indyk, 2000, White and Jain, 1996] to speed up filtering. We should keep in mind that in

the filter step we are finding nearest neighbors in a real vector space, and many indexing

methods are applicable in such a setting. One of the advantages of using embeddings is

exactly the fact that we map arbitrary spaces to well-understood real vector spaces, for

which many tools are available.

4.4.3 Dynamic Datasets

In our discussion so far we have assumed that the database is static. In some applications,

however, we may need to add or remove objects online. As long as the underlying distri-

63

bution of database objects is not altered, adding and removing objects is pretty straight-

forward. When adding an object X, we need to compute its embedding Fout(X). If Fout

is d-dimensional, computing Fout(x) requires computing at most 2d distances D between

X and database objects.

If the underlying distribution of database objects changes significantly because of ad-

ditions and removals, we may have to create a new embedding. A way to check whether

the distribution of database objects has changed significantly is by measuring, at regular

intervals, the error of the current embedding Fout, i.e., the classification error of F̃out on

triples of objects picked from the current database using the same sampling method we

use to choose training triples. When that error increases above some threshold, we can

re-apply the training algorithm to construct a new embedding.

4.5 Summary of the BoostMap method

In this chapter we have described the BoostMap method for embedding construction. At

the core of this method is a formulation that associates embeddings with classifiers. We

demonstrate that a direct measure of the amount of nearest neighbor structure preserved by

an embedding is equivalent to the classification error rate of the classifier corresponding to

that embedding, when that the error rate is measured on a specific set of triples of objects.

Associating embedding quality with classification error on a binary classification task allows

us to use machine learning methods, namely AdaBoost, for embedding optimization.

While this chapter has described a specific version of the BoostMap method, BoostMap

is a very flexible method that can be applied in different ways to produce different types of

embeddings. In Chapter 5 we will show how to modify BoostMap so as to produce query-

sensitive embeddings, and in Chapter 6 we propose an alternative optimization criterion

that is more relevant when our goal is nearest neighbor classification.

Overall, BoostMap is the core contribution of this thesis. The methods proposed in the

subsequent chapters demonstrate how to extend BoostMap, or build on top of BoostMap,

in ways that achieve even better trade-offs between accuracy and efficiency for the tasks of

64

nearest neighbor retrieval and classification.

65

Chapter 5

Query-Sensitive Embeddings

In this chapter we present a new type of embeddings: embeddings that use a “query-

sensitive” distance measure for the target space of the embedding. This distance measure

is used to compare the vectors that the query and database objects are mapped to. The

term “query-sensitive” means that the distance measure changes depending on the current

query object. More specifically, the query-sensitive distance measure is a weighted L1

distance measure where the weights automatically adjust to each query.

Existing embedding methods [Athitsos et al., 2004, Faloutsos and Lin, 1995, Hristescu and Farach-Colton, 1999,

Wang et al., 2000] compare vectors using global, query-insensitive distance measures. A

query-sensitive distance measure improves embedding quality, by providing a natural way

to identify, for each query object, the embedding dimensions that are the most useful for

retrieving the nearest neighbors of that query. Identifying the most informative dimensions

is an important issue that arises when objects are represented as high-dimensional vectors

[Aggarwal, 2001] and addressing this issue can offer significant help in defining meaning-

ful high-dimensional distance measures. As is demonstrated in our experimental results,

using a well-chosen set of dimensions for each query is more useful than simply using all

dimensions for all queries and assigning a fixed weight to each dimension.

First, we describe the motivation behind using a query-sensitive distance measure for

the purposes of nearest neighbor retrieval. Next we illustrate theoretically the additional

modeling power that can be obtained from query-sensitivity. Finally we show how to

adapt the BoostMap algorithm to the purpose of constructing a query-sensitive distance

measure, so as to increase the amount of nearest neighbor structure preserved by the

resulting embedding.

66

5.1 Some Additional Related Work

The goal of query-sensitive embeddings is the same as the goal of the original BoostMap

algorithm: we want to achieve efficient nearest neighbor retrieval in spaces with computa-

tionally expensive distance measures. Consequently, all the literature on efficient nearest

neighbor retrieval surveyed in Chapter 3 is also relevant in the context of query-sensitive

embeddings. Here we discuss some additional related work, and in particular we take a

look at other existing methods that use non-global distance measures.

In the existing literature, non-global distance measures have been used for the purposes

of optimizing the accuracy of nearest neighbor classification. In [Paredes and Vidal, 2000]

the distance measure depends not on the query, but on the class of the database ob-

ject that the query is compared to. Query-sensitive distance measures have been used in

[Domeniconi et al., 2002, Hastie and Tibshirani, 1996]. Compared to the query-sensitive

methods in [Domeniconi et al., 2002, Hastie and Tibshirani, 1996], the method described

in this chapter has two important differences:

• We try to solve a different problem, namely efficient retrieval as opposed to accurate

classification.

• In [Domeniconi et al., 2002, Hastie and Tibshirani, 1996], it is assumed that an ini-

tial global (query-insensitive) distance measure is available. In contrast, no initial

distance measure is given as input to our algorithm.

In particular, in [Domeniconi et al., 2002, Hastie and Tibshirani, 1996], the query-sensitive

distance measure is constructed online, while processing the query object, by iteratively

refining the initial distance measure based on the objects in the neighborhood of the query.

Because of this online iterative refinement, these methods incur additional computational

costs compared to alternative query-insensitive methods. In contrast, in our method the

query-sensitive distance measure is constructed offline, using training data. Compared to

the query-insensitive version of the BoostMap described in the previous chapter, the online

computational cost of processing a query using a query-sensitive embedding is virtually the

67

same: some additional terms need to be computed, but those computations take up only a

negligible fraction (typically much smaller than 0.001) of the total query processing time.

5.2 Motivation for Query-Sensitive Distance Measures

There exist several methods for constructing high-dimensional embeddings, e.g., FastMap

[Faloutsos and Lin, 1995], the BoostMap algorithm [Athitsos et al., 2004], or simply us-

ing Equation 2.9 to define an embedding based on distances to multiple reference objects.

However, existing methods have limited themselves to the task of assigning a vector of coor-

dinates to each object. These vectors are often compared using the standard Euclidean dis-

tance without weights [Faloutsos and Lin, 1995, Hristescu and Farach-Colton, 1999]. Boost-

Map uses an L1 metric and assigns weights to each dimension, but its representational

power is still equivalent to that of a method using an unweighted distance: any weighted

L1 metric can be isometrically converted to an unweighted L1 metric, by simple scaling of

each dimension.

Our main motivation in designing query-sensitive embeddings has been to enhance

the modeling power of embeddings, so that they can encapsulate additional information

about the structure of the original space. Allowing the distance measure to be query-

sensitive, i.e., allowing the weight assigned to each dimension to depend on the query,

provides modeling power that is impossible to achieve with an embedding that utilizes

a query-insensitive distance measure. For example, a well-known limitation of Euclidean

embeddings (i.e., embeddings that use an L2 distance measure in the target space) is that

there exist finite metric spaces that cannot be isometrically embedded; furthermore, there

exist worst cases where no embedding can achieve better than O(log |X|) distortion, where

|X| is the number of objects in the finite metric space X [Hjaltason and Samet, 2003a].

Query-sensitive embeddings trivially overcome that limitation, not only for metric spaces,

but also for a large family of non-metric spaces:

Proposition 3 For any finite space X with a reflexive distance measure D there exists a

query-sensitive isometric embedding to R
|X|, i.e., the real vector space of dimension |X|.

68

Proof: We will construct such an embedding F and the associated query-sensitive dis-

tance measure ∆. By definition, F is isometric if the following holds: for any Xi, Xj ∈

X, D(Xi, Xj) = ∆(F (Xi), F (Xj)). Since X is finite, it can be represented as X =

{X1, . . . , X|X|}. Without loss of generality we can assume that Xi = Xj if and only if

i = j. We define query-sensitive embedding F as follows:

F (X) = (D(X1, X), D(X2, X), . . . , D(X|X|, X)) . (5.1)

Now, we define an auxiliary function S(y) : R → {0, 1}:

S(y) =

1 if y = 0 .

0 otherwise .
(5.2)

Finally, if u, v ∈ R
|X|, u = (u1, . . . , u|X|) and v = (v1, . . . , v|X|), we define distance measure

∆(u, v):

∆(u, v) =

|X|
∑

m=1

(S(um)|um − vm|) . (5.3)

We have assumed that distance measure D is reflexive. By definition of reflexivity,

D(Xi, Xm) = 0 iff Xi = Xm, i.e., iff i = m. Therefore, the m-th coordinate of F (Xi), which

is equal to D(Xi, Xm), is zero iff i = m. Using that, we can verify that ∆(F (Xi), F (Xj)) =

D(Xi, Xj), as follows:

∆(F (Xi), F (Xj)) =

|X|
∑

m=1

(S(D(Xm, Xi))|D(Xm, Xi) − D(Xm, Xj)|)

= S(D(Xi, Xi))|D(Xi, Xi) − D(Xi, Xj)|

= |0 − D(Xi, Xj)| = D(Xi, Xj) .

�

Distance measure ∆ is query-sensitive: if Q is the query and X is a database object,

the weight assigned to the m-th dimension while calculating ∆(Q,X) depends on whether

the embedding of Q has a zero or non-zero value at that dimension. We should note that

69

the only distance measure property used in this construction is reflexivity. Symmetry and

the triangle inequality were not used. Consequently, finite non-metric spaces can also be

isometrically embedded using the above construction, as long as the underlying distance

measure is reflexive.

This isometric construction is not really useful, as is, in the context of nearest neighbor

retrieval, where typically we cannot assume that the query object is identical to a database

object, or to a reference object used in the embedding. Furthermore, the proof entails a

certain amount of “cheating,” since our construction essentially boils down to defining, for

each query Xi, a custom-made embedding that uses Xi as a reference object. However,

the mere fact that query-sensitive embeddings allow this kind of “cheating” illustrates the

additional modeling power we gain by query-sensitivity: no such trick can be used with a

query-insensitive Lp metric, except when p = ∞.

As a matter of fact, using a pretty similar proof one can show that every finite metric

space X can be isometrically embedded to an L∞ space of dimensionality |X|. However,

the proof that we have provided for query-sensitive embeddings is also applicable to finite

non-metric spaces whose distance measures obey reflexivity, such as the chamfer distance

[Barrow et al., 1977], Dynamic Time Warping [Kruskall and Liberman, 1983], and shape

context matching [Belongie et al., 2002]. Also, it is important to note that the family of

query-sensitive Lp measures is much richer than the family of L∞ measures, because in

a query-sensitive measure there is a large number of degrees of freedom to specify (and

optimize), i.e., the weight of each dimension for each query object. In contrast, given a

vector space, the L∞ metric is fully specified, there are no degrees of freedom available to

specify. Overall, query-sensitive Lp distance measures offer us a large number of degrees

of freedom to optimize, much larger than the degrees of freedom in query-insensitive Lp

measures with the same value of p, while at the same time they have the power to provide

isometries of arbitrary metric spaces and a large family of non-metric spaces.

In more practical terms, a query-sensitive distance measure can capture the fact that,

given a query object, using only a well-chosen subset of dimensions may be more useful

70

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

0.2

0.4

0.6

0.8

1

database points
reference points
query points

2r

3r

r1

q
1

q2

q 3

Figure 5·1: A toy example illustrating the use of query-sensitive embed-
dings. Our space is the set of points in the unit square [0, 1] × [0, 1]. There
are twenty database objects, three of which (indicated as r1, r2, r3) are se-
lected as reference objects. There are ten query objects, three of which
are marked as q1, q2, q3. As explained in the text, assigning query-sensitive
weights to each embedding dimension would improve the accuracy of the
embedding for queries q1, q2, q3.

than indiscriminately using all dimensions. Figure 5·1 illustrates a quantitative exam-

ple. In that toy example, we define a three-dimensional embedding F of the unit square

[0, 1] × [0, 1]. There are twenty database objects, three of which (indicated as r1, r2, r3)

are selected as reference objects. Using these reference objects, we define embedding

F (x) = (F r1(x), F r2(x), F r3(x)), and we use the L1 distance to compare the embeddings

of two objects. There are ten query objects, three of which are marked as q1, q2, q3. F fails

on 23.5% of the 3800 triples (q, a, b) we can form by picking q from the query objects, and

the pair a, b from the database objects. In contrast, the 1D embeddings F r1 , F r2 , F r3 fail

respectively on 39.2%, 36.4%, and 26.6% of the triples. However, if we restrict our attention

to triples (q, a, b) where q = q1, F r1 does better than F : F r1 fails on 5.8% of those triples,

whereas F fails on 11.6% of those triples. Similarly, for q = q2 and q = q3 respectively,

F r2 and F r3 are more accurate than F . Therefore, for query objects q1, q2, q3, it would be

beneficial to use a query-sensitive weighted L1 measure, that would respectively use only

71

the first, second, and third dimension of F .

In general, as pointed out in [Aggarwal, 2001], measuring distances between objects

that are represented as high-dimensional vectors raises the following issues:

• Lack of contrasting: Two high-dimensional objects are unlikely to be very similar

in all the dimensions.

• Statistical sensitivity: The data is rarely uniformly distributed, and for a pair of

objects there may be only relatively few coordinates that are statistically significant

for comparing those objects.

The example of Figure 5·1 that we have discussed can be seen as an illustration of the

problem of statistical sensitivity, and how that problem can be addressed by utilizing query-

sensitivity. Overall, query-sensitive distance measures provide a principled way to address

the problems described in [Aggarwal, 2001], by putting more emphasis on dimensions that

are more important for a particular query.

5.3 Constructing a Query-Sensitive Embedding

In this section we describe a method for constructing query-sensitive embeddings using a

modification of the BoostMap algorithm described in Chapter 4.

5.3.1 Defining Query-Sensitive Classifiers from 1D Embeddings

As described earlier, every embedding F corresponds to a classifier that classifies triples

(X,A,B) of objects in X. We recall from Section 4.1.1 that, given embedding F , and a

distance measure ∆ for comparing vectors, we can define the classifier F̃ associated with

embedding F as follows:

F̃ (X,A,B) = ∆(F (X), F (B)) − ∆(F (X), F (A)) .

Sometimes, F̃ may do a really good job on triples (X,A,B) when X is in a specific

region, but at the same time it may be beneficial to ignore F̃ when X is outside that region.

72

For example, suppose that we have an embedding F P defined using reference object P . If

X = P , then F̃P will classify correctly all triples (X,A,B), where A and B are any two

objects of space X. If X 6= P , we still expect that, the closer X is to P , the more accurate

F̃P will be on triples (X,A,B). Figure 5·1 illustrates such cases.

In Chapter 4, and in the original description of BoostMap in [Athitsos et al., 2004], the

weak classifiers that are used by AdaBoost are of type F̃ , with F being a 1D embedding.

In this chapter we propose to use a different type of classifier, that can explicitly model

the fact that an 1D embedding F can be more useful in some regions of the space and less

useful in other regions.

In particular, given a 1D embedding F , we need a function S(Q) (which we call a

splitter), that will estimate, given a query Q, whether classifier F̃ is useful or not. More

formally, if X is the original space, we use the term splitter to denote any function mapping

X to the binary set {0, 1}. We can readily define splitters using 1D embeddings. Given a

1D embedding F : X → R, and a subset V ⊂ R, we can define a splitter SF,V : X → {0, 1}

as follows:

SF,V (Q) =

1 if F (Q) ∈ V .

0 otherwise .
(5.4)

Now, suppose we have a subset V ⊂ R and a 1D embedding F : X → R. We define a

query-sensitive classifier ΓF,V : X
3 → R, as follows:

ΓF,V (Q,A,B) = SF,V (Q)F̃ (Q,A,B) . (5.5)

At an intuitive level, F̃ is by itself a classifier of triples (Q,A,B). ΓF,V is a cropped

version of F̃ , that gives 0 (i.e., a neutral result) whenever F (X) /∈ V . For example, if

F = F P for some reference object P , and V = [0, τ] for some positive threshold τ , splitter

SF,V (Q) accepts object Q if it is within distance τ of reference object P . Therefore, such a

query-sensitive classifier ΓF,V will apply F̃ only if X is sufficiently close to P . By choosing

τ in an appropriate way, we can capture the fact that F̃ should only be applied to objects

within a specified distance from reference object P .

73

In our implementation, the sets V that we use for defining query-sensitive classifiers

ΓF,V art of two different types:

Type 1: V = (τ1, τ2), where τ1, τ2 can be any real numbers, or ±∞. In this case, SF,V

accepts Q if F (Q) > τ1 and F (Q) < τ2.

Type 2: V = R− (τ1, τ2), where τ1, τ2 can be any real numbers, or ±∞. In this case, SF,V

accepts Q if F (Q) < τ1 or F (Q) > τ2.

We should emphasize that different types of V can also be used in our algorithm, and

different types of splitters are also possible. For example, instead of having a binary splitter

that always outputs 0 or 1, we can alternatively define a “soft” splitter, that outputs a

value between 0 and 1. However, in our implementation we have only experimented with

binary splitters and the five types of V listed above.

5.3.2 Adapting the BoostMap Training Algorithm

Selecting Weak Classifiers

The key adaptation of the BoostMap algorithm from the previous chapter, that will allow

the algorithm to produce query-sensitive embeddings, is that now the weak classifiers con-

sidered by AdaBoost are classifiers not of the form F̃ , but of the form ΓF,V as defined in

Eq. 5.5, where F is some 1D embedding defined using reference objects or pivot objects

from the set C of candidate objects. In particular, at training round j we choose, randomly,

a large number of 1D embeddings, as in the training algorithm described in Chapter 4.

Then, for each selected 1D embedding F , we find the range VF,j that achieves the lowest

training error at round j. Algorithm 2 describes the procedure for finding the optimal

range VF,j of type 1. The corresponding algorithm for finding the optimal range for type 2

is almost identical, except that the weighted training error corresponding to a range VF,j

of type 1 is equal to 1 minus the weighted training error corresponding to range R − VF,j.

The weak classifier selected at training round j is chosen among the classifiers ΓF,VF,j
.

In particular, to adapt the BoostMap training algorithm (Algorithm 1 from Section 4.3.2)

74

so that it produces query-sensitive embeddings, we simply need to modify Step 7 of that

algorithm as follows:

7. Define Fj = Fj1 ∪ Fj2. Set F̃J = {ΓF,VF,j
| F ∈ Fj}.

With this modification, the training algorithm produces a strong classifier that can be

readily converted into an embedding and a query-sensitive distance measure. We now

proceed to discuss how make that conversion.

Training Output: Embedding and Distance

The output of the training stage is a classifier H of the following form:

H =

J
∑

j=1

αjΓF ′

j ,Vj
. (5.6)

Each ΓF ′

j ,Vj
is associated with a 1D embedding F ′

j . As in the original BoostMap algorithm

from the previous chapter, we now need to convert classifier H into an embedding and a

distance measure.

First, we should note that a particular 1D embedding can be equal to multiple F ′
j ’s

occurring in the definition of classifier H. For example, in different training rounds the algo-

rithm may choose choose query-sensitive weak classifiers based on the same 1D embedding,

but using a different splitter. We construct the set F of all unique 1D embeddings used in

H, as F =
⋃J

j=1{F
′
j}, and we denote the elements of F as F1, . . . , Fd. Using this notation,

the output embedding Fout : X → R
d is defined simply as Fout(X) = (F1(X), . . . , Fd(X)).

Obviously, it is a d-dimensional embedding.

Before defining distance measure ∆, we first need to define an auxiliary function Ai(Q),

which assigns a weight to the i-th dimension, for i = 1, . . . , d, given a query object Q:

Ai(Q) =
∑

j:((j∈{1,...,J})∧(Fi=F ′

j)∧(Fi(Q)∈Vj))

αj . (5.7)

In words, given query Q, for dimension i, we go through all weak classifiers ΓF ′

j ,Vj
that

make up H. For each such classifier, we check if the splitter SF ′

j ,Vj
accepts Q (i.e., we check

75

input : F : 1D embedding.
(X1, A1, B1), . . . , (Xβ, Aβ, Bβ): the training triples used in the BoostMap algorithm.
y1, . . . , yβ: the class labels of the training triples.
w1,j , . . . , wβ,j: the weights of the training triples at training round j.

output : A set VF,j.

((X ′

1, A
′

1, B
′

1), . . . , (X
′

β, A′

β , B′

β) = sorted ((X1, A1, B1), . . . , (Xβ , Aβ, Bβ)) in ascending
order of F (Xi).

w′

1, . . . , w
′

β = training weights of ((X ′

1, A
′

1, B
′

1), . . . , (X
′

β , A′

β, B′

β).
y′

1, . . . , y
′

β = class labels of ((X ′

1, A
′

1, B
′

1), . . . , (X
′

β , A′

β, B′

β).
best error = 2.
best low = −1.
best high = −1.
for i = 1 : β do

if i > 1 and F (X ′

i) == F (X ′

i−1) then

continue;

end

incorrect = 0.
for j = i : β do

if F̃ (X ′

j , A
′

j , B
′

j) · y
′

j < 0 then

incorrect = incorrect + w′

j .

end

if j < β and F (X ′

i) == F (X ′

i+1) then

continue;

end

error = β−(j−i+1)
2

+ incorrect.
if error < best error then

best error = error.
best low = i.
best high = j.

end

end

end

if best low == 1 then

τ1 = −∞.

end

else

τ1 =
F (X′

best low−1)+F (X′

best low)

2
.

end

if best high == β then

τ2 = ∞.

end

else

τ2 =
F (X′

best high)+F (X′

best high+1)

2
.

end

VF,j = (τ1, τ2).

Algorithm 2: The algorithm for finding, given a 1D embedding F , the
range VF,j of type 1 that minimizes the weighted training error of ΓF,VF,j

.

76

if F ′
j(Q) ∈ Vj), and we also check if F ′

j = Fi, i.e., if F ′
j is one of the (possibly multiple)

occurrences of Fi in H. If those conditions are satisfied, we add the weight αj to Ai(Q).

Let Fout(Q) = (q1, ..., qd), and let X be some other object in X, with Fout(X) =

(x1, ..., xd). We define query-sensitive distance measure ∆ as follows:

∆((q1, ..., qd), (x1, ..., xd)) =

d
∑

i=1

(Ai(q)|qi − xi|) . (5.8)

Distance measure ∆(u, v) (where u, v are d-dimensional vectors) is like a weighted L1

measure on R
d, but the weights depend on u. Therefore ∆ is not symmetric, and not a

metric. We say that ∆ is a query-sensitive distance measure, because we use ∆ in such

a way that u is always the embedding of a query, and v is the embedding of a database

object that we want to compare to the query.

Procedures for Computing Query-Sensitive Weights

Equation 5.7 defines the query-sensitive weight Ai(Q) assigned to the i-th dimension of

embedding Fout given a query object Q. A naive algorithmic implementation of Equation

5.7 takes time linear to the number J of training rounds performed by AdaBoost, which

would lead to O(Jd) total time for computing the weight corresponding to each of the d

dimensions of Fout. Here we describe algorithmically how to compute the weights for all

dimensions of Fout in O(d) total time.

First, after the training algorithm is completed, we perform an offline procedure, in

which we identify the unique embeddings Fi used in the strong classifier of Equation 5.6.

During this procedure, we also mark in an array called unique, for each F ′
j used in the

strong classifier, the integer i such that F ′
j = Fi. This offline procedure consists of the

following steps:

1. d = 1, j = 1.

2. F1 = F ′
1.

3. unique[1] = 1.

77

4. j = j + 1.

5. If j > J exit.

6. already exists = 0.

7. For d′ = 1 : d

• If F ′
j == Fd′

– already exists = 1.

– unique[j] = d′.

– break;

8. If already exists == 0

• d = d + 1.

• unique[j] = d.

9. Go to Step 4.

Now, during the online application of the system, given a query Q for which we want

to retrieve the nearest neighbors, the following procedure computes the query-sensitive

weights for all dimensions of Fout in O(J) time, and stores those weights in an array called

weights, such that weights[i] is Ai(Q):

1. Set weights[1], . . . ,weights[d] to 0.

2. For j = 1 : J

• If F ′
j(Q) ∈ Vj

– d′ = unique[j].

– weights[d′] = weights[d′] + αj.

As a reminder, the symbols F ′
j , Vj , and αj used in the above procedure are defined in

Equation 5.6.

78

5.4 Properties and Discussion of the Method

In this section we take a closer look at some properties of query-sensitive embeddings and

the proposed algorithm for constructing such embeddings.

5.4.1 Complexity

With respect to the online filter-and-refine retrieval cost, computing the d-dimensional

embedding of a query object takes O(d) time and requires O(d) evaluations of DX , exactly

as in the original BoostMap algorithm from the previous chapter. The only additional

computation we need to perform, with respect to the query-insensitive version of BoostMap,

is computing weights Ai(Q) for each dimension i given query object Q. However, computing

those weights can easily be done in O(J) time, as discussed in the previous section. In all

our experiments this part of the computation is at least three orders of magnitude faster

than computing the distances we need to measure in order to produce the embedding of the

query. In summary, the additional computational cost of using query-sensitive embeddings

for online retrieval is negligible, and for all practical purposes this additional cost can be

ignored.

With respect to the offline cost of the training algorithm, there is one additional com-

putation we need to perform compared to the query-insensitive version of BoostMap: for

each weak classifier F̃ considered at a particular training round j we need to compute an

interval VF,j so as to convert F̃ to a query-sensitive classifier ΓF,VF,j
. Our algorithm for

finding VF,j takes time linear to the number of training triples and quadratic to the size

of T, which is the set from where we pick objects for the training triples. In practice,

the query-sensitive training algorithm takes about two-three times longer to run than the

query-insensitive version. Naturally, in many applications, the additional training time is

an acceptable overhead, since it represents a one-time preprocessing cost, as long as this

additional cost leads to better online retrieval and classification performance.

79

5.4.2 Contractiveness

Similar to query-insensitive BoostMap embeddings, a query-sensitive embedding Fout :

(X, D) → (Rd,∆), constructed as described this chapter, can be made contractive by

dividing ∆ with a query-sensitive normalization term, provided that D is metric.

If Fout contains no line projection embeddings, the normalization term W (Q) that

should be used given query Q is:

W (Q) =

d
∑

i=1

Ai(Q) . (5.9)

The proof that dividing with this normalization term makes the embedding contractive is

almost identical to the proof we provide for query-insensitive embeddings in the previous

chapter. Also, following the same reasoning that we used for query-insensitive embeddings,

if F uses line-projection 1D embeddings, then to make Fout contractive we need to divide

∆ by 3W (Q).

5.5 Summary of Query-Sensitive Embeddings

In this chapter we have proposed using a novel type of embeddings, query-sensitive embed-

dings, for efficient nearest neighbor retrieval. Query-sensitive embeddings use a weighted

Lp distance measure for the target space of the embedding, where the weights of the Lp

measure depend on each query. Such a distance measure can capture the important fact

that different dimensions of the embedding are important for different queries. This fact

cannot be captured by traditional embeddings that use global, query-insensitive distance

measures.

We have described how to modify the original BoostMap algorithm of Chapter 4 so as

to construct query-sensitive embeddings. In a way, the query-sensitive version of BoostMap

illustrates the flexibility of the BoostMap method, and its ability to construct novel types of

embeddings that cannot be obtained using alternative methods, like FastMap or Lipschitz

embeddings; it is not clear if and how such alternative methods can be modified to become

80

query-sensitive.

An important property of query-sensitive embeddings is that computing the query-

sensitive weights given a query takes negligible time. Therefore, during online retrieval,

using a query-sensitive distance measure does not introduce any additional run-time costs

to filter-and-refine retrieval. On the contrary, as we will see in Chapter 7, by capturing more

of the nearest neighbor structure of the original space, query-sensitive embeddings achieve

significantly better trade-offs between accuracy and efficiency than their query-insensitive

counterparts.

81

Chapter 6

Efficient Nearest Neighbor Classification Using

Cascades of Approximate Classifiers

As mentioned in the introduction, nearest neighbor classifiers are appealing because of their

simplicity, ability to model a wide range of complex, non-parametric distributions, and very

competitive classification accuracy in many applications. However, finding the nearest

neighbors of an object in a large database can take too long, especially in domains that

employ computationally expensive distance measures. The embedding methods proposed

in the previous chapters can speed up classification by speeding up retrieval of the nearest

neighbors.

The key message in this chapter is that nearest neighbor classification is a different

problem than nearest neighbor retrieval. In nearest neighbor classification, the ultimate

goal is to classify the query correctly, not to find the true nearest neighbors of the query.

As a consequence, a retrieval result that is considered undesirable for the purposes of

finding nearest neighbors may be considered desirable for the purposes of classification.

As a simple example, suppose that query object Q belongs to class C1, but the nearest

neighbor NN (Q, U) of Q in the database U belongs to class C2 6= C1. If our goal is to find

the true nearest neighbor of Q, then retrieving NN (Q, U) is the desired result. However, if

our goal is to classify Q correctly, then we would rather have the system retrieve another

object, whose class label is the same as that of Q.

The method proposed in this chapter aims to improve the accuracy and efficiency of

nearest neighbor classification. We will build the proposed method on top of the Boost-

Map algorithm, but we will modify the embedding construction algorithm and describe

82

a different online classification algorithm. The key idea is that we are willing to sacrifice

nearest neighbor retrieval accuracy, as long as we can improve efficiency and simultaneously

improve, or at least minimally affect classification accuracy.

The modification of the embedding construction algorithm consists of using a differ-

ent optimization cost, that is more appropriate for classification accuracy. In particular,

given a triple (X,A,B), whether we want the embedding to map X closer to A or to

B now depends not on the distances D(X,A) and D(X,B), but on the class labels of

X,A, and B. The online classification method that we use is a cascade of approximate

nearest neighbor classifiers. Using BoostMap embeddings and the filter-and-refine frame-

work [Hjaltason and Samet, 2003a] we construct a sequence of approximations of the exact

nearest neighbor classifier. The first approximation in that sequence is relatively fast, but

also has a relatively high classification error rate. Each successive approximation in the

sequence is slower and more accurate than the previous one. These approximations are

combined in a cascade structure, whereby easy cases are classified by earlier classifiers, and

harder cases are passed on to the slower but more accurate classifiers. The key idea is that

as soon as we have enough information to classify a query with high confidence, we can

just produce the classification, even if we do not have enough information to confidently

estimate the true nearest neighbors of the query.

6.1 Some Additional Related Work

Clearly the problem of efficient nearest neighbor classification in spaces with computation-

ally expensive distance measures has a large overlap with the problem of efficient retrieval

in such spaces. Methods that accurately and efficiently retrieve nearest neighbors, such as

the methods surveyed in Chapter 3, can also be used to speed up nearest neighbor classi-

fication. However, the the method proposed in this chapter focuses explicitly on efficient

classification; in order to achieve that goal we are willing to sacrifice nearest neighbor re-

trieval accuracy, as long as classification accuracy does not suffer. Methods for efficient

retrieval do not take classification accuracy into account, and therefore are not formulated

83

to make trade-offs between retrieval and classification performance.

With respect to existing embedded methods, such as Lipschitz embeddings [Hjaltason and Samet, 2003a],

FastMap [Faloutsos and Lin, 1995], MetricMap [Wang et al., 2000], SparseMap [Hristescu and Farach-Colton, 1999],

and the two embedding methods described in [Athitsos et al., 2004, Athitsos et al., 2005b]

and in Chapters 4 and 5 respectively, the cascade of classifiers described in this chapter

is a complementary method, in the sense that it can be applied on top of any of these

embedding methods. The key idea is that, instead of using existing embedding methods

to produce a single approximate nearest neighbor classifier, we can produce a cascade of

such classifiers, in increasing order of computational complexity and accuracy. A classical

application of existing embedding methods essentially corresponds to the last and most

accurate classifier in the proposed cascade.

Cascades of classifiers have been very popular in recent years [Li and Zhang, 2004,

Ong and Bowden, 2004, Viola and Jones, 2001]. However, typically cascades are applied

to a binary, unbalanced “detection” problem, where the goal is to determine whether a

given image window contains an instance of some object, and we can safely assume that

the overwhelming majority of windows do not contain such an instance. In contrast, our

method produces a cascade of classifiers for a balanced, multiclass problem. In Sections

6.3 and 6.4 of this chapter we discuss in detail the issues that must be addressed in order

to apply the cascade framework to such a problem.

6.2 Optimizing for Classification Accuracy

The original BoostMap algorithm aims at preserving similarity rankings, and minimizes the

fraction of triples (X,A,B) where X is closer to A than to B, but F (X) is closer to F (B)

than to F (A). If our end goal is classification accuracy, then for some triples of objects the

optimization criterion of BoostMap can be problematic. For the purposes of illustration,

we will use as an example the MNIST dataset of handwritten digits, where each object

is an image displaying a number between “0” and “9”, and the goal is to recognize the

number displayed in each test image.

84

As a first example where the optimization criterion of BoostMap can be problematic,

let X be an image of the digit “2”, and A and B be images, respectively, of digits “0” and

“1”. Furthermore, let A be one of the nearest neighbors of X. For the purposes of accurate

nearest neighbor retrieval we want an embedding F that maps X closer to A than to B.

However, for the purposes of classification, it is irrelevant whether F maps X closer to A

or to B. A more interesting example is the following: suppose that X and B are both

images of the digit “2”, and A is an image of the digit “0”. Furthermore, suppose that

A is the nearest neighbor of X among all database objects. For classification purposes,

we would actually prefer an embedding that maps X closer to B than to A, although the

original BoostMap training algorithm would penalize for that. In both these examples, the

optimization criterion of BoostMap is not tightly connected to classification accuracy, and

does not capture our intuition of what constitutes desirable embedding behavior.

To address these problems, we propose the following modifications to the process of

selecting training triples and measuring the optimization cost:

• Useful training triples are triples (X,A,B) such that A is one of the nearest neighbors

of X among objects of the same class as X, and B is a database object belonging to

some other class.

• The optimization cost that should be minimized is the number of training triples

(X,A,B) such that the output embedding F maps X closer to B than to A, regardless

of whether X is actually closer to B than to A in terms of distance measure D. Since

A is of the same class as X, we want X to be mapped closer to A than to B.

Based on the above guidelines, we design an alternative version of the BoostMap

method, called “BoostMap-C”, whose optimization criterion is more tightly connected to

classification accuracy than the criterion of the original BoostMap method. BoostMap-C

is obtained by modifying the process of selecting and labeling training triples that is de-

scribed in Section 4.3.1. Given a subset T of the database, and given a parameter k1, to

specify training triple (Xi, Ai, Bi) for BoostMap-C we perform the following steps:

85

1. Choose Xi randomly from T.

2. Choose Ai randomly from the k1 nearest neighbors of Xi among all objects in T−{Xi}

that have the same class label as Xi.

3. Choose (randomly) a class C different than that of Xi.

4. Set Bi randomly to one of the k1 nearest neighbors of X among objects of class C in

T.

5. Set training triple oi to (Xi, Ai, Bi).

6. Set class label yi of oi to 1, reflecting that we want the output embedding to map Xi

closer to Ai than to Bi, since Xi and Ai have the same class label.

The BoostMap-C method tries to construct embeddings that map objects of each class

near other objects that belong to the same class, even when such mappings violate the

nearest neighbor structure of the original space. By mapping objects close to other objects

of the same class we aim to achieve improved nearest neighbor classification accuracy.

We now turn our attention to improving classification efficiency, using cascades of

approximate nearest neighbor classifiers. First we provide a brief description of the popular

framework of classifier cascades, and then we describe how to apply that framework to

embedding-based nearest neighbor classification.

6.3 Overview of Cascades of Classifiers

A cascade of classifiers is essentially a special case of a decision tree. The tree is represented

as a sequence of nodes Ni, where i = 1, . . . , s, and node N1 is the root of the tree. Except

for nodes N1 and Ns, every node Ni has one parent, Ni−1, and one child, Ni+1. The i-th

node of the tree stores a classifier Pi and a decision function Ti : X → {0, 1}. No decision

function is needed for the last node Ns, or, alternatively, we can think that Ts(Q) = 1 for

all objects Q. Given a query object Q that we want to classify, we apply the following

process:

86

1. Set i = 1.

2. If Ti(Q) = 1, return Pi(Q).

3. If i = s, return Ps(Q).

4. Set i = i + 1.

5. Go to Step 2.

Typically, each classifier Pi+1 is slower and more accurate than the previous classifier Pi.

The role of each decision function Ti is to determine, given a query object Q, if we should

trust the output of Pi on Q, or we should pass on the query to subsequent classifiers. In

designing a cascade, ideally we want the overall classification accuracy of the cascade to be

equal to the accuracy of the final classifier Ps. In order to achieve that, we want to design

decision functions Ti such that Ti(Q) = 1 ⇒ Pi(Q) = y(Q). In other words, Ti should allow

Q to be classified by classifier Pi only in cases where Pi(Q) is the correct classification.

Intuitively, it is OK if Ti(Q) = 0 for some objects Q that are correctly classified by Pi, but

it is not OK if Ti(Q) = 1 for some objects Q that are incorrectly classified by Pi. Naturally,

the decision functions are typically not ideal. Still, the overall design principle is that we

want each Ti to allow only a small fraction of objects to get misclassified by Pi.

The computational savings of employing a cascade, as opposed to simply using the final

classifier Ps, depend on the ability of functions Ti to direct a large majority of queries to

the earlier, more efficient classifiers in the cascade. In that case, the average classification

time mainly depends on the speed of those earlier classifiers, and not on the speed of

the final classifier Ps. At the same time, as long as we avoid (at least to a large extent)

misclassifications by the earlier classifiers, the classification accuracy of the cascade mainly

depends on the accuracy of Ps. Overall, the goal of a cascade is to provide the best of both

worlds, by combining the speed of computationally efficient classifiers and the accuracy of

more complicated and slower classifiers.

87

Cascades of classifiers are typically applied to unbalanced binary problems where the

overwhelming majority of objects belong to one class and a very small fraction of objects

belongs to the second class. Detection is the classical setting where cascades have been

applied, including face detection [Li and Zhang, 2004, Viola and Jones, 2001] and hand

detection [Ong and Bowden, 2004]. In detection tasks the number of positive objects (i.e.,

faces or hands) present in image is a very small fraction of the number of negative objects,

i.e., all image subwindows that do not correspond to a face or a hand. Cascades can

significantly speed up such detection tasks by taking advantage of the fact that most of the

negative objects can easily be rejected using simple classifiers. Consequently, the cascade

methods described in [Li and Zhang, 2004, Ong and Bowden, 2004, Viola and Jones, 2001]

allow early classifiers in the cascade to output only negative class labels; positive labels are

only output by the last classifier of the cascade.

Our setting, which is nearest neighbor classification in domains with an arbitrary num-

ber of classes, differs from the typical cascade setting in two important aspects:

• The classification problem is not constrained to be binary, and actually we typi-

cally deal with non-binary classification tasks. In the experiments we apply the

cascade method to two datasets where the number of classes is ten. In existing cas-

cade methods [Li and Zhang, 2004, Ong and Bowden, 2004, Viola and Jones, 2001]

the decision function is typically a thresholded binary classifier that estimates if the

test object is positive or negative. In our setting we need to design decision functions

that can be applied in non-binary classification problems.

• The classification problem is not constrained to be unbalanced. In fact, both of the

datasets we apply our cascade method to are balanced, meaning that the frequen-

cies of the different classes are pretty similar. Therefore, we need decision func-

tions that can allow any node of the cascade to produce any classification output.

This is in contrast to the methods in [Li and Zhang, 2004, Ong and Bowden, 2004,

Viola and Jones, 2001], where a positive classification can only be obtained at the

88

last stage of the cascade.

In the next section we proceed to describe how to construct a cascade of classifiers for

embedding-based nearest neighbor classification.

6.4 Constructing a Cascade of Approximate Nearest Neighbor Classi-

fiers

Suppose that we have used some embedding construction method, like BoostMap or the

BoostMap-C method described earlier in this chapter, and we have obtained an embed-

ding F . We can use embedding F for k-nearest neighbor classification in a filter-and-refine

framework [Hjaltason and Samet, 2003a], as described in Section 2.4. Given the final rank-

ing produced by the filter and refine steps, we can classify query Q based on majority voting

among the retrieved k nearest neighbors. Note that we can set filter-and-refine parameter

p, which specifies the number of objects to retain after the filter step, to 0. In that case no

refine step is performed, we simply use the ranking produced by the filter step.

If we apply embedding F as described in the previous paragraph, we need to make a

practical choice about the dimensionality d′ of the embedding and the number p of distances

to evaluate during the refine step. Low values for d′ and p lead to faster but potentially

less accurate results. On the other end of the spectrum, high values of d′ and p lead to

slower but potentially more accurate results. The correspondence of this problem to the

typical cascade problem is clear: we would like to combine the best of both worlds, i.e.,

the efficiency obtained using small d′ and p values and the accuracy obtained using large

d′ and p values.

In order to design a cascade method for our problem we need to address three issues:

• How to construct a sequence of classifiers P1, . . . , Ps to be used in the nodes of the

cascade.

• What family of decision functions Ti we want to use.

• How to select an appropriate decision function for each node.

89

We now proceed to describe how we address each of these three issues.

6.4.1 Constructing a Sequence of Classifiers

Let F be the embedding obtained using BoostMap (or some other embedding method),

and let d′ be the dimensionality of F . For any d ∈ {1, . . . , d′}, we define embedding Fd to

be the embedding consisting of the first d dimensions of F . Given positive integers d ≤ d ′

and p we define filter-and-refine process Fd,p to be the the filter-and-refine process that

uses Fd as the embedding, and p as the parameter for filter-and-refine retrieval. We also

treat process Fd,p as a classifier, that assigns a class label to each query Q based on the

nearest neighbors of Q that Fd,p retrieves. Naturally, given a query object Q, as d and

p increase, the approximate similarity ranking obtained using process Fd,p will get closer

to the correct ranking. For example, if p is equal to the number of training objects, then

process Fd,p becomes equivalent to brute-force search: at the refine step we simply compare

the query object with every database object. On the other hand, small d and p allow the

filter-and-refine process Fd,p to give results very fast.

With appropriate choices of di and pi we can construct a sequence P = (P1, ..., Ps) of s

filter-and-refine processes Pi = Fdi,pi
, such that each successive process Pi is less efficient

and more accurate than the preceding process Pi−1. An example of such a sequence P is

given in Table 7.7 of Chapter 7.

We construct such sequences manually, we have found it to be a pretty straightforward

process. The main guideline in designing such a sequence is that, given a query Q, each

process Pi should be able to reuse all the work performed by previous processes. For

example, if d1 = 10, d2 = 20, p1 = 10, p2 = 20, then process P1 performs some work that is

reusable by process P2, and some work that might not be reusable by P2. The reusable work

is the computation of the first 10 dimensions of F (Q). Process P2 only needs to compute

dimensions 11 − 20 of F (Q). On the other hand, the ten exact distances computed at

the refine step of P1 might not be reusable for P2, since we have no guarantee that the

ten objects that survived the filter step of P1 will be included in the twenty objects that

90

survive the filter step of P2.

A simple way to address the issue of reusability is to make the sequence P of classifiers

consist of two parts. The first part is a sequence where for each Pi we set pi = 0, so

that no refine step is performed for that process. For sequences Pi in the first part,

the dimensionality of embeddings increases as i increases. Each such Pi simply needs to

compute some additional dimensions of the embedding that have not been computed yet.

The second part of sequence P consists of processes Pi that all have the same dimensionality,

but different values of pi, that increase as i increases. Therefore, each process Pi in the

second part of P can reuse the exact distances computed by the refine steps of all previous

processes; Pi simply evaluates some additional exact distances and reranks the pi objects

that survived the filter step based on their exact distances to the query. The sequence P

shown in Table 7.7 of Chapter 7 follows these guidelines, so that processes P1 to P6 use no

refine step, and processes P7 to P16 all have the same dimensionality.

Note that in considering the type of computations that should be reusable by subsequent

processes we have ignored the vector distances computed at the filter step of each process,

and the sorting of those distances in order to determine the objects that should be evaluated

during the refine step. In all datasets we have evaluated so far, computing vector distances

and sorting those distances takes negligible time compared to the time spent on evaluating

exact distances. That is why exact distance computations are the only type of computation

that we require to be reusable by subsequent processes in the cascade.

6.4.2 Specifying a Family of Decision Functions

In general, in order to combine a sequence of classifiers into a cascade structure, we need

a way of deciding which objects are safe to be classified by each classifier in the sequence.

In other words, given the similarity ranking that Pi produces for query object Q, we want

to specify some criteria for deciding whether we can reliably classify Q using that ranking,

or whether we need to pass on Q to the next process Pi+1. We want these decisions not to

hurt overall classification accuracy, so that the cascaded classifier overall is as accurate as

91

the final classifier Ps of the cascade.

In order to define an appropriate family of decision functions for the cascade, we first

define a quantity K(Q,Pi), which is a measure of confidence in the classification result

for object Q obtained using process Pi. We define K(Q,Pi) as follows: K(Q,Pi) is the

highest integer k such that all the k nearest neighbors of Q retrieved using process Pi

belong to a single class. For example, if our objects are images of handwritten digits,

suppose that according to Pi the 50 nearest neighbors of Q belong to class “1”, and the

51st neighbor belongs to class “2”. Then, K(Q,Pi) = 50. We use quantity K(Q,Pi) to

define a criterion Ti(Q) for when Pi should be used to classify Q, as follows: Given a

threshold ti, if K(Q,Pi) ≥ ti then Ti(Q) outputs 1, and Q is classified based on the class

of its approximate nearest neighbors retrieved by Pi. Otherwise Ti(Q) outputs 0, and Q is

passed on to the next classifier in the cascade.

The intuition behind this criterion is that if, for some test object, process Pi reports

that the test object is surrounded by a large number of training objects of a single class,

then we can confidently assign that class to the test object, without needing to spend any

additional computation. Note that we are not concerned about actually finding the true

nearest neighbor of the query: we stop as soon as we have sufficient information about the

query’s class label.

We should note that, in addition to the measure K(Q,Pi) that we have proposed, there

are alternative measures that can also be employed. For example, instead of measuring

the number of nearest neighbors that all belong to the same class, we could measure the

number of nearest neighbors such that at most k2 objects do not belong to the same class

as the other nearest neighbors, for some parameter k2. As another example, we could use

a measure that depends on the distance between Q and its nearest k3 neighbors, for some

parameter k3, the intuition here being that the closer (i.e., the more similar) Q is to its

nearest neighbors the more likely Q is to belong to the same class as those neighbors.

The family of decision functions that we have proposed here satisfies the two key re-

quirements that we listed in Section 6.3: these decision functions can be used in non-binary

92

classification problems, and they allow any cascade node to produce any classification out-

put. Naturally, in order to achieve good results with these decision functions we need to

choose appropriate values for the thresholds ti, that are used to make the decision at each

node. We now describe how to learn those thresholds using training data.

6.4.3 Learning the Decision Functions

Given a sequence P of classifiers that we want to combine into a cascade, and given that we

want to use decision functions that check if K(Q,Pi) ≥ ti, we need a method for choosing

thresholds ti. We propose to choose those values using a validation set, sampled from the

set of database objects. Let e ≥ 0 be an integer parameter that specifies how many objects

from the validation set we are allowed to misclassify by each Pi. Then, for the first process

P1 we can simply set t1 to the smallest threshold t satisfying the following property: if we

use process P1 to classify all validation objects X satisfying the criterion K(X,P1) ≥ t, we

misclassify at most e validation objects. For example, if e = 2, we can try all thresholds

until we find the smallest threshold t such that, if we find all validation objects X with

K(X,P1) ≥ t and we label those objects with the label of the t nearest neighbors retrieved

using P1, we misclassify no more than two objects.

After we have determined the right threshold for process P1, we proceed to select an

appropriate threshold for P2, using the same parameter e, and using only the validation

objects X that P1 does not classify (i.e., for which K(X,P1) < t1). Proceeding this way

recursively we can choose all thresholds ti. Naturally, the last process Ps in the sequence

does not need a threshold, because Ps is the last step in the cascade, and therefore it needs

to classify all objects that are passed on to it.

A slight problem with the above procedure for determining thresholds is that there may

be some validation objects X that even the final process Ps will misclassify, and for which

K(X,Pi) is very high for all processes Pi. In our experiments, such objects were identified

in practice. These objects are essentially outliers that look very similar to a large number

of objects from another class. These objects are likely to influence the threshold choice ti

93

for every Pi, so that ti is large enough to avoid misclassifying those objects, even though

they will end up being misclassified anyway at the final step Ps.

In principle, objects that are misclassified even by the most accurate process in the

cascade should not influence the selection of thresholds for earlier processes. Such objects

will be misclassified anyway, so whether they get misclassified earlier or later in the cascade

is inconsequential with respect to the final error rate. According to this principle, before

choosing thresholds for the different processes, we identify all validation objects that the

final process Ps misclassifies. We then remove those objects from the validation set, and

proceed with threshold selection without taking those objects into account.

The exact algorithm for picking a threshold for each node in a cascade is described in

Algorithm 3.

6.5 Discussion of the Cascade Method

Intuitively, in order for a cascade method to produce significant computational savings

without losses of accuracy, it has to be the case that a large fraction of test objects are

unambiguous and easy to classify, and a small fraction of objects are harder to classify and

require more resources for accurate classification. A key component of designing a cascade

is defining decision functions that allow most of the easy objects to be classified during

the early stages, while allowing hard-to-classify objects to be handled by the later, more

accurate stages.

The key difference of the cascade method we have described here from existing cascade

methods is that our method is designed for balanced multiclass problems, as opposed to

unbalanced binary problems. We have proposed a family of decision functions that is

appropriate for this setting and can identify easy-to-classify objects regardless of the class

that they belong to. Intuitively, the decision functions try to determine whether the query

object lies in a uniform region where all objects have the same class label. Naturally,

in order for these functions to work well, it has to be the case that a large fraction of

query objects indeed lie in such uniform regions, and it also has to be the case that we

94

input : P: sequence of filter-and-refine processes P1, · · · , Ps.
s: number of filter-and-refine processes in sequence P.
Xtrain: set of training objects.
Xvalidation: set of validation objects.
B: set of validation objects that are misclassified by process Ps.
e: a parameter specifying how many objects should be misclassified, at most,
at each step in the cascade.

output : t1, · · · , ts−1: The thresholds ti to be used with each process Pi.

Xvalidation = Xvalidation − B
for i = 1 : (s − 1) do

for q ∈ Xvalidation do
Kq = K(q, Pi)
Nq = nearest neighbor of q in Xtrain according to Pi

Yq = class label of q
Cq = class label of Nq

end
ti = size(Xtrain) + 1
for t = 1 : size(Xtrain) do

X1 = {q ∈ Xvalidation|Kq ≥ t}
X2 = {q ∈ X1|Yq 6= Cq}
if size(X2) ≤ e then

ti = t
break;

end
end
Xvalidation = {q ∈ Xvalidation|Kq < ti }

end

Algorithm 3: The algorithm for choosing thresholds for a cascade of filter-and-
refine processes.

have enough objects in the database to populate those regions. If those assumptions are

violated then the method proposed here is not expected to yield significant computational

savings, but it is also not expected to be worse than simply using a single filter-and-refine

retrieval process. The algorithm that determines the thresholds for the decision functions

can be made pretty conservative, by setting parameter e = 0, so that we do not allow any

node of the cascade (except the last node) to make any mistakes on the training data. In

that case, when most objects lie in ambiguous, non-uniform regions, or when we do not

have enough database objects to determine whether a region is uniform or not, we expect

95

the decision thresholds to be automatically set in such a way that most objects are simply

passed on to the last node of the cascade.

In practice, as we will see in the experimental evaluation in Chapter 7, cascades of

approximate nearest neighbor classifiers produce significant computational savings in two

of the datasets we have experimented with. Those datasets indeed satisfy the requirement

that most objects lie in unambiguous, uniform regions. The decision functions that we have

proposed successfully capture that fact and exploit it to improve classification efficiency

while sustaining negligible losses in accuracy.

96

Chapter 7

Experiments

In this chapter we experimentally evaluate the three methods proposed in in the previous

chapters: BoostMap, query-sensitive embeddings, and cascades of approximate nearest

neighbor classifiers. We compare these methods to several alternative existing methods

that can be used to speed up approximate nearest neighbor retrieval and classification.

Experiments are performed on four different applications: hand shape classification using

a database of hand images, offline handwritten digit recognition using the MNIST database

of handwritten digits [LeCun et al., 1998], online handwritten digit recognition using the

isolated digits benchmark (category 1a) of the UNIPEN Train-R01/V07 online handwrit-

ing database [Guyon et al., 1994], and similarity-based retrieval of time series using the

benchmark time series dataset described in [Vlachos et al., 2003]. We describe each of

the datasets in detail, and then we evaluate, in separate sections, the performance of the

proposed methods on nearest neighbor retrieval and classification tasks. First, we provide

results on nearest neighbor retrieval for the query-insensitive and the query-sensitive ver-

sions of BoostMap. Finally, we evaluate the performance of BoostMap and cascades of

approximate nearest neighbor classifiers on nearest neighbor classification.

7.1 Datasets

In this section we provide details about each of the four datasets we use in the experiments,

including the source of each dataset, and the distance measure that is used for measuring

distances in each dataset.

97

Figure 7·1: The 20 handshapes used in the ASL handshape dataset.

Figure 7·2: Examples of different appearance of a fixed 3D hand shape,
obtaining by altering camera viewpoint and image plane rotation. Top: the
ASL “F” handshape rendered from seven different camera viewpoints. Bot-
tom: the ASL “F” handshape rendered from a specific camera viewpoint,
using seven different image plane rotations.

98

7.1.1 ASL Handshape Dataset

The ASL handshape dataset consists of a database of 80, 640 synthetic images of hands,

generated using the Poser 5 software [Curious Labs, 2002], and a test set of 710 real images

of hands, used as queries. Both the database images and the query images display the hand

in one of 20 different 3D handshape configurations. Those configurations are shown in Fig-

ure 7·1. Those 20 handshapes are all handshapes that are commonly used in American Sign

Language (ASL). The target application is a system that can generate a short list of most

likely handshapes for each query image, and that can handle query images displaying the

hand in arbitrary 3D orientations. Such a system can be used as a plug-in to software tools

that are currently used for manually annotating ASL video content [Neidle et al., 2001].

Annotation of large amounts of ASL video content is important both for facilitating the

linguistic analysis of ASL, and for developing and training computer algorithms that can

be used for automatic processing and interpretation of ASL video.

For each of the 20 different handshapes we synthetically generate a total of 4, 032

database images that correspond to different 3D orientations of the hand. In particular,

the 3D orientation depends on the viewpoint, i.e., the camera position on the surface of

a viewing sphere centered on the hand, and on the image plane rotation. We sample

84 different viewpoints from the viewing sphere, so that viewpoints are approximately

spaced 22.5 degrees apart. We also sample 48 image plane rotations, so that rotations are

spaced 7.5 degrees apart. Therefore, the total number of images is 80, 640 images, i.e.,

20 handshapes × 84 viewpoints × 48 image plane rotations. Figure 7·2 displays example

images of a handshape in different viewpoints and different image plane rotations. Each

image is normalized to be of size 256 × 256 pixels, and the hand region in the image is

normalized so that the minimum enclosing circle of the hand region is centered at pixel

(128, 128), and has radius 120.

The query images are obtained from video sequences of a native ASL signer either

performing individual handshapes in isolation or signing in ASL. The hand locations were

extracted from those sequences using the method described in [Yuan et al., 2005]. Accurate

99

localization of the hand in such sequences remains a very challenging task, and hand

localization fails in more than 50% of the frames. For the purposes of these experiments

we only use frames where the hand is localized correctly. The query images are obtained

from the original frames by extracting the subwindow corresponding to the hand region,

and then performing the same normalization that we perform for database images, so that

the image size is 256 × 256 pixels, and the minimum enclosing circle of the hand region is

centered at pixel (128, 128), and has radius 120.

The distance measure that we use to compare images is the chamfer distance [Barrow et al., 1977],

which we have described in Section 1.3. The chamfer distance operates on edge images.

The synthetic images generated by Poser can be rendered directly as edge images by the

software. For the query images we simply apply the Canny edge detector [Canny, 1986].

On an AMD Athlon processor running at 2.0GHz, we can compute on average 715 chamfer

distances per second. Consequently, finding the nearest neighbors of each query using brute

force search, which requires computing the chamfer distances between the query image and

each database image, takes about 112 seconds.

7.1.2 Offline Handwritten Digit Dataset (MNIST)

The offline handwritten digit dataset that we use is the well-known MNIST dataset of

handwritten digits [LeCun et al., 1998]. The MNIST contains 60, 000 training images,

which we use as the database, and 10, 000 test images, which we use as our set of queries.

Each image is a 28x28 image displaying an isolated digit between 0 and 9. Example images

are shown in Figure 7·3. The target application for this dataset is automatic recognition

of the digit displayed in each test image.

The distance measure that we use in this dataset is shape context matching [Belongie et al., 2002].

As reported in [Belongie et al., 2002], 3-NN classification using shape context matching

yields an error rate of 0.63%, when the database is a subset of 20, 000 images from the

MNIST training set. In our experiments we have also measured the error rate obtained

by using as a database the full MNIST training set of 60, 000 images, and we have found

100

Figure 7·3: Example images from the MNIST dataset of handwritten
digits.

that the error decreases from 0.63% to 0.54%. As can be seen on the MNIST web site

(http://yann.lecun.com/exdb/mnist/), shape context matching outperforms in accu-

racy a large number of other methods that have been applied to the MNIST dataset.

Using our own heavily optimized C++ implementation of shape context matching, and

running on an AMD Opteron 2.2GHz processor, we can compute on average 15 shape

context distances per second. As a result, using brute force search to find the nearest

neighbors of a query takes on average approximately 22 minutes when using the smaller

database of 20, 000 images, and about 66 minutes when using the full database of 60, 000

images.

7.1.3 Online Handwritten Digit Dataset (UNIPEN)

The online handwritten digit dataset that we use is the isolated digits benchmark (cate-

gory 1a) of the UNIPEN Train-R01/V07 online handwriting database [Guyon et al., 1994],

which consists of 15, 953 digit examples. The digits have been randomly and disjointly di-

vided into training and test sets with a 2:1 ratio (or 10,630 : 5,323 examples). We use the

training set as our database, and the test set as our set of queries. The target application

101

2700 2750 2800 2850 2900
100

150

200

250

300

350

400

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−1.5

−0.5

0.5

1.5

Figure 7·4: Left: Example of a “seven”. Circles denote “pen-down” lo-
cations, x’s denote “pen-up” locations. Right: The same example, after
preprocessing.

for this dataset is automatic real-time recognition of the digit corresponding to each query.

Each query and database object in this dataset is preprocessed exactly as described

in [Bahlmann and Burkhardt, 2004] Section 2. Each extracted feature is represented by

three features: 2D normalized location (x̃i, ỹi) and the tangent angle θi of the line segment

between (x̃i, ỹi) and (x̃i−1, ỹi−1). Figure 7·4 shows an example digit “seven” before and

after preprocessing.

The distance measure D used for classification is Dynamic Time Warping [Kruskall and Liberman, 1983].

On an AMD Athlon 2.0GHz processor, we can compute on average 890 DTW distances per

second. Therefore, nearest neighbor classification using brute-force search takes about 12

seconds per query. The nearest neighbor error obtained using brute-force search is 2.05%.

7.1.4 Time-series dataset

As our last dataset, we use the time series dataset described in [Vlachos et al., 2003]. To

generate that dataset, various real datasets were used as seeds for generating a large number

of time-series that are variations of the original sequences. Multiple copies of every real

sequence were constructed by incorporating small variations in the original patterns as well

as additions of random compression and decompression in time. The final dataset contains

a “database” set of 32,768 sequences, and a “query” set of 50 sequences. Sequences are

multi-dimensional, with an average size of 500 points each. The series were normalized by

subtracting the average value in each dimension.

102

In order to get a clearer picture of performance, we have mainly used an alternative

splitting of the dataset into database objects and query objects, so that we could obtain

a significantly larger set of queries. To achieve that, we merged the query set and the

database, and from the merged set we chose (randomly) a new set of 1,000 queries, with

the remaining 31,818 objects used as the database. Unless indicated otherwise, the results

reported for the time series dataset are with respect to the set of 1,000 queries.

Exact distances in this dataset are measured using constrained Dynamic Time Warping,

with a warping length δ = 10% of the total length of the shortest sequence under com-

parison as described in [Vlachos et al., 2003]. On average, on an AMD Opteron 2.2GHz

processor, we can compute 60 distances per second. Consequently, brute-force retrieval of

the nearest neighbors of a query takes on average 530 seconds, i.e., roughly nine minutes.

7.2 Evaluation Methodology and Parameter Choices

Our goal is to evaluate the methods proposed in the thesis on the tasks of approximate

nearest neighbor retrieval and classification. In both tasks one of the performance measures

is efficiency, which is simply measured by the average time it takes to process a single query.

In all experiments with all datasets the entire database is stored in physical memory, so

we do not need to worry about disk accesses.

In all our experiments, the time it takes to process a query is dominated by the number

of exact distance computations that we need to perform. Other operations, such as the

filter step of filter-and-refine retrieval, where we compare the embedding of the query

to the embeddings of database objects, take negligible time (less than 0.1 seconds/query

for all computations that are not part of measuring an exact distance). Based on that

observation, we mainly report processing time per query by providing the average number

of exact distances we need to measure per query. To convert the processing time to actual

seconds one simply needs to divide the number of exact distances measured per query by

the number of exact distances we can compute per second, as reported in Section 7.1 for

each dataset.

103

In evaluating approximate k-nearest neighbor retrieval accuracy, we consider the re-

trieval result for a query to be correct if and only if all k-nearest neighbors of the query

have been correctly identified. For example,if we measure accuracy on 50-nearest neighbor

retrieval for a particular method and set of parameters, 95% retrieval accuracy means that

for 95% of the queries we successfully identify all 50 nearest neighbors.

For the purposes of evaluating embedding methods, including BoostMap and alternative

methods, we use those methods for the filtering step of filter-and-refine retrieval. To apply

an embedding method in this way we need to specify two parameters: d, which is the

dimensionality of the embedding, and p, which specifies the number of objects for which

we measure exact distances during the refine step. If we construct an embedding (for

example using the BoostMap method) with d′ dimensions, and we set parameter d to a

value less than d′, then we simply use the first d dimensions of that embedding. In all

experiments, d and p are selected to be the ones that maximize efficiency given a specific

setting for retrieval accuracy. For example, if we want to measure the efficiency of an

embedding method for 50-nearest neighbor retrieval with 95% accuracy, we first find, for

that method and for many different dimensionalities d, the parameter p that is needed for

each dimensionality in order to obtain the desired accuracy. Then, we simply choose the

combination of d and p that requires the smallest amount of distance computations per

query. We should emphasize that we perform this parameter selection to all embedding

methods that we evaluate.

With respect to the additional free parameters that are needed by the BoostMap algo-

rithm, we use the same values in all experiments, except, of course, experiments where we

explicitly measure the effect of tuning a specific parameter. There is one additional excep-

tion, noted below, where due to the small size of the UNIPEN dataset we use a different

value for one parameter. The parameter values that we use are the following:

• kmax = 50. Parameter kmax specifies the maximum number of nearest neighbors that

we want to retrieve, and is used for choosing training triples.

104

• |C| = |T| = 5000. Set C contains the objects from which reference objects and

pivot objects are selected to define 1D embeddings. Set T contains the objects from

which we form training triples. The only dataset where we use different values is the

UNIPEN dataset, for which |C| = |T| = 3500. The reason we use a different value

here is that the database of the UNIPEN dataset contains only 10, 630 objects, and

(for the purposes of training cascades, as described later in this chapter) we want at

least one third of database objects to be included in neither C nor T.

• β = 300, 000. Parameter β is the number of training triples used by the training

algorithm for embedding construction.

• γ = 2000. Parameter γ is the number of weak classifiers that are evaluated at each

training round.

• δ = 200. Parameter δ is the number of weak classifiers that we evaluate using

function Zmin at each training round j. The remaining weak classifiers are discarded

after measuring their weighted training error Λj .

• Zmax = .9999. Parameter Zmax is used to decide when to stop the training algorithm.

• k1 = 5. Parameter k1 is used for choosing training triples for the BoostMap-C

algorithm, which, as described in Chapter 6, is the embedding method we use for

constructing a cascade of approximate nearest neighbor classifiers.

7.3 Methods Used for Comparison Purposes

In order to better evaluate the performance and competitiveness of the methods proposed

in this thesis, we have implemented several alternative methods for speeding up nearest

neighbor retrieval and classification. For three of the datasets (MNIST, UNIPEN, and

time series) we also compare the proposed methods to domain-specific methods that have

been applied to these datasets. We have not implemented ourselves these domain-specific

methods, we simply report the results listed in the corresponding publications, as measured

105

on the same data that we evaluate our methods with. In this section we provide a list of

all methods that we use for comparison purposes:

• Embedding methods:

– FastMap. FastMap is a popular embedding method, introduced in [Faloutsos and Lin, 1995],

and briefly described in Section 2.3.2. For each dataset, we have constructed

a FastMap embedding by running the FastMap algorithm on a subset of the

database, containing 5000 objects (3500 objects for the UNIPEN dataset). The

subset used for each dataset is the set C of candidate objects that we have used

for BoostMap.

– Random reference objects (RRO). In this method we simply construct a

multi-dimensional Lipschitz embedding as a concatenation of multiple 1D em-

beddings, where each 1D embedding is obtained by choosing a random reference

object P from the database and applying Equation 2.7.

– Random line projections (RLP). In this method we construct a multi-

dimensional embedding as a concatenation of multiple 1D embeddings, each

of which is defined by choosing two random database objects X1, X2 as pivot

objects and applying Equation 2.10.

• Other general nearest neighbor retrieval methods:

– VP-trees. VP-trees are introduced in [Yianilos, 1993] and are a pruning-based

method for efficient nearest neighbor retrieval in arbitrary spaces. In metric

spaces, VP-trees rely on the triangle inequality to achieve efficient retrieval

while always finding the true nearest neighbors. Since the distance measures

in our experiments are all non-metric, we modify the VP-tree nearest-neighbor

search algorithm using a method similar to [Sahinalp et al., 2003]. The modifi-

cation guarantees correct retrieval results assuming that the triangle inequality

is satisfied up to a constant ζ. Larger values of ζ lead to more accurate results

and slower retrieval time.

106

• General methods for improving nearest neighbor classification efficiency:

– Condensed Nearest Neighbor (CNN). This methods is introduced in [Hart, 1968]

and speeds up nearest neighbor classification by removing from the database any

object that is not needed for correct classification of other database objects.

• Domain-specific methods:

– Zhang 2003. This method, introduced in [Zhang and Malik, 2003], has been

applied for efficient offline handwritten digit classification using shape context

matching, and has been tested on the MNIST dataset.

– CSDTW. This method is described in [Bahlmann and Burkhardt, 2004]. The

CSDTW method has been applied to the problem of efficient online handwritten

character classification, and has been tested on the UNIPEN dataset.

– Vlachos 2003. This is a method for efficient similarity-based retrieval of

time series, and has been applied to the time series dataset that we use in

our experiments, using constrained DTW as the underlying distance measure

[Vlachos et al., 2003].

7.4 Evaluation of the Original BoostMap Method

In this section, we evaluate the original BoostMap method, as described in Chapter 4.

We have applied BoostMap to all four datasets. We compare the trade-offs of accuracy

vs. efficiency obtained using BoostMap to the trade-offs achieved using FastMap, RRO

embeddings, RLP embeddings, and VP-trees.

In Figures 7·5, 7·6, 7·7, and 7·8 we compare BoostMap to alternative methods on the

task of k-nearest neighbor retrieval, on all four datasets. We provide results for different

values of k, between 1 to 50, and different percentages of retrieval accuracy, between 90%

and 99%. In Tables 7.1, 7.2, 7.3, and 7.4 we show, for selected accuracy percentages and

values of k, the number of exact distance computations required by each method.

107

The results demonstrate that BoostMap clearly outperforms all other methods in three

of the four datasets, namely the ASL handshape, MNIST and UNIPEN datasets. The

performance difference between BoostMap and the other methods varies depending on the

setting, i.e., the desired accuracy and the number of nearest neighbors to retrieve. In many

settings BoostMap achieves retrieval times that are from 50% to over 300% faster than the

times attained by the best alternative method. Of all alternative methods, the method that

uses random reference objects gives the best performance. The time series dataset is the

only dataset where BoostMap is not the best-performing method. In that dataset, using

random reference objects provides results that are roughly as good as those of BoostMap

for 90% and 95% retrieval accuracy, and results that are better than those of BoostMap

for 99% retrieval accuracy.

The results on the time series dataset illustrate one limitation of the training algo-

rithm: since we use AdaBoost as the underlying training method, the classifier that is

constructed is not a globally optimal classifier. AdaBoost is essentially a greedy optimiza-

tion method that finds locally optimal solutions. It is possible in some cases to obtain a

better classifier using random choices. At the same time, we will see that the query-sensitive

version of BoostMap significantly improves performance on the time series dataset over the

query-insensitive version evaluated in this section. The query-sensitive version outperforms

alternative methods in all datasets.

It is important to make a couple of remarks about results obtained for 100% retrieval

accuracy. We provide such results in several tables, in order to offer a more complete

picture of the performance of different methods. At the same time, the reader should bear

in mind that those results, for each setting and each method, are completely dominated by

the single query for which retrieval is the most inaccurate. Therefore, those results are far

more sensitive to outliers than the results shown for other accuracy settings. Furthermore,

we should emphasize that obtaining perfect retrieval accuracy on the specific set of queries

that we use does not provide any guarantees of perfect retrieval accuracy using a different

set of queries.

108

A second set of experiments we have performed evaluates the usefulness of the method

we describe in Chapter 4 for choosing training triples. In that chapter we argue that the

proposed method leads to an optimization measure that is tightly connected to the amount

of nearest neighbor structure preserved by the embedding. The original implementation

of BoostMap, described in [Athitsos et al., 2004], constructed training triples by choosing

random objects from the database. In Figures 7·9, 7·10, 7·11, and 7·12, we compare these

two different methods of choosing training triples. We see that the method described in

this thesis clearly outperforms the method that uses random training triples, for all settings

in all four datasets.

7.5 Evaluation of Query-Sensitive Embeddings

In the results reported in the previous section, we see that approximate nearest neighbor

retrieval using the query-insensitive version of BoostMap is the most computationally ex-

pensive for the MNIST and time series datasets. For example, if we want to obtain 95%

retrieval accuracy on 1-nearest neighbor retrieval, processing time per query is 0.63 seconds

for the ASL handshape dataset, 146 seconds for the MNIST dataset, 0.16 seconds for the

UNIPEN dataset, and 95 seconds for the time series dataset. In this section, we apply the

query-sensitive version of BoostMap, as described in Chapter 5, to these two challenging

datasets, in order to achieve further performance improvements.

Since we use an adaptation of the BoostMap algorithm to construct query-sensitive

embeddings, the most direct way to evaluate the advantages of query-sensitive embeddings

is to compare these embeddings to the query-insensitive embeddings produced using the

original BoostMap algorithm. In order to get a more comprehensive picture, we use two

different methods for choosing training triples. The first method is the one proposed in

Section 4.1.3. The second method chooses triples randomly, by picking objects at random

from the set T passed into the training algorithm. This second method was used in our

initial implementation of the BoostMap algorithm, as described in [Athitsos et al., 2004].

Overall, then, we evaluate four embedding methods, each of which is characterized

109

5 10 15 20 25 30 35 40 45 50128
256
512

1024
2048
4096
8192

16384
32768
6553680640

k

di

st
an

ce
s

fo
r 9

0%
 a

cc
ur

ac
y

FastMap
RRO
RLP
VP−trees
BoostMap

5 10 15 20 25 30 35 40 45 50128
256
512

1024
2048
4096
8192

16384
32768
6553680640

k

di

st
an

ce
s

fo
r 9

5%
 a

cc
ur

ac
y

FastMap
RRO
RLP
VP−trees
BoostMap

5 10 15 20 25 30 35 40 45 50512

1024

2048

4096

8192

16384

32768

6553680640

k

di

st
an

ce
s

fo
r 9

9%
 a

cc
ur

ac
y

FastMap
RRO
RLP
VP−trees
BoostMap

Figure 7·5: Comparing methods BoostMap, FastMap, RRO, RLP, and
VP-trees, on the ASL handshape dataset, using the chamfer distance as the
exact distance measure. We show the number of exact distance computa-
tions needed by each method to achieve correct retrieval of all k nearest
neighbors (k ranging from 1 to 50) for 90%, 95%, and 99% of the 710 query
objects that we use as a test set.

110

5 10 15 20 25 30 35 40 45 50
1024

2048

4096

8192

16384

32768

60000

k

di

st
an

ce
s

fo
r 9

0%
 a

cc
ur

ac
y

FastMap
RRO
RLP
VP−trees
BoostMap

5 10 15 20 25 30 35 40 45 50
1024

2048

4096

8192

16384

32768

60000

k

di

st
an

ce
s

fo
r 9

5%
 a

cc
ur

ac
y

FastMap
RRO
RLP
VP−trees
BoostMap

5 10 15 20 25 30 35 40 45 50

4096

8192

16384

32768

60000

k

di

st
an

ce
s

fo
r 9

9%
 a

cc
ur

ac
y

FastMap
RRO
RLP
VP−trees
BoostMap

Figure 7·6: Comparing methods BoostMap, FastMap, RRO, RLP, and
VP-trees, on the MNIST dataset, using shape context matching as the exact
distance measure. We show the number of exact distance computations
needed by each method to achieve correct retrieval of all k nearest neighbors
(k ranging from 1 to 50) for 90%, 95%, and 99% of the 10,000 query objects
that we use as a test set.

111

5 10 15 20 25 30 35 40 45 5032

64

128

256

512

1024

2048

4096

k

di

st
an

ce
s

fo
r 9

0%
 a

cc
ur

ac
y

FastMap
RRO
RLP
VP−trees
BoostMap

5 10 15 20 25 30 35 40 45 5032

64

128

256

512

1024

2048

4096

k

di

st
an

ce
s

fo
r 9

5%
 a

cc
ur

ac
y

FastMap
RRO
RLP
VP−trees
BoostMap

5 10 15 20 25 30 35 40 45 5064

128

256

512

1024

2048

4096

8192

k

di

st
an

ce
s

fo
r 9

9%
 a

cc
ur

ac
y

FastMap
RRO
RLP
VP−trees
BoostMap

Figure 7·7: Comparing methods BoostMap, FastMap, RRO, RLP, and
VP-trees, on the UNIPEN dataset, using DTW as the exact distance mea-
sure. We show the number of exact distance computations needed by each
method to achieve correct retrieval of all k nearest neighbors (k ranging
from 1 to 50) for 90%, 95%, and 99% of the 10,000 query objects that we
use as a test set.

112

5 10 15 20 25 30 35 40 45 50
512

1024

2048

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r 9

0%
 a

cc
ur

ac
y

FastMap
RRO
RLP
VP−trees
BoostMap

5 10 15 20 25 30 35 40 45 50
1024

2048

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r 9

5%
 a

cc
ur

ac
y

FastMap
RRO
RLP
VP−trees
BoostMap

5 10 15 20 25 30 35 40 45 50

2048

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r 9

9%
 a

cc
ur

ac
y

FastMap
RRO
RLP
VP−trees
BoostMap

Figure 7·8: Comparing methods BoostMap, FastMap, RRO, RLP, and
VP-trees, on the time series database, using constrained DTW as the exact
distance measure. We show the number of exact distance computations
needed by each method to achieve correct retrieval of all k nearest neighbors
(k ranging from 1 to 50) for 90%, 95%, and 99% of the 1,000 query objects
that we use as a test set.

113

ASL Handshape Dataset with the Chamfer Distance

k accuracy BoostMap FastMap RRO RLP VP-trees

1 90 270 1,259 895 831 4,303

1 95 450 2,647 1,866 1,444 5,471

1 99 1,365 6,865 7,405 3,259 7,611

1 100 5,995 16,242 24,950 13,235 12,012

10 90 1,544 6,251 7,301 3,745 11,261

10 95 2,332 9,023 11,766 5,736 13,573

10 99 4,556 17,402 29,345 13,890 19,198

10 100 8,978 47,577 58,031 23,894 27,448

50 90 4,640 16,198 18,826 11,381 18,006

50 95 6,759 21,373 30,585 15,305 20,892

50 99 11,458 36,753 61,009 24,094 25,395

50 100 16,560 65,948 59,961 43,363 30,836

Table 7.1: Comparison of BoostMap, FastMap, random reference objects
(RRO), random line projections (RLP), and VP-trees, on the ASL hand-
shape dataset. For different values of k, and different percentages of accu-
racy we show the number of exact distance computations required by each
method. For each k and accuracy, we display in bold font the best result.

MNIST Dataset with Shape Context

k accuracy BoostMap FastMap RRO RLP VP-trees

1 90 1,296 20,059 2,203 3,251 12,842

1 95 2,190 33,858 3,757 5,538 16,544

1 99 4,577 56,619 6,290 15,264 30,201

1 100 40,946 59,996 37,753 46,235 57,089

10 90 4,631 53,852 6,219 13,094 29,178

10 95 5,988 58,009 8,381 20,842 37,261

10 99 13,932 59,800 20,617 39,258 50,681

10 100 56,936 60,000 59,961 59,237 59,981

50 90 9,856 59,102 13,828 27,679 42,996

50 95 14,848 59,644 20,287 36,457 49,017

50 99 31,176 59,980 35,319 50,664 58,525

50 100 59,735 60,000 59,961 60,000 60,000

Table 7.2: Comparison of BoostMap, FastMap, random reference ob-
jects (RRO), random line projections (RLP), and VP-trees, on the MNIST
dataset. For different values of k, and different percentages of accuracy we
show the number of exact distance computations required by each method.
For each k and accuracy, we display in bold font the best result.

114

UNIPEN Dataset with DTW

k accuracy BoostMap FastMap RRO RLP VP-trees

1 90 93 191 101 154 945

1 95 144 332 180 253 1,092

1 99 275 809 477 621 1,542

1 100 2,555 2,685 3,268 2,614 2,791

10 90 389 1,024 633 765 2,152

10 95 521 1,429 911 1,070 2,439

10 99 1,069 3,051 2,118 2,344 3,252

10 100 5,173 8,808 7,126 8,932 10,630

50 90 1,002 2,639 1,692 1,801 3,397

50 95 1,538 3,576 2,778 2,683 3,705

50 99 3,302 6,107 5,647 5,441 4,914

50 100 10,417 9,968 10,494 9,913 10,630

Table 7.3: Comparison of BoostMap, FastMap, random reference objects
(RRO), random line projections (RLP), and VP-trees, on the UNIPEN
dataset. For different values of k, and different percentages of accuracy we
show the number of exact distance computations required by each method.
For each k and accuracy, we display in bold font the best result.

Time Series Dataset with Constrained DTW

k accuracy BoostMap FastMap RRO RLP VP-trees

1 90 649 8,357 678 9,938 1,633

1 95 5,691 20,176 5,229 13,594 3,388

1 99 9,072 27,082 9,118 23,662 9,166

1 100 9,562 27,547 10,134 29,335 16,126

10 90 5,721 19,613 5,401 24,686 8,781

10 95 8,262 24,888 8,360 26,689 11,896

10 99 9,448 27,531 9,504 29,684 18,748

10 100 27,267 27,623 20,096 31,456 28,253

50 90 9,043 23,289 9,144 27,052 12,828

50 95 9,571 27,041 10,217 29,039 13,277

50 99 24,672 27,564 15,944 31,127 24,378

50 100 27,267 27,742 25,832 31,731 31,818

Table 7.4: Comparison of BoostMap, FastMap, random reference objects
(RRO), random line projections (RLP), and VP-trees, on the time series
dataset. For different values of k, and different percentages of accuracy we
show the number of exact distance computations required by each method.
For each k and accuracy, we display in bold font the best result.

115

5 10 15 20 25 30 35 40 45 50128

256

512

1024

2048

4096

8192

16384

k

di

st
an

ce
s

fo
r 9

0%
 a

cc
ur

ac
y

random triples
selected triples

5 10 15 20 25 30 35 40 45 50128

256

512

1024

2048

4096

8192

16384

k

di

st
an

ce
s

fo
r 9

5%
 a

cc
ur

ac
y

random triples
selected triples

5 10 15 20 25 30 35 40 45 50512

1024

2048

4096

8192

16384

k

di

st
an

ce
s

fo
r 9

9%
 a

cc
ur

ac
y

random triples
selected triples

Figure 7·9: Comparing BoostMap as described in this thesis to a modified
version of BoostMap, where training triples are chosen randomly. Here we
show results on the ASL handshape dataset, using the chamfer distance
as the exact distance measure. We show the number of exact distance
computations needed by each method to achieve correct retrieval of all k
nearest neighbors (k ranging from 1 to 50) for 90%, 95%, and 99% of the
710 query objects that we use as a test set.

116

5 10 15 20 25 30 35 40 45 50
1024

2048

4096

8192

16384

32768

60000

k

di

st
an

ce
s

fo
r 9

0%
 a

cc
ur

ac
y

random triples
selected triples

5 10 15 20 25 30 35 40 45 50
1024

2048

4096

8192

16384

32768

60000

k

di

st
an

ce
s

fo
r 9

5%
 a

cc
ur

ac
y

random triples
selected triples

5 10 15 20 25 30 35 40 45 50

4096

8192

16384

32768

60000

k

di

st
an

ce
s

fo
r 9

9%
 a

cc
ur

ac
y

random triples
selected triples

Figure 7·10: Comparing BoostMap as described in this thesis to a modi-
fied version of BoostMap, where training triples are chosen randomly. Here
we show results on the MNIST dataset, using shape context matching as
the exact distance measure. We show the number of exact distance compu-
tations needed by each method to achieve correct retrieval of all k nearest
neighbors (k ranging from 1 to 50) for 90%, 95%, and 99% of the 10,000
query objects that we use as a test set.

117

5 10 15 20 25 30 35 40 45 5064

128

256

512

1024

2048

4096

k

di

st
an

ce
s

fo
r 9

0%
 a

cc
ur

ac
y

random triples
selected triples

5 10 15 20 25 30 35 40 45 5064

128

256

512

1024

2048

4096

k

di

st
an

ce
s

fo
r 9

5%
 a

cc
ur

ac
y

random triples
selected triples

5 10 15 20 25 30 35 40 45 5064

128

256

512

1024

2048

4096

k

di

st
an

ce
s

fo
r 9

9%
 a

cc
ur

ac
y

random triples
selected triples

Figure 7·11: Comparing methods BoostMap, FastMap, RRO, RLP, and
VP-trees, on the UNIPEN dataset, using DTW as the exact distance mea-
sure. We show the number of exact distance computations needed by each
method to achieve correct retrieval of all k nearest neighbors (k ranging
from 1 to 50) for 90%, 95%, and 99% of the 10,000 query objects that we
use as a test set.

118

5 10 15 20 25 30 35 40 45 50
512

1024

2048

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r 9

0%
 a

cc
ur

ac
y

random triples
selected triples

5 10 15 20 25 30 35 40 45 50
1024

2048

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r 9

5%
 a

cc
ur

ac
y

random triples
selected triples

5 10 15 20 25 30 35 40 45 50

2048

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r 9

9%
 a

cc
ur

ac
y

random triples
selected triples

Figure 7·12: Comparing BoostMap as described in this thesis to a modi-
fied version of BoostMap, where training triples are chosen randomly. Here
we show results on the time series database, using constrained DTW as the
exact distance measure. We show the number of exact distance computa-
tions needed by each method to achieve correct retrieval of all k nearest
neighbors (k ranging from 1 to 50) for 90%, 95%, and 99% of the 1,000
query objects that we use as a test set.

119

5 10 15 20 25 30 35 40 45 50

1024

2048

4096

8192

16384

k

di

st
an

ce
s

fo
r 9

0%
 a

cc
ur

ac
y

Ra−QI
Se−QI
Ra−QS
Se−QS

5 10 15 20 25 30 35 40 45 50

2048

4096

8192

16384

32768

k

di

st
an

ce
s

fo
r 9

5%
 a

cc
ur

ac
y

Ra−QI
Se−QI
Ra−QS
Se−QS

5 10 15 20 25 30 35 40 45 50

4096

8192

16384

32768

60000

k

di

st
an

ce
s

fo
r 9

9%
 a

cc
ur

ac
y

Ra−QI
Se−QI
Ra−QS
Se−QS

Figure 7·13: Comparing methods Ra-QI, Ra-QS, Se-QI and Se-QS on
the MNIST dataset, using shape context matching as the exact distance
measure. We show the number of exact distance computations needed by
each method to achieve correct retrieval of all k nearest neighbors (k ranging
from 1 to 50) for 90%, 95%, and 99% of the 10,000 query objects.

120

5 10 15 20 25 30 35 40 45 50
512

1024

2048

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r 9

0%
 a

cc
ur

ac
y

Ra−QI
Se−QI
Ra−QS
Se−QS

5 10 15 20 25 30 35 40 45 50

2048

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r 9

5%
 a

cc
ur

ac
y

Ra−QI
Se−QI
Ra−QS
Se−QS

5 10 15 20 25 30 35 40 45 50

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r 9

9%
 a

cc
ur

ac
y

Ra−QI
Se−QI
Ra−QS
Se−QS

Figure 7·14: Comparing methods Ra-QI, Ra-QS, Se-QI and Se-QS on the
time series dataset, using constrained Dynamic Time Warping as the exact
distance measure. We show the number of exact distance computations
needed by each method to achieve correct retrieval of all k nearest neighbors
(k ranging from 1 to 50) for 90%, 95%, and 99% of the 1,000 query objects.

121

MNIST Database with Shape Context

k accuracy Ra-QI Ra-QS Se-QI Se-QS

1 90 1,930 1,824 1,296 1,223

1 95 3,161 2,789 2,190 2,135

1 99 6,315 5,141 4,577 4,329

1 100 55,019 40,479 40,946 13,406

10 90 6,280 5,233 4,631 3,866

10 95 9,059 6,584 5,988 5,072

10 99 22,266 11,802 13,932 7,642

10 100 55,019 58,677 56,936 52,066

50 90 14,232 9,134 9,856 6,139

50 95 21,085 12,767 14,848 7,477

50 99 39,311 25,878 31,176 18,510

50 100 59,840 59,974 59,735 59,941

Time Series Dataset with Constrained DTW

k accuracy Ra-QI Ra-QS Se-QI Se-QS

1 90 1,018 898 649 580

1 95 12,851 6,484 5,691 1,995

1 99 16,236 9,743 9,072 4,269

1 100 16,426 13,922 9,562 6,965

10 90 13,364 6,521 5,721 2,582

10 95 16,270 9,346 8,262 4,251

10 99 24,052 13,070 9,448 6,260

10 100 31,818 24,730 27,267 17,627

50 90 18,821 9,757 9,043 4,997

50 95 26,985 12,821 9,571 6,504

50 99 31,818 19,357 24,672 16,265

50 100 31,818 26,748 27,267 26,883

Table 7.5: Comparison of Ra-QI, Ra-QS, Se-QI, and Se-QS on the MNIST
dataset based on 10,000 query objects and the time series dataset based on
1,000 query objects. For different values of k, and different percentages of
accuracy (shown in the “accuracy” column), we show the number of exact
distance computations required by each embedding method. For compar-
ison, brute force search would require 60,000 exact distance computations
in the MNIST dataset and 31,818 exact distance computations in the time
series dataset.

122

by whether it is query-sensitive or not, and whether it uses random training triples or

not. To denote each method, and its relation to the other methods, we use the following

abbreviations:

Ra: Training triples are chosen entirely randomly from the set of all possible triples, as in

[Athitsos et al., 2004].

Se: Training triples are chosen selectively, from a restricted set of possible triples, using

the method we describe in Section 4.1.3.

QI: A query-insensitive distance measure ∆ is constructed, as described in Chapter 4.

QS: A query-sensitive distance measure ∆ is constructed, as described in Chapter 5.

Based on these abbreviations, Se-QI denotes the method in Chapter 4, and Se-QS

denotes the method described in Chapter 5. Ra-QI and Ra-QS are alternative methods,

in which training triples are chosen randomly.

In Figures 7·13 and 7·14, and in Table 7.5, we compare the four different methods

on k-nearest neighbor retrieval. The number of exact distance computations required by

each method is shown for different values of k, from 1 to 50, and different percentages

of accuracy (i.e., 90%, 95%, and 99%), in Figure 7·13 for the MNIST dataset and Figure

7·14 for the time series dataset. In Table 7.5 we show, for selected accuracy percentages

and values of k, the number of exact distance computations required by each of the four

methods.

The results demonstrate that query-sensitive methods clearly outperform their query-

insensitive counterparts, and provide significantly better trade-offs between efficiency and

accuracy. The only exception occurs in results on 100% accuracy, which are dominated

by the single query giving the worst results. In some cases, query-sensitive embeddings

achieve performance that is two or three times as fast for a fixed error rate. As a side note,

we can also see that, with the exception of results on 100% accuracy, choosing training

triples as described in this thesis leads to better performance than choosing training triples

randomly.

123

5 10 15 20 25 30 35 40 45 50
1024

2048

4096

8192

16384

32768

60000

k

di

st
an

ce
s

fo
r 9

0%
 a

cc
ur

ac
y

FastMap
random ref. obj.
random projections
VP−trees
Se−QS

5 10 15 20 25 30 35 40 45 50
1024

2048

4096

8192

16384

32768

60000

k

di

st
an

ce
s

fo
r 9

5%
 a

cc
ur

ac
y

FastMap
random ref. obj.
random projections
VP−trees
Se−QS

5 10 15 20 25 30 35 40 45 50

4096

8192

16384

32768

60000

k

di

st
an

ce
s

fo
r 9

9%
 a

cc
ur

ac
y

FastMap
random ref. obj.
random projections
VP−trees
Se−QS

Figure 7·15: Comparing methods Se-QS, FastMap, random reference ob-
jects, random line projections, and VP-trees, on the MNIST dataset, using
shape context matching as the exact distance measure. We show the number
of exact distance computations needed by each method to achieve correct
retrieval of all k nearest neighbors (k ranging from 1 to 50) for 90%, 95%,
and 99% of the 10,000 query objects that we use as a test set.

124

5 10 15 20 25 30 35 40 45 50
512

1024

2048

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r 9

0%
 a

cc
ur

ac
y

FastMap
random ref. obj.
random projections
VP−trees
Se−QS

5 10 15 20 25 30 35 40 45 50
1024

2048

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r 9

5%
 a

cc
ur

ac
y

FastMap
random ref. obj.
random projections
VP−trees
Se−QS

5 10 15 20 25 30 35 40 45 50

2048

4096

8192

16384

31818

k

di

st
an

ce
s

fo
r 9

9%
 a

cc
ur

ac
y

FastMap
random ref. obj.
random projections
VP−trees
Se−QS

Figure 7·16: Comparing methods Se-QS, FastMap, random reference ob-
jects, random line projections, and VP-trees, on the time series database,
using constrained Dynamic Time Warping as the exact distance measure.
We show the number of exact distance computations needed by each method
to achieve correct retrieval of all k nearest neighbors (k ranging from 1 to
50) for 90%, 95%, and 99% of the 1,000 query objects that we use as a test
set.

125

MNIST Database with Shape Context

k accuracy Se-QS FastMap RRO RLP VP-trees

1 90 1,223 20,059 2,203 3,251 12,842

1 95 2,135 33,858 3,757 5,538 16,544

1 99 4,329 56,619 6,290 15,264 30,201

1 100 13,406 59,996 37,753 46,235 57,089

10 90 3,866 53,852 6,219 13,094 29,178

10 95 5,072 58,009 8,381 20,842 37,261

10 99 7,642 59,800 20,617 39,258 50,681

10 100 52,066 60,000 59,961 59,237 59,981

50 90 6,139 59,102 13,828 27,679 42,996

50 95 7,477 59,644 20,287 36,457 49,017

50 99 18,510 59,980 35,319 50,664 58,525

50 100 59,941 60,000 59,961 60,000 60,000

Time Series Dataset with Constrained DTW

k accuracy Se-QS FastMap RRO RLP VP-trees

1 90 580 8,357 678 9,938 1,633

1 95 1,995 20,176 5,229 13,594 3,388

1 99 4,269 27,082 9,118 23,662 9,166

1 100 6,965 27,547 10,134 29,335 16,126

10 90 2,582 19,613 5,401 24,686 8,781

10 95 4,251 24,888 8,360 26,689 11,896

10 99 6,260 27,531 9,504 29,684 18,748

10 100 17,627 27,623 20,096 31,456 28,253

50 90 4,997 23,289 9,144 27,052 12,828

50 95 6,504 27,041 10,217 29,039 13,277

50 99 16,265 27,564 15,944 31,127 24,378

50 100 26,883 27,742 25,832 31,731 31,818

Table 7.6: Comparison of Se-QS, FastMap, random reference objects
(RRO), random line projections (RLP), and VP-trees, on the MNIST
dataset based on 10,000 query objects and the time series dataset based
on 1,000 query objects. For different values of k, and different percent-
ages of accuracy (shown in the “accuracy” column), we show the number
of exact distance computations required by each method. For comparison,
brute force search would require 60000 exact distance computations in the
MNIST dataset and 31818 exact distance computations in the time series
dataset.

126

In order to better illustrate the competitiveness of query-sensitive embeddings with

respect to existing methods, we directly compare query-sensitive embeddings to the meth-

ods used in the previous section, i.e., FastMap, RRO, RLP, and VP-trees. The results we

provide are similar to the results from the previous section, except that we replace the

results of the original BoostMap algorithm with the results of the query-sensitive version

of BoostMap, i.e., version Se-QS. The results can be seen in Figures 7·15 and 7·16, and in

Table 7.6.

In these results we see that query-sensitive embeddings clearly outperform the other

methods. The only settings where Se-QS does not yield the best result are 50-nearest

neighbor retrieval with 99% accuracy 100% accuracy on the time series database. Random

reference objects are marginally better for those settings. In many settings our method is

faster than any alternative by a factor between 1.45 and 2.7, e.g., for 90%, 95% and 99%

accuracy on 1, 10, and 50-nearest neighbor retrieval on the MNIST database.

As a last experiment, we compare query-sensitive embeddings to the method described

in [Vlachos et al., 2003] on the time series dataset. To make the comparison fair, in this

experiment we use the exact same database and set of queries that was used in the ex-

periments reported in [Vlachos et al., 2003]. In other words, we do not use the database

of 31818 objects and query set of 1000 object that we use in the other experiments. In-

stead, we use a different splitting of the objects into database and query object, so that

the database contains 32768 objects and the query set contains 50 objects.

On this modified time series dataset, we use a query-sensitive embedding and we set

parameters d and p so as to retrieve the 1-nearest neighbor correctly for each of the 50

queries, i.e., so as to achieve 100% accuracy on 1-nearest neighbor retrieval. In particular,

we set dimensionality d = 150 and filter-and-refine parameter p = 443. With these settings,

we only need to measure 640 distances per query, and thus we obtain a speed-up factor

of 51.2 compared to brute-force search. The indexing method in [Vlachos et al., 2003] is

reported to achieve a speed-up of approximately a factor of 5, while retrieving correctly

the true nearest neighbor for all 50 queries, and measured on the same set of 50 queries

127

that we have used.

7.6 Experiments on Nearest Neighbor Classification

In this section we evaluate the performance of the proposed methods on the task of efficient

nearest neighbor classification. Evaluation is performed on three datasets: the ASL hand-

shape dataset, the MNIST dataset, and the UNIPEN dataset. The reason we do not use

the time series dataset is simply that there are no class labels associated with the objects

in that dataset. In each dataset we compare BoostMap with the RRO and RLP methods,

because, as can be seen in the previous sections, in all three datasets either RRO or RLP

was the best-performing retrieval method besides BoostMap. In the MNIST and UNIPEN

datasets we also evaluate the cascade method. As we will see shortly, the error rate on the

ASL handshape dataset is very high (over half the objects are misclassified), and there-

fore the ASL handshape dataset violates the fundamental assumption of cascades, i.e., the

assumption that most objects are easy to classify.

7.6.1 Classification Experiments on the ASL Handshape Dataset

Classification on the ASL handshape dataset is a very challenging task. Unlike typical

handshape recognition settings, which assume that each handshape is always seen in the

same 3D orientation, in this dataset the orientation is arbitrary. Our goal is to identify

for each query image which of the 20 handshapes it displays. Given the vast difference in

appearance between different 3D orientations of the same shape, it is not surprising that

exact nearest neighbor classification using brute-force search has a very high error rate of

67%.

Figure 7·17 displays the error rate attained using filter-and-refine retrieval with the

BoostMap, RRO, and RLP methods. Overall, BoostMap produces better results than the

other two methods. At the cost of 100 exact distance computations, BoostMap attains an

error rate of 67%, which essentially equals the error rate of brute-force search. Therefore,

using BoostMap we obtain a speed up factor of 800 over brute-force search, with no losses

128

100 200 300 400 5000.65

0.7

0.75

0.8

0.85

0.9

0.95

1

number of exact distance computations

er
ro

r r
at

e

RLP
RRO
BoostMap

Figure 7·17: Comparing classification accuracy vs. efficiency trade-offs
achieved by the BoostMap, RRO, and RLP methods on the ASL handshape
dataset. For different numbers of exact distance computations we show the
error rate obtained by each method.

in classification accuracy. In terms of actual running time, using BoostMap we can classify

about 3.5 queries per second, whereas it takes 112 seconds on average to classify a query

using brute-force search.

For a cost of 100 exact distance computations, RRO achieves an error rate of 69%,

and RLP achieves an error rate of 70%. RRO and RLP achieve an error rate of 67% at

400 distances and 500 distances respectively. It is important to note that even these very

simple methods achieve speed-ups of roughly a factor of 200 over brute-force search.

Overall, it is fair to say that the accuracy we obtain on the ASL handshape dataset

is not at the level where it can be useful for actual applications. We should emphasize

that this low accuracy is not caused by BoostMap or the other embedding methods, it

is inherent in the choice of the underlying distance measure, i.e., the chamfer distance,

which produces a high error rate even when using brute-force search. Reliable handshape

classification of hand images displaying arbitrary 3D orientations is still an open problem

129

100 200 300 400 500 600 700 8000.005

0.01

0.015

0.02

number of exact distance computations

er
ro

r r
at

e

RLP
RRO
BoostMap

Figure 7·18: Comparing classification accuracy vs. efficiency trade-offs
achieved by the BoostMap, RRO, and RLP methods on the MNIST dataset.
For different numbers of exact distance computations we show the error rate
obtained by each method.

in computer vision.

7.6.2 Classification Experiments on the MNIST Dataset

As a reminder, exact nearest neighbor classification using shape context matching achieves

error rates of 0.63% using a database of 20,000 objects and 0.54% using the full MNIST

database of 60,000 training objects, with classification time per object equal to about 22

minutes and 66 minutes respectively. Figure 7·18 displays the error rate attained using

filter-and-refine retrieval with the BoostMap, RRO, and RLP methods on the MNIST

dataset, using 60,000 training objects. BoostMap achieves an error rate of 0.58% at a cost

of 800 exact distance computations. At the same cost of 800 exact distance computations,

the RRO method obtains an error rate of 0.66% and the RLP method obtains an error

rate of 0.75%. Overall, using BoostMap we achieve a speed-up factor of about 75 over

brute-force search, while achieving an error rate that is only 0.04% worse than the error

rate of brute-force search. Classification time per query reduces from about 66 minutes

130

0 100 200 300 400 500 600 700 8000

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Exact distance evaluations per test object

Er
ro

r r
at

e
pe

rc
en

ta
ge

BoostMap
BoostMap−C

Figure 7·19: Error rates attained using BoostMap and BoostMap-C, with-
out a cascade, vs. number of exact distance evaluations per test object, on
the MNIST dataset. 60,000 training objects were used.

seconds per query using brute-force search to 53 seconds per query using BoostMap with

800 exact distance computations.

In constructing embeddings for the MNIST dataset, we have used both the original

BoostMap algorithm of Chapter 4 and the modified BoostMap-C version proposed in Chap-

ter 6, where training triples (Xi, Ai, Bi) are labeled not based on whether Xi is closer to

Ai or to Bi, but based on whether Xi belongs to the same class as Ai or to the same class

as Bi. Using 60,000 training objects, both methods have an error rate of 0.58%. In Fig.

7·19 we plot error rate vs. number of exact distance evaluations per test object. We see

that BoostMap-C attains its peak accuracy at around 300 exact distance computations per

object, but it takes BoostMap about 800 exact distance computations per object to reach

the same accuracy. Overall, BoostMap-C performs slightly better than BoostMap.

We have applied Algorithm 3 to construct a cascade of classifiers, using different values

of e, ranging from 0 to 4. The training and validation sets passed to the algorithm are

disjoint subsets of the database, containing 20,000 and 10,000 objects respectively. The

sequence P of filter-and-refine processes that is passed as input to Algorithm 3 is shown

in Table 7.7. We have constructed that sequence by hand, i.e., we have manually picked d

131

Filter-and-refine processes for MNIST

Process Dimensions (d) p Threshold

P1 10 0 50

P2 20 0 56

P3 40 0 51

P4 60 0 51

P5 80 0 50

P6 100 0 41

P7 100 20 41

P8 100 40 41

P9 100 60 17

P10 100 80 20

P11 100 100 20

P12 100 150 24

P13 100 200 11

P14 100 250 4

P15 100 300 5

P16 100 700 NA

Filter-and-refine processes for UNIPEN

Process Dimensions (d) p Threshold

P1 5 0 11

P2 10 0 9

P3 20 0 5

P4 30 0 3

P5 30 10 2

P6 30 20 0

P7 30 30 NA

Table 7.7: The sequences P of filter-and-refine processes that were passed
as input to Algorithm 3 for the MNIST and UNIPEN datasets. We used
these sequences with both BoostMap and BoostMap-C embeddings. The di-
mensions column specifies the dimensionality of the embedding, and p is the
parameter specifying the number of distances to measure in the refine step.
We also show the threshold chosen by the cascade learning algorithm, using
embeddings from BoostMap-C and setting e = 0. Naturally, no threshold is
needed for the final step in the cascade. The fact that the threshold for P6

in the UNIPEN experiment is 0 means that the algorithm has determined
that P7 is redundant, and uses P6 as the final process.

132

30 40 50 60 70 80 90 100 110 120 1300.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Exact distance evaluations per test object

Er
ro

r r
at

e
pe

rc
en

ta
ge

Cascade
Cascade−C

Figure 7·20: Error rates attained by cascade classifiers vs. average number
of exact distance evaluations per test object, for the MNIST dataset. Cas-
cade and Cascade-C correspond to the five cascades that were learned, using
embeddings constructed with BoostMap and BoostMap-C respectively. For
each of these two embedding methods, we obtained five cascades by run-
ning Algorithm 3 with parameter e set respectively to e = 0, 1, 2, 3, 4. 60,000
training objects were used.

and p for each process. The thresholds are learned automatically by the algorithm. Our

guideline in constructing the sequence has been simply to provide an adequate number

of steps, ranging from really fast and inaccurate to really slow and accurate, with the

constraint that each cascade step should be able to reuse the work done at the previous

steps.

Using a database of 20,000 objects, and passing e = 0 to Algorithm 3, using BoostMap

we obtain a cascade with an error rate of 0.75%, at an average cost of measuring about

149.0 distances per test object, which translates to average classification time of 9.9 seconds

per test object. Using the modified algorithm BoostMap-C, the resulting cascade yields an

error rate of 0.74%, at an average cost of measuring 92.5 distances per test object, which

translates to average classification time of 6.2 seconds per test object. We have evaluated

the same cascades using the full MNIST database of 60,000 objects. For each cascade,

the thresholds are set to the same values as in the experiments with a database of 20,000

133

objects. The results, for parameter e ranging from 0 to 4, are shown in Fig. 7·20. For

e = 0 and using BoostMap we get an error rate of 0.66% at an average cost of 123 exact

distance computations per test object. For e = 0 and using BoostMap-C we get an error

rate of 0.61% at an average cost of only 77.3 distance computations per test object. This

is a speed-up of almost three orders of magnitude over brute-force search, which achieves

an error rate of 0.54%. As seen in Fig. 7·20, cascades using BoostMap-C achieve better

tradeoffs of accuracy versus efficiency compared to cascades using BoostMap.

Note that increasing the database size from 20,000 to 60,000 objects improves both the

accuracy and the efficiency of the cascade classifier. This result may seem surprising at first

glance, and is in stark contrast to traditional nearest-neighbor methods, where recognition

time increases as the database size increases. By taking a closer look at the results we have

found that, as the database size increases and the processes Pi and thresholds ti remain

fixed, the quantity K(Q,Pi) tends to increase for most query objects Q, meaning that more

objects are classified at earlier steps in the cascade.

In [Zhang and Malik, 2003] a discriminative classifier is trained using shape context

features, and achieves an error rate of 2.55% on the MNIST dataset while measuring only

exact distances between the test object and 50 prototypes. That method is not a nearest-

neighbor method, so after learning the classifier only the 50 prototypes are needed, and

the rest of the training set is discarded. Overall, the cost of classifying a test object using

the method in [Zhang and Malik, 2003] is the cost of evaluating 50 exact distances. Using

BoostMap-C and the full training set of 60,000 objects, with parameter e = 1 we obtain a

cascade that yields an error rate of 0.83%, while measuring on average 49.5 exact distances

per test object. Also, as Fig. 7·20 shows, several cascades obtained using BoostMap and

BoostMap-C achieve error rates under 1.2% at an average cost ranging from 35 to 50 exact

distance evaluations per test object.

We also compare the cascade method to two additional methods that can be used for

speeding up nearest neighbor classification: the well-known condensed nearest neighbor

(CNN) method [Hart, 1968] and VP-trees [Yianilos, 1993]. We evaluate these methods

134

Method Distances per Speed-up Seconds per Error
query object factor query object rate

brute force 20,000 1 1,232 0.63%

VP-trees [Yianilos, 1993] 8,594 2.3 572 0.66%

CNN [Hart, 1968] 1,060 18.9 70.6 2.40%

Zhang [Zhang and Malik, 2003] 50 400 3.3 2.55%

BoostMap 800 25 53.3 0.74%

BoostMap-C 800 25 53.3 0.72%

Cascade 149 134 9.9 0.75%

Cascade-C 93 216 6.2 0.74%

Table 7.8: Speeds and error rates achieved by different methods on the
MNIST dataset, using 10,000 test objects and 20,000 database objects. We
also show the number of exact shape context distance evaluations per query
object for each method.

using the smaller training set of 20,000 objects. Both methods achieve significantly worse

tradeoffs between accuracy and efficiency compared to our method. CNN selects 1060 out

of the 20,000 training objects, speeding up classification time by approximately a factor of

20. However, the error rate using CNN increases from 0.63% to 2.40%. With VP-trees the

error rate is 0.66%, but the attained speed up with respect to brute-force search is only a

factor of 2.3; an average of 8594 exact distances need to be measured per test object.

Table 7.8 summarizes the results of all the different methods on the smaller database

of 20,000 objects. As we can see from those results, VP-trees, BoostMap and the cascade

methods are the only methods that achieve accuracy comparable to brute force search.

The speed-up obtained using VP-trees is pretty minor compared to using BoostMap or

using a cascade. The cascade methods, and especially Cascade-C, achieve by far the best

trade-offs between accuracy and efficiency.

7.6.3 Classification Experiments on the UNIPEN Dataset

Figure 7·21 displays the error rate attained using filter-and-refine retrieval with the Boost-

Map, RRO, and RLP methods on the UNIPEN dataset. Exact nearest neighbor classifi-

cation using brute-force search achieves an error rate of 1.90% on this dataset. BoostMap

135

achieves an error rate of 1.95% at a cost of 75 exact distance computations, and an error

rate of 1.90 at a cost of 300 distance computations. At a cost of 300 exact distance com-

putations, the RRO method obtains an error rate of 1.99% and the RLP method obtains

an error rate of 1.97%. Overall, using BoostMap we achieve a speed-up factor of about

35 over brute-force search, while achieving the same error rate, thus reducing classification

time per query from 12 seconds to 0.34 seconds.

In Fig. 7·22 we compare original BoostMap algorithm of Chapter 4 and the modified

BoostMap-C version of Chapter 6. We see that BoostMap-C attains its peak accuracy at

around 150 exact distance computations per object. Overall, BoostMap performs slightly

better than BoostMap-C for costs of up to 50 distances per query, and BoostMap-C per-

forms slightly better than BoostMap for costs of 75 or more distances per query.

We have applied Algorithm 3 to construct a cascade of classifiers, using different values

of e, ranging from 0 to 4. The training set passed to the algorithm is the entire database

of 10,630 objects, and the validation set is a subset of the database consisting of 3,500

objects. No validation object is used for its own classification while running Algorithm

3. The sequence P of filter-and-refine processes that is passed as input to Algorithm 3 is

shown in Table 7.7. As with the MNIST dataset, we have constructed that sequence by

hand, making sure we provide an adequate number of steps, ranging from really fast and

inaccurate to really slow and accurate, with the constraint that each cascade step should

be able to reuse the work done at the previous steps.

Passing e = 0 to Algorithm 3, using BoostMap we obtain an error rate of 2.03%, at an

average cost of measuring about 67 distances per test object. Using the modified algorithm

BoostMap-C, the resulting cascade yields an error rate of 2.10%, at an average cost of

measuring 35 distances per test object. Setting e = 2, the resulting BoostMap cascade

has an error rate of 2.10%, at a cost of 30 distances per test object, which translates to a

processing time of 0.034 seconds per test object. Setting e = 1, the resulting BoostMap-C

cascade yields an error rate of 2.09%, at an average cost of measuring 32 distances per test

object, which translates to average classification time of 0.036 seconds per test object. The

136

cascade results, for both BoostMap and BoostMap-C, for parameter e ranging from 0 to

4, are shown in Fig. 7·23. Overall, the number of distance computations per query does

not change as much for BoostMap-C as it changes for BoostMap, as we vary parameter

e between 0 and 4. BoostMap tends to produce better or similar accuracy compared to

BoostMap-C, for the same number of distance computations. This is not unexpected, given

that for all the filter-and-refine processes in the cascade of Table 7.7 BoostMap actually

gives better or similar results compared to BoostMap-C, as seen in Figure 7·22.

We should note that the CSDTW method [Bahlmann and Burkhardt, 2004], which has

been explicitly designed for classifying time series and in particular for online handwritten

character recognition, achieves an error rate of 2.90 on the UNIPEN dataset at a cost equiv-

alent to 150 exact computations of DTW distances. The cascades obtained by BoostMap

and BoostMap-C obtain a significantly better error rate of about 2.10%, while the average

classification time is about 5 times faster compared to CSDTW, since we only need to

measure 30 or 32 exact distances per query on average. The worst case cost for classifying

a query is 75 exact distances, which is still 2.5 times faster than the cost of CSDTW. The

advantage of CSDTW over our method is that CSDTW requires significantly less memory;

in our method, we need to store in memory the embeddings of all database objects, and

that takes up about 7MB for a 100-dimensional embedding.

Table 7.9 provides a summary of classification results obtained using different methods,

including VP-trees, different embedding methods, CSDTW and cascades. We see that

BoostMap and BoostMap-C outperform alternative embedding methods and VP-trees,

and cascades provide even better trade-offs between accuracy and efficiency.

7.7 Summary of Experimental Results

For the purposes of nearest neighbor retrieval, the query-insensitive version of BoostMap

significantly outperforms all methods that we have evaluated and that are not based on

BoostMap, in three of the four datasets we have experimented with. In the time series

dataset, RRO performs slightly better. The query-sensitive version of BoostMap, on the

137

0 50 100 150 200 250 3000.015

0.02

0.025

0.03

0.035

number of exact distance computations

er
ro

r r
at

e

RLP
RRO
BoostMap

Figure 7·21: Comparing classification accuracy vs. efficiency trade-offs
achieved by the BoostMap, RRO, and RLP methods on the UNIPEN
dataset. For different numbers of exact distance computations we show
the error rate obtained by each method.

other hand, significantly outperforms RRO and other methods on both datasets where we

have evaluated query-sensitive embeddings, i.e., both on the time series dataset and the

MNIST dataset. Also, in all comparisons we have performed, the query-sensitive version of

BoostMap performs better than the query-insensitive version. Overall, the retrieval results

obtained using the methods proposed in this thesis are better than the results obtained

using any other method we have implemented, in all four datasets.

It is interesting to note that the two relatively well known retrieval methods we have

evaluated, i.e., VP-trees and FastMap, actually perform significantly worse than RRO and

RLP. We are not aware of any existing work actually using RLP, and our experiments

indicate that RLP may be a competitive alternative to FastMap, which uses the same type

of 1D embeddings as RLP, but combines those embeddings in a different way than RLP.

For the purposes of classification, we see that BoostMap embeddings perform better

than alternative retrieval methods, and offer significant speed-ups over brute-force search,

138

0 50 100 150 200 250 3000.015

0.02

0.025

0.03

number of exact distance computations

er
ro

r r
at

e

BoostMap
BoostMap−C

Figure 7·22: Error rates attained using BoostMap and BoostMap-C, with-
out a cascade, vs. number of exact distance evaluations per test object, on
the UNIPEN dataset.

20 30 40 50 60 700.015

0.02

0.025

0.03

number of exact distance computations

er
ro

r r
at

e

BoostMap
BoostMap−C

Figure 7·23: Error rates attained by cascade classifiers vs. average number
of exact distance evaluations per test object, for the UNIPEN dataset. Cas-
cade and Cascade-C correspond to the five cascades that were learned, using
embeddings constructed with BoostMap and BoostMap-C respectively. For
each of these two embedding methods, we obtained five cascades by running
Algorithm 3 with parameter e set respectively to e = 0, 1, 2, 3, 4.

139

Method Distances per Speed-up Seconds per Error
query object factor query object rate

brute force 10,630 1.0 11.94 1.90%

VP-trees [Yianilos, 1993] 1,899 5.6 2.13 1.90%

CSDTW 150 70.9 0.17 2.90%

RRO 150 70.9 0.17 1.97%

RLP 150 70.9 0.17 2.08%

BoostMap 150 70.9 0.17 1.97%

BoostMap-C 150 70.9 0.17 1.86%

RRO 32 332 0.036 2.38%

RLP 32 332 0.036 3.92%

BoostMap 32 332 0.036 2.29%

BoostMap-C 32 332 0.036 2.53%

Cascade 30 354 0.034 2.10%

Cascade-C 32 332 0.036 2.09%

Table 7.9: Speeds and error rates achieved by different methods on the
UNIPEN dataset. To make it easier to compare different methods, for some
methods we show multiple results, which correspond to different numbers
of exact distance evaluations per query.

with minimal or no loss in classification accuracy. Cascades of approximate nearest neigh-

bor classifiers offer even better tradeoffs between accuracy and efficiency, compared to us-

ing a single filter-and-refine process for nearest neighbor classification. In the MNIST and

UNIPEN datasets, cascades also outperform in accuracy and processing time two domain-

specific methods, namely [Zhang and Malik, 2003] and [Bahlmann and Burkhardt, 2004]

that have been previously evaluated on those datasets. The most impressive result of cas-

cades is obtained on the MNIST database, where classification time using the full database

of 60,000 objects is reduced from 66 minutes using brute-force search to about 5 seconds

using a cascade, while the error rate changes minimally from 0.54% using brute-force search

to 0.61% using a cascade. This error rate difference means that the cascade misclassifies

seven more objects, out of 10,000, compared to brute-force search, while the cascade is on

average about 775 times faster than brute-force search.

140

Chapter 8

Discussion and Conclusions

In this final chapter of the thesis we summarize the main lessons learned from the work

we have described, and we point out open questions and interesting directions for future

research.

8.1 Discussion of Contributions

The focus of this thesis has been on designing methods for efficient nearest neighbor re-

trieval and classification in spaces with computationally expensive distance measures. The

key insight is the concept that constructing efficient approximations of computationally

expensive distance measures is a machine learning problem. Prior literature has mainly

tackled that problem as a geometric problem, where different geometric assumptions like

metricity of distance measure (e.g., for Bourgain embeddings) or Euclidean structure (e.g.,

for Fastmap) have been used to construct embeddings and demonstrate that, when the as-

sumptions hold, the embeddings capture a certain amount of information above the original

space. The main two limitations of existing methods have been that:

• Embedding construction is often seen not as an optimization problem, but as a prob-

lem of establishing some worst-case bounds (e.g., Bourgain embeddings), or even as a

matter of making random choices (e.g., Lipschitz embeddings with random reference

objects). Thus, the resulting embeddings are often suboptimal, as our experiments

have demonstrated.

• Oftentimes the spaces that we need to index violate the assumptions that existing

embedding methods are based on. For example, in all four datasets used in our

141

experiments the original distance measure is non-metric, whereas existing embed-

ding methods assume that the original distance measure is metric (e.g., in Bourgain

embeddings, SparseMap) or Euclidean (e.g., in FastMap).

In this thesis, we have proposed novel methods for addressing the above limitations and

for improving the overall trade-offs between accuracy and efficiency that can be obtained

using embeddings. The main contributions have been the following:

Framing Embedding Construction As a Machine Learning Problem

The foundation of the methods described in this thesis has been the correspondence that

we established in Chapter 4 between embeddings and classifiers: the association of every

embedding with a corresponding classifier, and the proof that any linear combination of

such embedding-based classifiers naturally corresponds to an embedding and a distance

measure. By treating embeddings as classifiers and embedding construction as a problem

of learning how to estimate the proximity order of triples of objects, we simultaneously

address both the issue of how to optimize an embedding and the issue of avoiding as-

sumptions about the geometry of the original space. First, the embedding construction

algorithm directly maximizes the amount of nearest neighbor structure preserved by the

embedding. Second, the optimization criterion that we use does not rely on any geometric

assumptions and is equally principled for Euclidean, metric, and non-metric spaces. Over-

all, by moving away from geometric considerations and treating embedding construction

as a machine learning problem, we provide a promising step forward towards developing

a general indexing framework for non-metric spaces whose geometric structure is either

poorly understood or “inconvenient” from the point of view of existing indexing methods.

At the same time, a side advantage of treating embeddings as classifiers is that the

embedding construction algorithm optimizes not only the embedding itself, by picking an

appropriate set of 1D embeddings, but also the distance measure to be used in the tar-

get space of the embedding. Existing methods typically take for granted that the target

distance measure is a simple, unweighted Euclidean metric. From our formulation it fol-

142

lows naturally that the choice of distance measure makes a difference, and the algorithm

constructs a distance measure that optimizes embedding performance.

Query-Sensitive Embeddings

Query-sensitive embeddings take the concept of distance measure optimization one step

further, by producing a distance measure that automatically adapts to each query. The

ability to adapt the distance measure greatly enhances the modeling power of embed-

dings, and allows embeddings to capture a larger amount of the structure of the original

space, without increasing the computational complexity of online nearest neighbor retrieval.

Query-sensitive embeddings combine the efficiency of measuring distances in a vector space

with the ability to capture non-metric structure that exists in the original space, such as

violations of the triangle inequality or asymmetric distances. Because of its ability to

capture non-metric structure, the query-sensitive version of BoostMap overcomes the only

geometric limitation of the original BoostMap algorithm, i.e., the constraint that the tar-

get space of the embedding has to be an L1 metric space. It will be interesting to explore

possible applications of query-sensitivity in other contexts where we need a meaningful dis-

tance measure between high-dimensional vectors, for example for clustering or data mining

applications.

Cascades of Approximate Nearest Neighbor Classifiers

The message from the third main contribution in this thesis, i.e., the cascade of approximate

nearest neighbor classifiers, is that the task of nearest neighbor classification, although

naturally and intricately related to the task of nearest neighbor retrieval, is fundamentally a

different task than retrieval. Intuitively, as the size of the database increases, retrieving the

true nearest neighbors becomes increasingly harder, because the number of wrong answers

that need to be eliminated becomes larger. On the contrary, accurate classification of a

query object becomes easier, because a larger number of training objects provides more

accurate information about the distribution of different classes.

143

The proposed cascade method takes advantage of the fundamental differences between

the tasks of retrieval and classification, and essentially decouples classification from re-

trieval, at least for a large majority of test objects that we can confidently classify without

needing an accurate estimate of the true nearest neighbors. An intriguing result in our ex-

periments with the MNIST dataset has been that cascades of approximate nearest neighbor

classifiers improve in both classification accuracy and classification efficiency as we include

more training objects. This empirical behavior is in agreement with our intuition that, as

the database becomes larger, while retrieval becomes harder, classification becomes easier.

At the same time, an interesting direction for future work is to theoretically analyze this

empirical behavior and identify the conditions under which we can expect this behavior to

occur.

8.2 Broader Issues and Future Work

Naturally, a large number of open problems remain to be addressed in the field of efficient

nearest neighbor retrieval and classification. Here we take a brief look at some issues that

have not been addressed in this thesis and that point to interesting directions for future

work.

Duality Between Indexing and Classification

A general idea that has inspired to a large extent the work described in this thesis is that

indexing and classification can oftentimes be seen as equivalent problems. Finding the

nearest neighbors of the query can be seen as a classification problem, where we need to

determine, for each database object, whether it is a nearest neighbor of the query or not.

At the same time, classifying an object, regardless of the classification method we use, can

be seen as a nearest neighbor problem where the database is a set of classes and we want

to find the class that is nearest to the object.

Despite the fundamental similarities between the problems of indexing and classifica-

tion, these problems have typically been studied by different communities, i.e., the database

144

community and the machine learning community, without significant synergy between the

communities. The work described in this thesis can be seen as a step towards addressing

one half of the equivalence between indexing and classification: for a particular indexing

method, i.e., embedding-based filter-and-refine retrieval, we have proposed a mathematical

framework for reducing the indexing optimization problem into a classification optimization

problem. By drawing from the machine learning arsenal, that has been largely unexploited

in existing database indexing methods, we have been able to significantly improve indexing

performance, compared to existing state-of-the-art methods.

From the broader perspective of unifying the problems of indexing and classification, it

becomes clear that the work in this thesis has only covered a small part of that unification.

An obvious question that needs to be explored is whether it is feasible and beneficial

to apply machine learning methods for optimizing different types of indexing structures,

such as various tree-based structures (e.g., KD-trees, VP-trees) and hashing structures.

Furthermore, it is important to explore whether by shifting the emphasis from geometric

considerations to machine learning considerations we can extend some of these indexing

methods, to either make them principled in spaces where currently those methods are

heuristic (e.g., VP-trees in non-metric spaces), or to make them applicable in spaces where

currently they cannot be applied (e.g., LSH in arbitrary non-vector spaces).

The other direction of the relation between indexing and classification also needs to be

explored, and this is an issue that has not been addressed at all in this thesis. Treating

classification as an indexing problem can be advantageous in domains with a large number

of classes, such as articulated pose estimation, or biometrics-based identification of a large

number of individuals. The majority of machine learning methods scale at least linearly

with the number of classes. As a result, the problem of recognizing very large numbers

of classes has received very little attention, not because of the lack of applications, but

because of the computational complexity of existing solutions. Treating classification as

an indexing problem, where we want to accurately and efficiently retrieve for each query

the “nearest” class in the space of all classes, may offer significant insights and allow the

145

use or adaptation of existing database techniques in order to achieve classification time

that is sublinear to the number of classes. A promising step towards that direction is the

Parameter Sensitive Hashing method described in [Shakhnarovich et al., 2003].

Applications to Different Domains

The work described in this thesis has been primarily applied to image databases. At

the same time, the formulation of the proposed methods is quite general, and can be

applied to problems in many areas of computer science beyond computer vision and pattern

recognition. Two domains that we are particularly interested in exploring are peer-to-peer

networks and protein databases. It will be interesting to see if applying our methods to

these domains can produce results that are competitive, given the availability of several

domain-specific methods for these problems.

An interesting question to explore is whether by using domain-specific information

we can improve embedding quality and thus achieve better performance in specific appli-

cations. The formulation presented in this thesis defines weak classifiers based only on

distances between objects. The advantage of this formulation is that it is quite general

and can be applied to any arbitrary space, as long as there is a distance measure defined

on that space. At the same time, if our goal is to maximize performance in a particu-

lar domain, like networks or protein databases, it may be worth defining domain-specific

weak classifiers, that can capture additional information compared to classifiers based on

distances. In [Alon et al., 2005b] we describe such a domain-specific method, for spaces

where computing distances between objects requires establishing correspondences between

object features. In that work, we use correspondences between objects to define a richer

family of weak classifiers. Applying the BoostMap algorithm on that richer family leads

to embeddings that capture more of the structure of the original space and yield better

retrieval and classification performance.

146

The Unsegmented Nearest Neighbor Problem

Going back to computer vision and pattern recognition applications, existing nearest neigh-

bor methods, including the methods proposed in this thesis, have a significant limitation:

they assume that the query is an object that is not fundamentally different from database

objects. A very common situation where this assumption is violated is the case where:

• the query object is an unsegmented image or video sequence, that contains a pattern

of interest for which we want to find the nearest neighbors.

• the database contains segmented patterns.

For example, the query can be an unsegmented image that contains a face, and the database

may contain segmented faces. As another example, the query can be an unsegmented image

containing a hand, and the database can contain, as in the experiments, segmented hand

images. As a third example, the query can be a video sequence of a gesture, in which we do

know neither when the gesture begins and ends, nor where the gesturing hands are located

in each frame, and the database may contain gestures with additional annotation that spec-

ifies gesture time boundaries and 2D hand locations [Alon et al., 2005a, Alon et al., 2005c].

We use the term “unsegmented nearest neighbor problem” to refer to this problem of

finding the nearest neighbors of an unsgemented pattern that is only a part of the query

object. The dominant paradigm for solving this problem currently involves decoupling

segmentation from retrieval and classification, so that first we do our best at segment-

ing the pattern of interest and then we use the segmented pattern as a query. Clearly,

this paradigm inherits the typical limitations of bottom-up methods: mistakes in the low-

level task of segmentation cannot be corrected, and high-level information available in the

database cannot be used to improve performance in the low-level task. Developing meth-

ods that can directly solve the unsegmented nearest neighbor problem would significantly

widen the applicability of nearest neighbor methods to computer vision problems, and at

the same time would offer a new family of methods for integrating bottom-up and top-

down information and treating pattern segmentation and pattern recognition in a unified

147

framework.

8.3 Conclusions

The main topic of this thesis has been efficient nearest neighbor retrieval and classification

in spaces with computationally expensive distance measures. We have shown that the

problem of designing efficient embedding-based approximations of such measures can be

formulated as a machine learning problem. We have demonstrated that this novel formula-

tion has the theoretical advantages of being principled in arbitrary spaces and of explicitly

maximizing the amount of nearest neighbor structure captured by the embedding. Taking

advantage of the machine learning formulation, we have extended our method to produce

query-sensitive embeddings. Query-sensitive embeddings are a novel type of embeddings,

and map objects to a vector space with a query-sensitive weighted L1 measure, where

the weights automatically adjust to each query object. We have shown theoretically and

experimentally the additional modeling power and improved performance gained by using

query-sensitive embeddings. Overall, the BoostMap method is based on machine learning,

in contrast to prior indexing methods that are primarily based on geometric considerations.

By formulating indexing as a machine learning problems we obtain a method that is free

from geometric assumptions, is equally principled in metric and non-metric spaces, and

can capture non-metric structure.

With respect to nearest neighbor classification, we have proposed a method for sig-

nificantly improving efficiency using a cascade of approximate nearest neighbor classifiers.

Our method decouples the classification problem from the retrieval problem, and identifies

cases where we have sufficient information to provide an accurate classification even though

we do not have sufficient information to provide accurate retrieval results. By decoupling

classification from retrieval our method achieves significant improvement in efficiency com-

pared to more traditional retrieve-and-then-classify methods.

The key message of this thesis is that indexing in spaces with computationally expensive

distance measures can be framed as a machine learning problem. Existing indexing methods

148

mainly rely on geometric properties. Shifting the focus from geometry to machine learn-

ing has allowed us to develop principled methods that are applicable in arbitrary spaces,

regardless of their geometry. Non-Euclidean and non-metric computationally expensive

distance measures are frequently utilized in computer vision, and we have demonstrated

that the proposed methods can be successfully applied in a variety of domains to achieve

state-of-the-art accuracy and efficiency at the same time.

References

[Aggarwal, 2001] Aggarwal, C. C. (2001). Re-designing distance functions and distance-
based applications for high dimensional data. SIGMOD Record, 30(1):13–18.

[Alon et al., 2005a] Alon, J., Athitsos, V., and Sclaroff, S. (2005a). Accurate and effi-
cient gesture spotting via pruning and subgesture reasoning. In IEEE Workshop
on Human Computer Interaction, pages 189–198.

[Alon et al., 2005b] Alon, J., Athitsos, V., and Sclaroff, S. (2005b). Online and offline
character recognition using alignment to prototypes. In International Confer-
ence on Document Analysis and Recognition, pages 839–843.

[Alon et al., 2005c] Alon, J., Athitsos, V., Yuan, Q., and Sclaroff, S. (2005c). Simulta-
neous localization and recognition of dynamic hand gestures. In IEEE Motion
Workshop, pages 254–260.

[Athitsos et al., 2005a] Athitsos, V., Alon, J., and Sclaroff, S. (2005a). Efficient nearest
neighbor classification using a cascade of approximate similarity measures. In
IEEE Conference on Computer Vision and Pattern Recognition, pages 486–493.

[Athitsos et al., 2004] Athitsos, V., Alon, J., Sclaroff, S., and Kollios, G. (2004). Boost-
Map: A method for efficient approximate similarity rankings. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 268–275.

[Athitsos et al., 2005b] Athitsos, V., Hadjieleftheriou, M., Kollios, G., and Sclaroff, S.
(2005b). Query-sensitive embeddings. In ACM International Conference on
Management of Data (SIGMOD), pages 706–717.

[Athitsos and Sclaroff, 2003] Athitsos, V. and Sclaroff, S. (2003). Estimating hand pose
from a cluttered image. In IEEE Conference on Computer Vision and Pattern
Recognition, volume 2, pages 432–439.

[Athitsos and Sclaroff, 2005] Athitsos, V. and Sclaroff, S. (2005). Boosting nearest
neighbor classifiers for multiclass recognition. In IEEE Workshop on Learning
in Computer Vision and Pattern Recognition.

[Bahlmann and Burkhardt, 2004] Bahlmann, C. and Burkhardt, H. (2004). The writer
independent online handwriting recognition system frog on hand and cluster
generative statistical dynamic time warping. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(3):299–310.

149

150

[Barrow et al., 1977] Barrow, H., Tenenbaum, J., Bolles, R., and Wolf, H. (1977). Para-
metric correspondence and chamfer matching: Two new techniques for image
matching. In International Joint Conference on Artificial Intelligence, pages
659–663.

[Belongie et al., 2002] Belongie, S., Malik, J., and Puzicha, J. (2002). Shape matching
and object recognition using shape contexts. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(4):509–522.

[Boeckmann et al., 2003] Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M. C.,
Estreicher, A., Gasteiger, E., Martin, M. J., Michoud, K., O’Donovan, C., Phan,
I., Pilbout, S., and Schneider, M. (2003). The swiss-prot protein knowledgebase
and its supplement trembl in 2003. Nucleic Acids Research, 31(1):365–370.

[Böhm et al., 2001] Böhm, C., Berchtold, S., and Keim, D. A. (2001). Searching in
high-dimensional spaces: Index structures for improving the performance of
multimedia databases. ACM Computing Surveys, 33(3):322–373.

[Borst et al., 2000] Borst, F., Thurler, G., Breant, C., Lehner-Godinho, B., Calmy, A.,
and Meier, C. (2000). Finding similar cases within a hospital information
system. Studies in health technology and informatics, 77:875–879.

[Bourgain, 1985] Bourgain, J. (1985). On Lipschitz embeddings of finite metric spaces
in Hilbert space. Israel Journal of Mathematics, 52:46–52.

[Bozkaya and Özsoyoglu, 1999] Bozkaya, T. and Özsoyoglu, Z. (1999). Indexing large
metric spaces for similarity search queries. ACM Transactions on Database
Systems (TODS), 24(3):361–404.

[Breu et al., 1995] Breu, H., Gil, J., Kirkpatrick, D., and Werman, M. (1995). Linear-
time euclidean distance transform algorithms. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17(5):529–533.

[Canny, 1986] Canny, J. (1986). A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 8(6):679–698.

[Chakrabarti and Mehrotra, 2000] Chakrabarti, K. and Mehrotra, S. (2000). Local
dimensionality reduction: A new approach to indexing high dimensional spaces.
In International Conference on Very Large Data Bases, pages 89–100.

[Ciaccia et al., 1997] Ciaccia, P., Patella, M., and Zezula, P. (1997). M-tree: An ef-
ficient access method for similarity search in metric spaces. In International
Conference on Very Large Data Bases, pages 426–435.

[Cover and Thomas, 1991] Cover, T. M. and Thomas, J. A. (1991). Elements of infor-
mation theory. Wiley-Interscience, New York, NY, USA.

[Curious Labs, 2002] Curious Labs (2002). Poser 5 Reference Manual. Curious Labs,
Santa Cruz, CA.

151

[Devi and Murty, 2002] Devi, V. S. and Murty, M. N. (2002). An incremental prototype
set building technique. Pattern Recognition, 35(2):505–513.

[Domeniconi et al., 2002] Domeniconi, C., Peng, J., and Gunopulos, D. (2002). Locally
adaptive metric nearest-neighbor classification. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(9):1281–1285.

[Duda et al., 2001] Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classi-
fication. Wiley-Interscience.

[Egecioglu and Ferhatosmanoglu, 2000] Egecioglu, Ö. and Ferhatosmanoglu, H. (2000).
Dimensionality reduction and similarity distance computation by inner product
approximations. In International Conference on Information and Knowledge
Management, pages 219–226.

[Everitt et al., 2001] Everitt, B. S., Landau, S., and Leese, M. (2001). Cluster Analysis.
Arnold Publishers, London, England, 4th edition.

[Faloutsos and Lin, 1995] Faloutsos, C. and Lin, K. I. (1995). FastMap: A fast algo-
rithm for indexing, data-mining and visualization of traditional and multimedia
datasets. In ACM International Conference on Management of Data (SIG-
MOD), pages 163–174.

[Friedman et al., 2000] Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive
logistic regression: a statistical view of boosting. Annals of Statistics, 28(2):337–
374.

[Frome et al., 2004] Frome, A., Huber, D., Kolluri, R., Bulow, T., and Malik, J. (2004).
Recognizing objects in range data using regional point descriptors. In European
Conference on Computer Vision, volume 3, pages 224–237.

[Gates, 1972] Gates, G. W. (1972). The reduced nearest neighbor rule. IEEE Trans-
actions on Information Theory, 18(3):431–433.

[Gionis et al., 1999] Gionis, A., Indyk, P., and Motwani, R. (1999). Similarity search
in high dimensions via hashing. In International Conference on Very Large
Databases, pages 518–529.

[Grauman and Darrell, 2005] Grauman, K. and Darrell, T. (2005). The pyramid match
kernel: Discriminative classification with sets of image features. In IEEE Inter-
national Conference on Computer Vision, pages 1458–1465.

[Grauman and Darrell, 2004] Grauman, K. and Darrell, T. J. (2004). Fast contour
matching using approximate earth mover’s distance. In IEEE Conference on
Computer Vision and Pattern Recognition, pages I: 220–227.

[Guyon et al., 1994] Guyon, I., Schomaker, L., and Plamondon, R. (1994). Unipen
project of on-line data exchange and recognizer benchmarks. In 12th Interna-
tional Conference on Pattern Recognition, pages 29–33.

152

[Hart, 1968] Hart, P. E. (1968). The condensed nearest neighbor rule. IEEE Transac-
tions on Information Theory, 14(3):515–516.

[Hastie and Tibshirani, 1996] Hastie, T. and Tibshirani, R. (1996). Discriminant adap-
tive nearest-neighbor classification. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 18(6):607–616.

[Hildrum et al., 2002] Hildrum, K., Kubiatowicz, J. D., Rao, S., and Zhao, B. Y. (2002).
Distributed object location in a dynamic network. In ACM Symposium on
Parallel Algorithms and Architectures, pages 41–52.

[Hjaltason and Samet, 2003a] Hjaltason, G. and Samet, H. (2003a). Properties of em-
bedding methods for similarity searching in metric spaces. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 25(5):530–549.

[Hjaltason and Samet, 2003b] Hjaltason, G. R. and Samet, H. (2003b). Index-driven
similarity search in metric spaces. ACM Transactions on Database Systems,
28(4):517–580.

[Hristescu and Farach-Colton, 1999] Hristescu, G. and Farach-Colton, M. (1999). Cluster-
preserving embedding of proteins. Technical Report 99-50, CS Department,
Rutgers University.

[Huttenlocher et al., 1993] Huttenlocher, D., Klanderman, D., and Rucklige, A. (1993).
Comparing images using the Hausdorff distance. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15(9):850–863.

[Indyk, 2000] Indyk, P. (2000). High-dimensional Computational Geometry. PhD
thesis, Stanford University.

[Jr. et al., 2000] Jr., C. T., Traina, A., Seeger, B., and Faloutsos, C. (2000). Slim-
trees: High performance metric trees minimizing overlap between nodes. In 7th
International Conference on Extending Database Technology (EDBT), pages 51–
65.

[Kanth et al., 1998] Kanth, K. V. R., Agrawal, D., and Singh, A. (1998). Dimen-
sionality reduction for similarity searching in dynamic databases. In ACM
International Conference on Management of Data (SIGMOD), pages 166–176.

[Keogh, 2002] Keogh, E. (2002). Exact indexing of dynamic time warping. In Interna-
tional Conference on Very Large Data Bases, pages 406–417.

[Koudas et al., 2004] Koudas, N., Ooi, B. C., Shen, H. T., and Tung, A. K. H. (2004).
LDC: Enabling search by partial distance in a hyper-dimensional space. In
IEEE International Conference on Data Engineearing, pages 6–17.

[Kruskall and Liberman, 1983] Kruskall, J. B. and Liberman, M. (1983). The sym-
metric time warping algorithm: From continuous to discrete. In Time Warps.
Addison-Wesley.

153

[Kuhn, 1955] Kuhn, H. W. (1955). The Hungarian method for the assignment problem.
Naval Research Logistics Quarterly, 2:83–87.

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324.

[Levenshtein, 1966] Levenshtein, V. I. (1966). Binary codes capable of correcting dele-
tions, insertions, and reversals. Soviet Physics, 10(8):707–710.

[Li et al., 2002] Li, C., Chang, E., Garcia-Molina, H., and Wiederhold, G. (2002). Clus-
tering for approximate similarity search in high-dimensional spaces. IEEE
Transactions on Knowledge and Data Engineering, 14(4):792–808.

[Li and Zhang, 2004] Li, S. Z. and Zhang, Z. Q. (2004). Floatboost learning and sta-
tistical face detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(9):1112–1123.

[Linial et al., 1994] Linial, N., London, E., and Rabinovich, Y. (1994). The geometry
of graphs and some of its algorithmic applications. In IEEE Symposium on
Foundations of Computer Science, pages 577–591.

[Micó and Vidal, 1994] Micó, L. and Vidal, E. (1994). A new version of the nearest-
neighbour approximating and eliminating search algorithm (AESA) with linear
preprocessing time and memory requirements. Pattern Recognition Letters,
15(1):9–17.

[Mori et al., 2001] Mori, G., Belongie, S., and Malik, J. (2001). Shape contexts enable
efficient retrieval of similar shapes. In IEEE Conference on Computer Vision
and Pattern Recognition, volume 1, pages 723–730.

[Neidle et al., 2001] Neidle, C., Sclaroff, S., and Athitsos, V. (2001). SignStream: A
tool for linguistic and computer vision research on visual-gestural language data.
Behavior Research Methods, Instruments and Computers, 33(3):311–320.

[Ong and Bowden, 2004] Ong, E. J. and Bowden, R. (2004). A boosted classifier tree
for hand shape detection. In Face and Gesture Recognition, pages 889–894.

[Paredes and Vidal, 2000] Paredes, R. and Vidal, E. (2000). A class-dependent weighted
dissimilarity measure for nearest neighbor classification problems. Pattern
Recognition Letters, 21(12):1027–1036.

[Phillips et al., 2003] Phillips, P., Grother, P., Micheals, R., Blackburn, D., Tabassi, E.,
and Bone, M. (2003). Face recognition vendor test 2002. Technical Report
NIST IR 6965, NIST, Gaithersburg, Maryland, USA.

[Roweis and Saul, 2000] Roweis, S. and Saul, L. (2000). Nonlinear dimensionality re-
duction by locally linear embedding. Science, 290:2323–2326.

154

[Rubner et al., 1998] Rubner, Y., Tomasi, C., and Guibas, L. J. (1998). A metric
for distributions with applications to image databases. In IEEE International
Conference on Computer Vision, pages 59–66.

[Sahinalp et al., 2003] Sahinalp, S. C., Tasan, M., Macker, J., and Özsoyoglu, Z. M.
(2003). Distance based indexing for string proximity search. In IEEE Interna-
tional Conference on Data Engineering, pages 125–136.

[Sakurai et al., 2000] Sakurai, Y., Yoshikawa, M., Uemura, S., and Kojima, H. (2000).
The A-tree: An index structure for high-dimensional spaces using relative ap-
proximation. In International Conference on Very Large Data Bases, pages
516–526.

[Schapire and Singer, 1999] Schapire, R. and Singer, Y. (1999). Improved boosting
algorithms using confidence-rated predictions. Machine Learning, 37(3):297–
336.

[Shakhnarovich et al., 2003] Shakhnarovich, G., Viola, P., and Darrell, T. (2003). Fast
pose estimation with parameter-sensitive hashing. In IEEE International Con-
ference on Computer Vision, pages 750–757.

[Shen et al., 2005] Shen, H. T., Ooi, B. C., and Zhou, X. (2005). Towards effective
indexing for very large video sequence database. In ACM International Confer-
ence on Management of Data (SIGMOD), pages 730–741.

[Smith and Waterman, 1981] Smith, T. F. and Waterman, M. S. (1981). Identification
of common molecular subsequences. Journal of Molecular Biology, 147:195–197.

[Tenenbaum et al., 2000] Tenenbaum, J., Silva, V. d., and Langford, J. (2000). A
global geometric framework for nonlinear dimensionality reduction. Science,
290:2319–2323.

[Thayananthan et al., 2003] Thayananthan, A., Stenger, B., Torr, P. H. S., and Cipolla,
R. (2003). Shape context and chamfer matching in cluttered scenes. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 127–133.

[Tieu and Viola, 2000] Tieu, K. and Viola, P. (2000). Boosting image retrieval. In
IEEE Conference on Computer Vision and Pattern Recognition, pages 228–235.

[Tuncel et al., 2002] Tuncel, E., Ferhatosmanoglu, H., and Rose, K. (2002). VQ-index:
An index structure for similarity searching in multimedia databases. In Proc.
of ACM Multimedia, pages 543–552.

[Uhlman, 1991] Uhlman, J. (1991). Satisfying general proximity/similarity queries with
metric trees. Information Processing Letters, 40(4):175–179.

[Vapnik, 1995] Vapnik, V. (1995). The nature of statistical learning theory. Springer-
Verlag New York, Inc.

155

[Vidal, 1994] Vidal, E. (1994). New formulation and improvements of the nearest-
neighbour approximating and eliminating search algorithm (AESA). Pattern
Recognition Letters, 15(1):1–7.

[Viola and Jones, 2001] Viola, P. and Jones, M. (2001). Rapid object detection using a
boosted cascade of simple features. In IEEE Conference on Computer Vision
and Pattern Recognition, volume 1, pages 511–518.

[Vlachos et al., 2002] Vlachos, M., Domeniconi, C., Gunopulos, D., Kollios, G., and
Koudas, N. (2002). Non-linear dimensionality reduction techniques for clas-
sification and visualization. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 645–651.

[Vlachos et al., 2003] Vlachos, M., Hadjieleftheriou, M., Gunopulos, D., and Keogh,
E. (2003). Indexing multi-dimensional time-series with support for multiple
distance measures. In ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 216–225.

[Wang et al., 2000] Wang, X., Wang, J. T. L., Lin, K. I., Shasha, D., Shapiro, B. A.,
and Zhang, K. (2000). An index structure for data mining and clustering.
Knowledge and Information Systems, 2(2):161–184.

[Weber and Böhm, 2000] Weber, R. and Böhm, K. (2000). Trading quality for time
with nearest-neighbor search. In International Conference on Extending Database
Technology: Advances in Database Technology, pages 21–35.

[Weber et al., 1998] Weber, R., Schek, H.-J., and Blott, S. (1998). A quantitative anal-
ysis and performance study for similarity-search methods in high-dimensional
spaces. In International Conference on Very Large Data Bases, pages 194–205.

[White and Jain, 1996] White, D. A. and Jain, R. (1996). Similarity indexing: Al-
gorithms and performance. In Storage and Retrieval for Image and Video
Databases (SPIE), pages 62–73.

[Yi et al., 1998] Yi, B.-K., Jagadish, H. V., and Faloutsos, C. (1998). Efficient retrieval
of similar time sequences under time warping. In IEEE International Conference
on Data Engineering, pages 201–208.

[Yianilos, 1993] Yianilos, P. (1993). Data structures and algorithms for nearest neigh-
bor search in general metric spaces. In ACM-SIAM Symposium on Discrete
Algorithms, pages 311–321.

[Young and Hamer, 1987] Young, F. and Hamer, R. (1987). Multidimensional Scaling:
History, Theory and Applications. Lawrence Erlbaum Associates, Hillsdale,
New Jersey.

[Yuan et al., 2005] Yuan, Q., Sclaroff, S., and Athitsos, V. (2005). Automatic 2D hand
tracking in video sequences. In IEEE Workshop on Applications of Computer
Vision, pages 250–256.

156

[Zezula et al., 1998] Zezula, P., Savino, P., Amato, G., and Rabitti, F. (1998). Approx-
imate similarity retrieval with M-trees. The VLDB Journal, 4:275–293.

[Zhang and Malik, 2003] Zhang, H. and Malik, J. (2003). Learning a discriminative
classifier using shape context distances. In IEEE Conference on Computer
Vision and Pattern Recognition, volume 1, pages 242–247.

