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Abstract

In this paper we present a method for learning a curve
model for detection and segmentation by closely integrating
a hierarchical curve representation using generative and
discriminative models with a hierarchical inference algo-
rithm. We apply this method to the problem of automatic
localization of the guidewire in fluoroscopic sequences. In
fluoroscopic sequences, the guidewire appears as a hardly
visible, non-rigid one-dimensional curve. Our paper has
three main contributions. Firstly, we present a novel method
to learn the complex shape and appearance of a free-form
curve using a hierarchical model of curves of increasing de-
grees of complexity and a database of manual annotations.
Secondly, we present a novel computational paradigm in
the context of Marginal Space Learning, in which the algo-
rithm is closely integrated with the hierarchical represen-
tation to obtain fast parameter inference. Thirdly, to our
knowledge this is the first full system which robustly local-
izes the whole guidewire and has extensive validation on
hundreds of frames. We present very good quantitative and
qualitative results on real fluoroscopic video sequences, ob-
tained in just one second per frame.

1. Introduction

Detection and segmentation of wire-like structures is a
challenging problem with many practical applications in
both medical imaging and computer vision. Our main in-
terest is the detection and segmentation of the guidewire
from fluoroscopy images used during coronary angioplasty,
a medical procedure used to restore blood flow through
clogged coronary arteries. During this minimally-invasive
procedure, a catheter containing a guidewire is inserted
through an artery in the thigh, and guided by the cardiol-
ogist until it reaches the blocked coronary artery. Then, a
catheter with a deflated balloon is inserted along the wire
and guided so that the balloon reaches the blockage. At

that point, the balloon is inflated and deflated several times
so as to unblock the artery. A device called a stent is of-
ten placed at that position in order to keep the artery from
getting blocked again. Throughout this procedure, the car-
diologist uses fluoroscopic images to monitor the position
of the catheter, guidewire, balloon and stent. Fluoroscopic
images are x-ray images collected at a rate of several frames
per second. In order to reduce the patient’s exposure to x-
ray radiation, the x-ray dosage is kept low and as a result,
the images tend to have low contrast and include a large
amount of noise.

Figure 1. Example frames from fluoroscopic video sequences dis-
playing the catheter, guidewire and wire tip.

As Figure 1 illustrates, it is often very hard to distin-
guish the objects of interest, in particular the catheter and
guidewire, in such images. Automatic detection and track-
ing of the guidewire can greatly aid in enhancing the vi-
sualization quality of fluoroscopic data, while minimizing
the exposure of the patient to x-ray radiation. In addition,
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accurate localization of the guidewire can provide useful in-
formation for inferring 3D structure in bi-plane systems, al-
lowing precise navigation of the guidewire tip through the
arterial system.

The physical shape of the guidewire can be represented
as a one-dimensional curve in 3D space. The projection
of this shape onto the image plane can be represented as
a one-dimensional curve in two dimensions. The shape of
this curve is highly non-rigid, and a representation of the
shape would require a large number of parameters. Detect-
ing such a curve automatically is a challenging problem be-
cause of the complexity of finding optimal parameters in a
high-dimensional space.

Previous work for guidewire detection [2, 12] used fil-
tering techniques to enhance the guidewire. The results ob-
tained in [12] were in the form of a set of pixels, which
could sometimes be disconnected, while [2] used splines to
track the wire, but only concentrated on the wire tip, which
has much better visibility than the guidewire. The guidewire
was also detected in [14], as a set of pixels, using a Hessian
filter, with the purpose of adaptive filtering for image qual-
ity enhancement. Another approach to guidewire detection
[11] treats the problem as a minimum cost path and uses
a Fast Marching Algorithm for inference, but is only vali-
dated on 5 images and only detects the guidewire tip.

There is also a large amount of work in the field of curve
modeling using differential geometry [13, 7], with advanced
and generic curve models but without efficient inference al-
gorithms and no robustness evaluation on a large dataset.

In comparison, our method is specialized for localizing
the guidewire in Fluoroscopic images, and takes into con-
sideration many specific elements that constrain the prob-
lem (noise patterns, shape models, scale, etc). Moreover,
by using a large annotated database, a hierarchical repre-
sentation and a hierarchical computational model, we can
obtain robust results with great computational efficiency.

From an energy minimization perspective, our algorithm
can be considered as an energy based learning method [10]
for the full guidewire model, but the search space for the
optimal parameters is largely restricted by all the previous
levels of the hierarchy, increasing speed by many degrees
of magnitude. Moreover, since the search space is restricted
using the training data, it is unlikely for the global optimum
to be missed. Other approaches to curve localization using
energy minimization [6] use a global additive energy func-
tion and Dynamic Programming, this way being restricted
in the form of the energy function and therefore in the sys-
tem performance.

The diagram of our hierarchical model is illustrated in
Figure 2. There are conceptually three levels, the first level
being the low level of ridge (segment) detection, the inter-
mediate level modeling curves with a range of parameters
and the highest level representing the whole guidewire. In

our database-guided approach, we maintain a database of
more than 700 frames in which the guidewire, catheter, wire
tip and stent have been manually annotated. Example of
such annotations are in Figure 3. We divided the database
into two disjoint sets, one for training and one for testing.

Figure 2. The diagram of our hierarchical approach.

We make no claims of optimality, but instead we verify
our approach on more than 500 real fluoroscopic images
and obtain a statistical measure of the localization error.

Figure 3. Example of annotations containing the guidewire (yel-
low), barely visible guidewire (brown), catheter (green), wire tip
(blue) and stent (pink).

2. Marginal Space Learning

Many problems require the fast estimation of a large
number of parameters. In this paper, the full guidewire
model is controlled by about one hundred parameters, mak-
ing any kind of full search practically impossible.



Most approaches [6, 11] handle so many parameters
through a descriptive model (e.g. Markov Random Field)
and restrict the energy function to have specific forms to
apply fast inference algorithms. For example [6] uses an
additive form of energy in order to use Dynamic Program-
ming while [11] uses a specific cost function to apply a Fast
Marching Algorithm variant. This limits performance be-
cause the restricted type of energy function cannot handle
all the variability existent in natural images.

Learning based methods can model the images more ac-
curately and usually handle the large number of parameters
using a coarse-to-fine strategy [1]. At all the steps, the di-
mensionality of the search space is the same, but the space
granularity varies. This approach cannot be used in our
method, since the guidewire is not visible when the image
is reduced in size and can be easily missed if large steps are
used in the grid search.

In Marginal Space Learning, we propose a novel ap-
proach in which the dimensionality of the search space is
gradually increased. Let Ω be the space where the solution
to the given problem exists and let PΩ be the true probabil-
ity that needs to be learned. The learning and computation
are performed in a sequence of marginal spaces

Ω1 ⊂ Ω2 ⊂ ... ⊂ Ωn = Ω (1)

such that Ω1 is a low dimensional space (e.g. 3-
dimensional in our guidewire application), and for each k,
dim(Ωk) − dim(Ωk−1) is small. The marginal spaces are
chosen in such a way that the marginal probabilities

PΩk
(θ) =

∫
X⊥Ωk

PΩ(θ, x)dx (2)

have small entropies, which is reflected in the fact that
the learning tasks are easy. A search in the marginal space
Ω1 using the learned probability model finds a subspace
Π1 ⊂ Ω1 containing the most probable values and discards
the rest of the space. The restricted marginal space Π1 is
then extended to Πe

1 = Π1 × X1 ⊂ Ω2. Another stage
of learning and detection is performed on Πe

1 obtaining a
restricted marginal space Π2 ⊂ Ω2 and the procedure is
repeated until the full space Ω is reached.

At each step, the restricted space Πk is one or two de-
grees of magnitude smaller than Πk−1×Xk, thus obtaining
a restricted space n to 2n degrees of magnitude smaller than
Ω. This reflects in a very efficient algorithm with minimal
loss in performance.

For our guidewire localization problem, we use a joint
hierarchical model for the curve shape and appearance,
closely following the hierarchy of subspaces (1). The initial
space Ω1 is the 3-dimensional space of short segments with
position and orientation while for each k > 1, Ωk models a
longer curve than Ωk−1 by extending it with 7 dimensions.

There is a difference between a model for the whole
guidewire and a model for a (potentially long) part of a

guidewire. This is because a full guidewire model uses
the contextual information that the guidewire usually starts
from a catheter and ends in a guidewire tip, both structures
being very visible. In the Marginal Space Learning per-
spective, the models for partial guidewires can be regarded
as the path to reach the full guidewire model.

3. Hierarchical Guidewire Model
The detectors at all levels of the hierarchical model are

trained using the Probabilistic Boosting Tree (PBT), previ-
ously developed in our lab for other projects [15]. The PBT
is a method to learn a binary tree from positive and negative
samples and to assign a probability to any given sample by
integrating the responses from the tree nodes. Each node
of the tree is a strong classifier boosted from a number of
weak classifiers (features). The PBT is a very powerful and
flexible learning method, easy to train and to control against
overfitting. Please follow [15] for more details.

To improve speed, in our hierarchical model each of
the three levels only communicates with the previous level.
This way, the information reaching each level comes in
a condensed form through a vocabulary which becomes
smaller as the level of the hierarchy increases.

3.1. Low Level Segment Detector

The first level of our system is a ridge detector aimed
at detecting the simplest types of curves, namely short line
segments of constant length. Such a curve has three param-
eters (x, y, θ), where (x, y) the segment center location and
θ ∈ [−90, 90] is the segment orientation. The space of the
orientations is discretized into 30 values.

Figure 4. Low level detection for the upper images of Fig. 1.

The segment detector uses Haar features and integral im-
ages computed for all the 30 possible discrete image rota-
tions. There are 22 types of Haar features, chosen appropri-
ately for the task of detecting 1 dimensional structures. The
Haar features are restricted to a window of size Wx × Wy

(see Table 2) centered around the segment sample. There
are about 100,000 features for this level.

The positive samples for the segment detector are seg-
ments on the visible guidewire (shown in yellow in Figure
3). The negative samples are chosen to be at distance at



least Dneg from the annotation. This way we obtain about
166k positives and 3.6 million negatives.

The detector is a PBT with five levels, of which the first
three are enforced as cascade. In Figure 4 is shown the out-
put of the segment detector.

In [4], the authors also use PBT and different types of
features including Haar features to detect edges and ridges.
The difference is that they did not align the edge orienta-
tions, and therefore the learning is much harder, the PBT is
much larger and prone to overfitting.

We performed a comparative evaluation of our learning
based ridge detection method and detection by Steerable
Filters [5], tuned for guidewire detection. The results are
summarized in Table 1. The error measures are described
in section 5.

Detection Method Missed Detection False Detection
Steerable filters 0.11 0.90
Learning based 0.07 0.86

Table 1. Comparison of ridge detection using Steerable Filters and
our learning based approach.

It is clear that our learning based approach gives much
smaller missed and false detections than the Steerable Fil-
ters. This is because the guidewire appearance is more com-
plex than the ridge model in [5].

3.2. Hierarchical Curve Model for Shape and Ap-
pearance

The Curve Model is designed to handle increasingly
longer curves which can ultimately contain the whole
guidewire. The curve shape is controlled by a number
of segments, obtained from the Segment Detector 3.1, as
shown in Figure 5. This was called discrete trace in [13]
and can be considered an assembly of parts [3], but without
an additive total cost.

Because the guidewire can have a wide range of lengths,
the number of control segments is not fixed and we train
specific models for each such number.

Figure 5. The Curve Model is controlled by a number of segments
from the first level of detection.

To obtain a balance between the degree of generality ob-
tained using descriptive models (Markov Random Fields)
and the capacity to adequately constrain the shape space
by generative models (PCA), we model the curve shape
C(s1, ..., sn) deterministically from the control segments
s1, ..., sn as described in 3.2.1 and we verify the obtained
curve using a discriminating model based on shape and ap-
pearance described in 3.2.3.

The Curve Detection algorithm starts by constructing 2-
segment curves using the detected segments from the Seg-

ment Detector 3.1 as control points, as described in Sec-
tion 3.2.1. Then for each 2-segment curve, its probability
is computed as in Section 3.2.2. Based on their probabili-
ties, the most promissing 2-segment curves are extended to
3-curves using again segments from Segment Detector 3.1
as control points, and the PCA shape model from Section
3.2.1. For each 3-segment curve, its probability is com-
puted as in Section 3.2.3. The process of extending the
most promisisng curves and computing their probabilities
is repeated for a fixed number of steps.

In a fashion similar to Dynamic Programming, at each
level we keep at most one curve between any given pair of
line segments. This simplification largely limits the num-
ber of detections at each level and increases computational
efficiency with minimal performance loss.

3.2.1 The PCA curve shape inference

The shape of the 2-segment curves is modeled using a PCA
model. These curves are divided into N − 1 (see Table
2) equally distant segments, and thus approximated with N
equally distant points. The collected samples from the train-
ing annotations are subsampled to N equidistant points.
The samples were aligned by rotating and translating them
so that the endpoints have coordinates (−2(N − 1), 0) and
(2(N−1), 0). Then Principal Component Analysis was per-
formed and an evaluation revealed that 99.9% of the sam-
ples could be well approximated using 4 PCA bases.

Figure 6. The 2-segment PCA curves are constructed determin-
istically from pairs of segments s1, s2 using two control points,
shown in black.

To infer the shape of a 2-segment curve, the PCA co-
efficients are obtained deterministically from the two con-
trol segments s1, s2 as illustrated in Figure 6. The seg-
ments are simultaneously rotated, translated and scaled by
the same transformation R to place their centers at loca-
tions (−2(N −1), 0) and (2(N −1), 0). Then the positions
(x1, y1) and (x2, y2) of the segment points at distance Dseg

from the centers are matched to the intermediate points with
index i = i0 and j = N − i0, as shown in Fig. 6.

Let V x, V y,Mx,My be the x and y-eigenvector matrix
(of size Nx4) and the mean shapes. Denoting by A(k) the
k-th line of matrix A, the PCA coefficients X of the curve
are obtained by solving the linear system:

V x(i)
V y(i)
V x(j)
V y(j)

 X =


x1 −Mx(i)
y1 −My(i)
x2 −Mx(j)
y2 −My(j)

 (3)

Then all the N points of the obtained curve C = M +



V X are moved to the true location by the inverse transfor-
mation R−1, obtaining the curve C(s1, s2).

Figure 7. The curves are extended by concatenation of the 2-
segment PCA curves.

The shape of a n-segment curve C(s1, ..., sn), n ≥
3 is constructed by concatenating the 2-segment curves
C(sk−1, sk) for all k ≤ n, as illustrated in Figure 7.

3.2.2 Trained 2-segment Curve Classifier

After the 2-segment PCA curves have been constructed, a
discriminative joint shape and appearance model is trained
using the PBT.

To gain computational efficiency, we construct the ap-
pearance model using only information from the Segment
Detector level 3.1, instead of going back to the original data.

For the 2-segment curve level, the information from the
Segment Detector comes in the form of a 2 dimensional
map of the computed segment probabilities. Based on this
map, the features for training the PBT classifier are:

1. The PCA parameters of the 2-segment curve.

2. The probability of the best segment at different relative
locations (along and perpendicular) to the curve.

3. The dot product of the orientation of the best segment
at any of the locations above and the curve orientation
at the projection location.

4. The product of the two corresponding quantities from
2 and 3 above.

5. The size of the largest gaps of the thresholded proba-
bility map along the curve, sorted in decreasing order.

Figure 8. Example of the best 1000 2-segment PCA curves.

As one can observe, the feature pool contains features for
both shape and appearance, and uses the probability map

obtained from the Low Level Segment Detector as a con-
densed form of the appearance.

Using these features, we trained a PBT with 5 levels, of
which the first two enforced as cascade, and starting with
10 weak classifiers per node. The positive and negative
samples for training are short PCA curves constructed as
described in 3.2.1. The positives are the curves with max-
imum distance Dpos from annotation, while the negatives
have distance at least Dneg from annotation. This way we
obtained 26,000 positives and 3 million negatives.

We also trained a model in which we added to the feature
pool Haar features at many locations along the curve. We
observed that very few Haar features were picked by the
training algorithm, and that the performance gain was in-
significant. In Figure 8 we show the 1000 2-segment curves
with the highest probability for the left image of Figure 1.

3.2.3 Trained n-segment Curve Classifier

For each 2 < n ≤ nmax, we construct a classifier designed
to model the shape and appearance of n-segment curves.
The classifiers are constructed recursively, the n-segment
curve classifier depending on all the k-segment curve clas-
sifiers with k < n.

Figure 9. Results of hierarchical curve localization for the images
in Figure 1.

For computational efficiency, the n-segment curve clas-
sifier is trained using PBT based on the following features:

1. The features from 3.2.2 of all the n−1 curve segments
from which the curve is composed.

2. The differences cj
i − ck

i , i ∈ {1, ..., 4}, j, k ∈
1, ..., n− 1 between the corresponding PCA parame-
ters of any two curve segments j, k.



3. The probabilities of all the 2, 3, ..., n− 1-segment sub-
curves.

4. Products of probabilities of disjoint subcurves that
when concatenated give the whole curve.

The positives and negatives at each level are obtained by
extending the detection results from the previous level, and
then keeping as positives samples those sufficiently close to
the annotation and as negatives samples those sufficiently
far from annotation.

In Figure 9 we show the curve with the highest probabil-
ity for each of the images in Figure 1.

3.3. Full Guidewire Model

The guidewire model extends the curve model with
two parameters, the position xB , xE of the guidewire
starting and end points on the curve segments C(s1, s2)
and C(sn−1, sn). Thus the guidewire is a curve
G(s1, ..., sn, xB , xE), fully specified by the control seg-
ments s1, ..., sn and the endpoints xB , xE . We train an end-
point detector, using the same technique as in Section 3.1.

Figure 10. The guidewire model enhances the curve model with
a classifier trained to recognize the starting point xB (dot) and
ending point xE (arrow) of the guidewire.

This way we obtain a probability PE(x), trained to rec-
ognize the guidewire endpoints. The whole guidewire prob-
ability is then:

P (G(s1, ..., sn, xB , xE)) = P (C(s1, ..., sn))PE(xB)PE(xE)
(4)

From each level of the curve hierarchy, the curve with high-
est probability is augmented to the guidewire model and the
parameters xB , xE are searched on the first and last curve
segments. The guidewire with the highest probability is re-
ported as the final localization result.

4. Efficient Implementation
There are a few implementation details to make our sys-

tem faster. We present them in this section. In the Low
Level Detector 3.1, we use non-maximal suppression to
keep only 1000 segments as candidate control points.

At all the levels of the Hierarchical Curve Model, we
perform a fast initial screening for potentially good can-
didates for curve construction and extension. The fast
screening is performed using a 3-dimensional probability
model P (s1, s2) = P on(s1, s2)/P off(s1, s2) based on pairs
(s1, s2) of segments obtained from the Low Level Segment
Detector from 3.1. We construct unnormalized histograms

Hon and Hoff where Hon collects the statistics of all seg-
ment pairs on the guidewire or stent and Hoff collects the
statistics of the background. The three dimensions of the
histograms are the distance d between segment centers and
the two angles a1, a2 between the segments’ orientations
and the orientation of the segment connecting the centers.
This is illustrated in Figure 11.

Figure 11. The 3-dimensional histograms measure the distance d
between the segment centers and the two relative angles a1, a2.

Then the marginal probability P (s1, s2) for fast screen-
ing is

P (s1, s2) =
Hon(s1, s2)

Hon(s1, s2) + Hoff(s1, s2)
(5)

In Table 2, we collect the many parameters that are used
at different levels of the algorithm.

Parameter Name Symbol Value
Level 0 window size Wx ×Wy 41× 15

Dist. negatives from annotation Dneg 4
Dist. positives from annotation Dpos 2

Number of PCA intermediary pts. N 17
Distance on segment for PCA Dseg 8
Index for PCA shape inference i0 2

Table 2. Parameters of our algorithm.

5. Results

Figure 12. Illustration of the error measures used for evaluation of
the system’s performance.

We present qualitative and quantitative results of our
method. To present quantitative results, we need an error
measure of the detection result compared to the annotation.
However, we cannot measure the error in terms of detection
rate and false alarm, because it can happen that parts of the
detection result are correct while some other parts are erro-
neous. To measure how much of the wire is correct and how
much is erroneous,we compute two quantities:

1. Missed detection - the percentage of guidewire pixels
(strong or weak) of the annotation that were at distance
at least 3 pixels (0.6mm) from the detection result.



2. False detection - the percentage of the detection result
pixels that were at distance at least 3 pixels (0.6mm)
from the annotation.

These two error measures are illustrated in Figure 12.
Using these error measures we obtained the results sum-

marized in Table 3.

Set (No. sequences) Missed False Detection
Training (38) 0.24 0.12
Unseen (15) 0.17 0.05
Overall, (53) 0.22 0.10

Table 3. Evaluation results on the 38 training sequences and 15
unseen sequences totaling 535 images.

For comparison, Table 4 shows an evaluation using the
same error measures on the result obtained using Steerable
Filters [5].

Set (No. sequences) Missed False Detection
Training (38) 0.22 0.79
Unseen (15) 0.25 0.86
Overall, (53) 0.23 0.81

Table 4. Evaluation results using Steerable Filters.

We see that for approximately the same missed detec-
tion, our method has a considerably smaller false detection.

Qualitative results are shown in Figure 13 and 14. The
average computation time is one second per frame on a
3.4GHz desktop PC with 2Gb of RAM. The software has
good potential for further optimization.

6. Conclusion
In this paper we presented a hierarchical representa-

tional and computational model for the localization of the
guidewire in fluoroscopic images. The hierarchical repre-
sentational model offers advantages in the ability to enforce
strong generative and discriminative priors, which together
with our learning based approach is capable to obtain re-
sults even where the guidewire is invisible in large areas.
The hierarchical computational model based on Marginal
Space Learning allows to quickly discard large parts of the
search space long before going to the full guidewire model,
obtaining great computational speed.

To our knowledge, this is the first system to localize
the whole guidewire and have validation on more than 500
frames. In [2], only the guidewire tip is tracked, a much
more visible and easier to detect and track structure. Other
methods for navigation [9] use a magnetic method for 3D
tracking, with an error of about 6.5mm. Our image based
method has an error of less than 1mm.

In the future, we plan to incorporate the motion co-
herence into our hierarchical framework to obtain an even
more robust system. The main challenge is that parts of

the guidewire can move hundreds of pixels between con-
secutive frames, making motion coherence a hard-to-define
concept.
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Figure 13. Results obtained using our hierarchical model. Left:
original image, right: guidewire localization result. Figure 14. More results obtained using our hierarchical model.

Left: original image, right: guidewire localization result.


