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ABSTRACT
An essential component of any hand gesture recognition sys-
tem is the hand detector and tracker. While a system with a
small vocabulary of sufficiently dissimilar gestures may work
well with approximate estimations of hand locations, more
accurate hand position information is needed for the best
results with a large vocabulary of complex two-handed ges-
tures, such as those found in sign languages. In this paper
we assess the feasibility of using a popular commercial skele-
ton tracking software solution in a large vocabulary gesture
recognition system using an RGB-D gesture dataset. We
also provide a discussion of where improvements in existing
methods utilizing the advantages of depth-sensing technol-
ogy can be made in order to achieve the best possible results
in complex gesture recognition.

Categories and Subject Descriptors
I.2.10 [Vision and Scene Understanding]: 3D/Stereo
Scene Analysis, Motion, Video Analysis;
I.4.8 [Scene Analysis]: Depth Cues, Motion, Time Varying
Imagery, Tracking

General Terms
Experimentation, Measurement

Keywords
gesture recognition, Kinect, hand location, tracking

1. INTRODUCTION
RGB-D technology has applications that extend beyond the
often-referenced Kinect gaming industry and into assistive
technology. Zhang, et al., for example, use a Kinect to detect
falls, which could be useful for home monitoring of elderly
or injured individuals [20]. RGB-D cameras are also use-
ful in gesture recognition since they provide multiple data
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modalities that can be used to interpret the scene. Hand ges-
tures are a convenient form of human-computer interaction
with a broad range of applications in various areas. They
can be used, for example, to give commands to comput-
ers or assistive robots when traditional input methods may
be impractical or entirely unusable. The ability to recognize
gestures can not only enrich one’s computing experience but
potentially his or her life.

Figure 1: Sample depth and color frames from the
beginning, middle, and end of a gesture.

A gesture recognition system such as that used in sign lan-
guage video dictionaries [19, 5] needs a fast, reliable, and ac-
curate hand locator and tracker. To minimize the work that
the user must perform to match a sign or gesture, the sys-
tem should automatically detect and track the hands with-
out user intervention. Some existing systems, such as the
ASL video dictionary system described by Wang, et al. [19],
require several user-performed steps to match a sign. One
of the steps is to provide a bounding box around each hand
in the first frame of the sign to initialize the hand tracker
for the remaining frames. The Kinect offers the potential to



automatically locate and track the user’s hands throughout
the gesture, thus eliminating some steps, and it is with this
motivation that we examine the potential of using a readily
available RGB-D skeleton tracker for use with a vocabulary
comprised of a large number of potentially complex gestures.

Rather than deliberately creating a limited gesture set that
works well with Kinect-based gesture recognition, we wanted
to apply RGB-D technology to an existing difficult vocabu-
lary. Thus, for the testing set in our experiments, we used
the 3D body part detection and gesture recognition dataset
introduced in [4], comprised of Kinect recordings of a large
vocabulary of American Sign Language (ASL) signs. Figure
1 shows example corresponding color and depth frames from
the ASL sign for the adjective clean. At the time of writ-
ing, the dataset consists of a 1,113 sign vocabulary recorded
with two signers, so that there are two examples of each sign.
Eventually, we would like to extend the set to the roughly
3,000 signs found in the Gallaudet Dictionary of American
Sign Language [18] and have three or four signers perform
the set, as each individual performs the signs with some vari-
ation in hand placement, limb angles, and expressiveness of
motion.

With an estimated 500,000 to 2,000,000 users of ASL alone
in the just United States [10, 15], sign languages offer a re-
alistic scenario of human-computer interaction. Instead of
exaggerated movements in a small vocabulary of deliber-
ately dissimilar one-handed gestures, as often comprises the
gesture set in recognition projects, ASL consists of intricate
one-handed and two-handed gestures that form a large ex-
pressive vocabulary, much like a written language. While
this affords the opportunity for a richer interaction expe-
rience with computer systems beyond, for example, simple
commands to an assistive robot to move to the right or left,
it makes recognition more difficult, since so many gestures
can share similar characteristics and since occlusions and
the proximity of the hands to each other and the body can
impede accurate hand tracking.

We use the OpenNI and NiTE development kits from Prime-
sense, LTD to access the Kinect and generate skeleton joint
data [13, 12]. They comprise a popular software platform
for the development of Natural Interaction (NI) applications
and are thus a common choice for gesture driven projects.
This paper assesses how well these particular technologies
perform in recognizing a large vocabulary of gestures.

2. RELATED WORK
There is an abundance of computer vision-based gesture
recognition research employing RGB cameras. Sandjaja et
al. achieve 85.52% accuracy in a Filipino Sign Language
number recognition system but require the user to wear a
multi-colored glove [14] to automate hand and finger loca-
tion and tracking. Our system does not require such mea-
sures, and instead uses depth information from the Kinect
to locate the hands.

Much of the research involves vocabularies of limited size.
Zieren et al. achieve 99.3% accuracy in user-dependent sign
language recognition experiments using a 232 sign vocab-
ulary; the accuracy, however, decreases to 44.1% in user-
independent experiments with a vocabulary of 221 signs

[22]. Similarly, Kadir et al. achieve high accuracy with a
vocabulary of 164 signs, but also use the same signer for the
training and testing sets [8]. In our experiments, we em-
ploy a much larger vocabulary of 1,113 gestures and ensure
user-independence.

Athitsos et al. [3] and Wang et al. [19] use vocabularies
of comparable size to ours, but require the user to provide
hand locations either for each frame or for the first frame to
initialize a hand tracker. We automate this process by using
a Kinect and skeleton tracking algorithms to estimate hand
positions.

There is also a body of research using the Kinect or similar
RGB-D cameras for gesture and sign language recognition,
but these studies also tend to use limited vocabulary size
and gesture complexity. In early Kinect research, Doliotis
et al. reach 95% recognition accuracy in cluttered scenes but
only employ a simple vocabulary of 10 digits drawn in space
with the hand and make the assumption that the hand will
be the closest body part to the camera [6]. This is often not
the case with ASL. More recently, Agarwal and Thakur also
achieve good results using a similarly sized static hand ges-
ture vocabulary, consisting of Chinese Sign Language signs
for digits [1].

Zafrulla et al. conduct a Kinect-based ASL recognition fea-
sibility study in which they recognize 60 distinct, simple
phrases of 3 to 5 signs using a 19 word vocabulary [21]. The
authors conducted both seated and standing tests. They
achieve word and sentence recognition accuracy of 74.48%
and 36.2%, respectively, for seated tests and 73.62% and
36.3% for standing tests. Pedersoli et al. explore real-time
gesture recognition using a vocabulary of 16 relatively sim-
ple one-handed gestures and achieve better than 70% accu-
racy [11]. However, it requires an open palm, forward-facing
orientation for hand segmentation and assumes the hand is
the closest object to the camera for hand pixel clustering to
work.

Several datasets have been created that are useful in ges-
ture recognition research. One RGB dataset is the American
Sign Language Lexicon Video Dataset [2]—a large dataset
that contains annotated recordings of multiple signers from
several different camera views—that is used for training in
our experiments. The ChaLearn gesture dataset is a large
RGB-D dataset of 50,000 hand and arm gestures of vary-
ing complexity [7]. The lack of complete annotations, how-
ever, makes it difficult to use in our research. We have thus
created a Kinect gesture dataset of 1,113 ASL signs, each
recorded by two signers, to be used in our experiments for
testing [4].

3. EXPERIMENTAL METHOD
In our recognition experiments, we extract scale and trans-
lation invariant features and use a similarity measure that
accounts for temporal differences in gestures; all experiments
are performed in a user-independent manner.

3.1 Feature Extraction
To make both the training and test gestures translation and
scale invariant, we express the joint positions in a head-
centric coordinate system using the position of the head in



the first frame as the origin and then scale the signs so that
the diagonal of the face bounding box is equal to 1. This
effectively aligns the orientation of the signs and normal-
izes the distance of the signer to the camera. Each sign is
normalized to 20 frames using linear interpolation on joint
positions as needed.

After the positions of the hands are extracted and expressed
in the new coordinate system and the sign is normalized to
20 frames, a modified version of the trajectory-based feature
vector described in [19] is generated. We do not include hand
appearance in the feature vector since we cannot properly
compare the test set 3D depth video handshapes to those of
the color training videos. We package the following compo-
nents into feature vector Xt for each frame t of sign video
X.

1. Ld(X, t) and Lnd(X, t): The pixel position of the dom-
inant and non-dominant hands, respectively, in frame
t of sign video X

2. Lδ(X, t) = Ld(X, t)−Lnd(X, t): The dominant hand’s
position relative to the non-dominant hand.

3. Od(X, t) and Ond(X, t): The direction of motion from
frame t − 1 to frame t + 1 for the dominant and non-
dominant hands, respectively, expressed as unit vec-
tors.

4. Oδ(X, t): The direction of motion for Lδ from frame
t− 1 to frame t + 1, expressed as a unit vector.

The dominant hand is the hand that will be moving in signs
for which only one hand moves.

3.2 Similarity Measure
The Dynamic Time Warping (DTW) [9] time series analy-
sis method is useful in gesture recognition and was chosen
to provide a similarity measure between the trajectories of
signs in our experiments. For every sign in the test set, we
use DTW to compare the feature vectors from its frames to
those of each training example, creating a warping path W ,
or alignment between the frames of the query and model.
The cost C of each warping path is the sum of the costs
of matching the aligned frames. We define this local cost
c(Qqi ,Mmi) of matching frame q in query sign Q to frame
m of model sign M as the Euclidean distance between their
feature vectors. Thus, for warping path W of length |W |
aligning query sign Q with model sign M :

C(W,Q,M) =

|W |∑
i=1

c(Qqi ,Mmi), (1)

so that the DTW score D between query Q and model M
is provided by the lowest cost warping path:

DDTW (Q,M) = min
W

C(W,Q,M). (2)

The lowest DTW score of the training examples is taken to
be the score for that sign class.

3.3 Training Set
Due to the lack of publicly available 3D ASL datasets, we
chose to use a standard 2D RGB dataset for training. In the
experiments, we used a 1113 gesture vocabulary training set
to which we matched our smaller subset of RGB-D signs. To
ensure user independence, no videos from the test set signer
appear in any of the training sets.

Three examples each, from different signers, of the 1113 ges-
ture vocabulary were taken from the dataset described in [2]
to be used as training examples. Since the videos are stan-
dard 2D RGB videos and there is no real-world distance
information for the hand and head positions, we used their
pixel locations in our training data.

3.4 Test Set
We selected 606 signs of varying complexity, 400 two-handed
and 206 one-handed, from our 3D dataset recorded with
OpenNI [13] and used the NiTE skeleton tracker [12] to de-
termine the hand positions in each frame and the head po-
sition in the first frame of each sign. As the NiTE tracker
provides positions for joints in a 3D Kinect-centric coordi-
nate system, we used the projections of those positions onto
the 2D depth image plane, so that instead of the real-world
distance measures for the joints, we were using their pixel
coordinates. This allowed for proper comparison with the
pixel coordinates used in the training set. For comparison
to a best possible scenario, we ran the experiments using the
manual annotations of the hand positions in each frame in
addition to the skeleton tracker-generated positions.

4. RESULTS
We first analyzed the accuracy of the hand locations pro-
vided by the skeleton tracker as described in [4]. To do so, we
recorded the Euclidean pixel distance between the centroids
of the manually annotated hand bounding boxes and their
respective pixel positions output by the skeleton tracker in
each frame. Figure 2 shows the percentage of depth video
frames with a maximum Euclidean distance pixel error e.
For example, the right hand in 80% the frames of 2-handed
signs had a error of 27 pixels or less.

Figure 2: Hand location accuracy of the skeleton
tracker using the method of [4].



We then ran the gesture recognition experiments using the
skeleton tracker data and and calculated accuracy as a per-
centage of signs for which the correct sign was ranked in the
top k matches. Figure 3 shows the results. For example,
66% of the two-handed signs ranked in the top 20 matches.

Figure 3: Gesture match accuracy using hand posi-
tions from the skeleton tracker.

We also ran the experiments using the manual annotations
of the hand locations to establish a best-case scenario for
this particular gesture recognition method. Figure 4 shows
that 88% of the same two-handed signs rank in the top 20
matches.

Figure 4: Gesture match accuracy using hand posi-
tions from the manual annotations.

Finally, we provide a comparison of gesture match accuracy
on all signs using the skeleton tracker and manual annota-
tions in figure 5. It is clear that while the skeleton tracker
provides hand position information sufficient to achieve sig-
nificant accuracy in complex gesture recognition, it is far
from accurate enough to approach the best case results of
using manual annotations.

Figure 5: Comparison of gesture match accuracy
using hand positions from the manual annotations
and the skeleton tracker output.

5. DISCUSSION
When we examine the results and take note of the signs
with poor recognition results, two general causes of problems
become apparent: large vocabulary gesture similarity and
skeleton tracker inaccuracy.

5.1 Gesture Similarity
Many gestures, particularly one-handed gestures, share a
similar trajectory, and it can be seen in figures 3 and 4 that
the one-handed signs are matched in the top 10 signs at a
much lower rate than the two-handed gestures. Many of
these signs are stationary gestures, in which the position is
approximately the same across signs and only hand shape
differs. Figure 6 shows frames from 4 such signs.

Figure 6: Examples of sign similarity. The position
is roughly the same, but the hand shape differs. A
skeleton tracker alone is insufficient to distinguish
between these signs.

It is clear that the skeleton tracker alone does not output
enough information to distinguish between the signs, since



it does not estimate the structure or finger configuration of
the hand itself. The incorporation of hand shape or appear-
ance comparison can improve the results, and the use of
RGB video from the Kinect may provide that opportunity.
However, since there is a disparity in the viewpoints of the
depth and RGB cameras due to the physical separation of
the sensors, much like with our own eyes, the two frames are
not aligned, and there is not a one-to-one pixel correspon-
dence between them. The scale portion of this disparity can
easily be seen in the images of figure 1. Registration—the
task of aligning the two frames—is not trivial, and the qual-
ity of alignment tends to vary with depth. Once aligned,
however, one can take advantage of both color and depth
information to improve recognition results by incorporating
hand appearance into the similarity scores.

5.2 Skeleton Tracker Inaccuracies
It is clear that existing skeleton trackers are not designed
for tracking complex and intricate skeletal joint movement.
Joint proximity to the body can cause problems. The cur-
rent depth-based trackers sometimes fail in instances when
the hands and arms come into contact with the body, likely
due to the limited depth resolution of the Kinect. Signs for
which there is no clear separation and obvious distance be-
tween the limbs and the body cause the tracker to lose the
joints.

In our dataset, when the signer lowers her hands between
signs and places her arms at her sides, the tracker often
loses lock of the joints as they blend into the mass of the
body. When she lifts her arms to perform the next sign, the
tracker can take a significant portion of the sign to relocate
the joints. Such is the case in figure 7. The green shows
the centroid of the manually annotated bounding box, while
the red shows the skeleton tracker hand estimate before it
relocated the hand position.

Figure 7: Failure of the skeleton tracker after the
signer’s arms were at her side. The red square is the
tracker hand position estimate. The green square is
the centroid of the hand bounding box.

This may not be an issue in a sign language video dictionary
system when the user can ensure that the tracker is properly
tracking movements before performing the sign.

Gestures in which the arms cross or are oriented toward the
camera can also provide considerable difficulty for the skele-
ton tracker. When arms are oriented along the optical axis
of the camera, much of them is self-occluded, and the tracker
sometimes has difficulty determining arm joint positions. In
the case of crossed arms, the tracker struggles to distinguish-
ing between the arms, the joint position estimates begin to
destabilize, and the tracker loses lock on the joints.

There are also joint estimate stabilization issues between
frames. Even when the skeleton tracker does not lose track of
the joints, the hand position, for example, can jump around
the hand from frame to frame, even in a static gesture in
which the hand does not move. When part of the feature vec-
tor extracted from hand position information includes vari-
ous directions of motion and changes in those directions from
frame to frame, this instability can have a significant effect
on scores and recognition accuracy. Though you can apply a
smoothing factor to the NiTE skeleton tracker, the smooth-
ing can cause the tracker to be slow to react to changes in
motion, thus losing information about joint movement in in-
tricate gestures. Work is clearly needed on the stability of
joint position estimates and the responsiveness of tracking
to movement.

It is evident that the existing trackers are geared more to-
wards whole body pose estimation and do well in recogniz-
ing action poses that use large deliberate movement, such as
kicking, jumping, large arm movements, etc [16]. This makes
sense, as the Kinect was designed to be part of a gaming sys-
tem. Besides these full body poses, the only hand gestures
it was designed to handle are for simple menu navigation.

Of these issues, improvements in joint tracking when arms
and hands are in close proximity to the body or each other
could perhaps prove most fruitful.

6. FUTURE WORK
In order to improve gesture recognition accuracy, new hand
locating and skeleton tracking methods are clearly needed.
Existing trackers provide insufficient hand location accuracy
for such a large vocabulary of complex and often subtly dif-
ferent gestures as a sign language. Our lab continues to work
toward this goal.

The addition of other joint information beyond the hands
and head may also prove useful. With position informa-
tion about the shoulders and elbows, we can ascertain limb
arrangement and orientation that may lead to improved re-
sults.

Furthermore, some trackers only provide single candidates
for joint locations, along with a confidence level. It can be
useful to have a choice of multiple candidates as was shown
in [17]. We are currently exploring methods of providing
multiple joint position hypotheses.

By making use of color information, we can narrow the num-
ber of hand candidates by rejecting those that are not the
color of the signer’s skin. After proper RGB-D calibration,
we can align the depth image to the RGB image and make
use of both data modalities. We are currently assessing a
number of RGB-D calibration methods.



We are also working on integrating hand shape analysis into
our gesture similarity scores. While the current Kinect may
not provide sufficient depth resolution at certain distances
to extract 3D hand shape information, the new generation
of Kinect promises a significantly higher resolution and the
possibility of articulated hand tracking. With proper RGB-
D calibration, however, we can currently make use of tradi-
tional RGB hand shape and appearance methods.

Finally, a promising area of research is recognition in 3D
space, rather than on a 2D image plane. Using 3D fea-
tures and trajectory information can help distinguish be-
tween signs with similar 2D trajectory projections but dis-
tinct 3D real-world trajectories. This will require scale and
spatial orientation normalization and alignment for gestures,
since they may be recorded from different angles and heights.
We are currently performing research in this area.
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