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ABSTRACT
We present our preliminary data analysis towards an automated
assessment system for the Activate Test for Embodied Cognition
(ATEC), a test which measures cognitive skills through physical
activity. More specifically, we present two core ATEC tasks designed
to assess attention, working memory, response inhibition, rhythm
and coordination in children: the Sailor Step and the Ball-Drop-
to-the-Beat task. These tasks are specifically designed to assess
lower and upper body accuracy, response inhibition and rhythm.
Motion data were collected through the Kinect camera. This paper
presents an overview of the assessment tasks, the data collection,
and annotation with a preliminary analysis towards an automated
scoring system through machine learning and computer vision
methods.
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1 INTRODUCTION
Executive functions are high-order cognitive processes involved in
multitasking, timemanagement, attention, planning, inhibition, self-
regulation andmemory. ChildrenwithAttention-Deficit/Hyperactivity
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Disorder (ADHD) exhibit weaknesses in executive functions, specifi-
cally response inhibition, planning, vigilance, and working memory
[Willcutt et al. 2005]. Cognitive impairments in early childhood can
lead to poor academic performance and require proper assessment
and intervention at the appropriate time [McClelland and Cameron
2012]. Such impairments can also affect the individual well into
adulthood. Providing a system for automatic assessment can pro-
vide more opportunities for diagnosis, treatment, and the progress
of cognitive skills.

The NIH toolbox, a standardized test used for cognitive assess-
ment [Zelazo et al. 2013] and other existing computer-based as-
sessments are extensively used to assess executive functions in
children, but they require little body movement and may be less
closely related to daily functioning than assessing cognition in mo-
tion. The Activate Test of Embodied Cognition (ATEC) is an
assessment test designed to measure executive functions in children
through physically and cognitively demanding tasks and provides
measurements for attention, working memory, response inhibi-
tion, self-regulation, rhythm and coordination, as well as motor
speed and balance. The overall goal of our research is to design a
high-fidelity and low-cost automated assessment system which an-
alyzes the movements of the performed tasks and produces reliable
cognitive measures.

In this paper, we present our proposed methods to automatically
administer and assess two core ATEC tasks; the Ball-Drop-to-the-
Beat task and the Sailor Step task. These tasks are designed to assess
upper-body (hands) and lower-body (feet) movements. We describe
the two tasks, as well as the experimental approach towards an
automated scoring system through computer vision and machine
learning methods. Children between the ages of 6-10 were invited
to perform the ATEC assessment tasks in classroom environments.
Video data were annotated and scored by experts for both presented
tasks. Preliminary results for both tasks indicate the efficiency of
our proposed methods towards an automated assessment system
for embodied cognition in children.

2 RELATEDWORK AND MOTIVATION
Physically active behaviors are important in the daily lives of chil-
dren and have implications for fitness, learning, social interactions,
and physical and psychological development [Malina et al. 2016].
Moreover, studies have shown a measurable improvement in cog-
nitive skills and academic performance in children associated with
increased physical fitness [Davis and Cooper 2011; Donnelly and
Lambourne 2011]. These indicate the strong relation between motor
and cognitive development in children and their implications to
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daily functioning [Davis et al. 2011]. While there are existing as-
sessment systems for both motor development [Tieman et al. 2005]
and neurocognitive measures (NIH) [Zelazo et al. 2013], as well as
for assessing emotional and behavioral problems (CBCL) [Achen-
bach et al. 2000] and executive function behaviors at home and at
school (BRIEF) [Stiffman et al. 1984], these are either computer-
based or paper-based in the form of parent/teacher reports and
require no movement. Our proposed embodied cognition assess-
ment system, ATEC, utilizes the advances of computer vision and
machine learning methods to analyze a child’s performance during
a set of physical tasks, specifically designed to extract information
about the child’s cognitive and motor functions and development.

All ATEC tasks involve physical movement. Action recognition
methods use image or body key-point data to model the spatial
and temporal features of each class-action [Ali and Taylor 2018;
Devanne et al. 2014; Li et al. 2018]. Thus, they are the most applica-
ble to our solution. Action recognition often involves classifying
high-level events with more variation between classes [Kuehne
et al. 2011; Marszałek et al. 2009; Soomro et al. 2012]. [Zhang et al.
2016] report that many image-based action recognition data sets
feature low variability amongst actions. Although each individual
ATEC task must be performed in a specific manner, there can be
large variations between each individual’s performance. As such,
our approach must follow other methods and data sets with high
intra-class variance [Forster et al. 2012; Neidle et al. 2012; Piergio-
vanni and Ryoo 2018]. The body key-points are the most salient
high-level features for these tasks. Recent body pose estimation
methods have shown excellent results on benchmarks featuring
multiple persons with varying viewpoints and lighting [Cao et al.
2018; Fang et al. 2017; Pavlakos et al. 2018]. Since our participants
are relatively close to the cameras and are recorded with good
lighting, we are able to get high quality key-point estimates.

We use the DeepGRU [Maghoumi and LaViola Jr 2018] model as
a benchmark as it requires fewer parameters than other recurrent
models. The authors show good performance even with smaller
data sets which is especially important for our current system as we
have recorded our own dataset with a relatively small number of
examples per class. The goal of our work is to develop efficient and
reliable methods for child activity recognition, since detecting and
analyzing child movements is challenging due to high variability
and large amount of random movements.

3 THE ACTIVATE TEST FOR EMBODIED
COGNITION

ATEC consists of 17 physical exercises with different variations and
difficulty levels, designed to provide measurements of executive
and motor function, including sustained attention, self-regulation,
working memory, response inhibition, rhythm, and coordination, as
well asmotor speed and balance. Thesemeasurements are converted
to a final ATEC score which describes the level of development (e.g.,
early, middle, full development).

In this work, we focus on two core ATEC tasks: Sailor Step and
Ball Drop. These exercises were prioritized because of their stronger
association with self-regulation. They are also related to attention,
working memory, response inhibition, and rhythm. The Sailor Step
task includes lower-body activity, where children must remember

instructions and coordinate their feet movements following visual
cues presented during a themed video clip. Ball-Drop-to-the-Beat
includes upper body activity which requires children to pass a ball
from one hand to another following the presented rules.

3.1 Ball-Drop-to-the-Beat
Ball-Drop-to-the-Beat is a core ATEC task designed to assess both
audio and visual cue processing while performing upper-body
movements. The child is required to pass a ball from one hand
to another, following audio and visual instructions. The task mod-
ifies the rules of the Red-Light/Green-Light game in which the
participants are required to perform certain movements while they
hold a ball. Based on the rules, the child is instructed to pass the ball
for Green-Light, keep the ball still for Red-Light, and move the ball
up and down with the same hand for Yellow-Light. The light colors
are presented both audibly and visually to measure both audio and
visual accuracy and response inhibition. The task is assessed at 60
beats per minute and 100 beats per minute.

During this assessment, the stimuli are presented as pictures of
traffic lights: red, green and yellow. The child is instructed to do the
appropriate movement with the ball when a new picture of a traffic
light appears. Apart from accuracy and response inhibition, exer-
cises also assess rhythm. The ATEC on-screen host, Aliza, presents
the stimuli in a rhythmic manner by saying "green/red/yellow-
light" in two beats; one for the color word and one for the word
"light". The children are instructed to perform the movements in
two beats. For pass and raise commands, the ball is raised on the
first beat and either passed or lowered on the second. To acclimate
the participants to the task, they are instructed to pass the ball eight
times following the rhythm of the spoken instructions (and ONE,
and TWO, ...). Figure 1 visualizes both audio and visual stimuli.

Figure 1: Audiovisual stimuli during the Ball Drop task.
Each segment requires a specific activity (red lines). For the
audio tasks, each segment includes two beats (green line).

3.2 Sailor Step
The Sailor Step task, another core ATEC task, is designed to assess
visual cue processing while performing lower-body movements
with accuracy, rhythm and response inhibition. In order to make
the task compelling and engaging it is presented as a dance exercise,
where the child has to move following the Sailor Step instructional
video. The video shows a predefined sequence of three different
visual stimuli that appear on the screen for a given time: (a) a Red
Crab, (b) a Blue Crab, and (c) a Happy Clam, as shown in figure 2.
Based on the rules, the child needs to move one step to the right
when the Red Crab appears on the screen, one step to the left for
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the Blue Crab, and stand still if the Happy Clam appears. Each (left,
right) step is performed in two beats; one for the first foot and one
for the second one. The task requires the child to (a) remember
the rules, (b) move accurately based on the rules, and (c) move in
rhythm with the song.

The scoring approach considers three different scores: (a) visual
accuracy, (b) visual response inhibition and (c) visual rhythm. It
consists of 13 (blue and red) crabs and 8 Happy Clams, which are
presented during the song in a predefined and fixed order to ensure
test-retest reliability. The visual accuracy score, acc = [0, 13], is the
amount of correct movements (right or left), following the rules.
Even if the child shows delays in performing the correct movement
(out of rhythm), the step is considered accurate. The response inhi-
bition score, res = [0, 16], measures how a child responds during a
Happy Clam. For this paper, we consider three possible movements
during a Happy Clam: (a) Still: where the child stays completely still,
(d) Half-Still: where movements are detected only during the first
beat (half) of the segment and (c) Not-Still: where movements are
detected during the entire segment. The rhythm score, rhy = [0, 26],
is the amount of beats where the child stayed in rhythm during
movement. Each movement has two beats, one for each foot and
gets: two rhythm points if the child performs both movements
in rhythm (complete), one rhythm point if the child misses the
first beat (incomplete) and zero rhythm points if the child fails to
complete a movement during both beats.

Figure 2: Sailor Step task rules. Children are instructed to
perform a specific movement for each presented stimuli.
Each segment has two beats; one for each foot movement.

4 DATA COLLECTION AND ANNOTATION
In this section, we describe the data collection procedure for the
ATEC administration. Children between the ages of 6-10 were in-
vited to participate to the ATEC assessment, after the required
parent consenting and screening procedure required by the study
protocol. The ATEC administration includes a recording and admin-
istrative interface, which was created for the purposes of stream-
lining assessments with as little distraction and interruption as
possible. The ease of use is paramount as the assessment suite will
be used by both experts and non-experts. Video data is preferred as
sensor-based data collection can be more expensive and distracting,
especially with child participants. TwoMicrosoft Kinect V2 cameras
record a front and side view of the participant. RGB, depth, audio,
and skeletal data are stored. The recording modules are connected
to the Android-based administrative interface which controls the
flow of the assessment. It allows the administrator to select between
all the tasks in the ATEC suite. Figure 3 shows a diagram of the

recording protocol. Each task has an instructional video and one
or more assessment videos, while there are also practice videos to
ensure that the child has understood the rules. An instructional
video gives a brief demonstration on the current exercise and how it
is performed. Selecting an assessment video triggers the recording
modules to activate while Aliza, the on-screen instructor, guides
the children through each task.

Annotation software was developed to enable both computer
science and cognitive experts to visualize and annotate the col-
lected data. The software performs automated segmentation given
the time stamps of the presented stimuli for each task. For each
assessment recording, an expert evaluates the performance against
a set of task-specific criteria. The annotation and scoring guidelines
were designed considering both computer vision and cognitive re-
lated aspects of the task. This expert annotation is then used as the
benchmark for automated approaches based on machine learning
and computer vision methods.

5 AUTOMATED SCORING APPROACH
In this section, we present our experimental procedure and results
towards an automated scoring system for both tasks following the
task rules and scoring guidelines. We highlight the challenges for
each task as well as discuss the limitations of our approaches and
our future steps.

5.1 Ball-Drop: Upper Body Activity
For this task, there are three main events involved: ball pass, no ball
pass and hand raise. The participant is asked to perform one of these
actions when instructions are provided through visual or auditory
cues, as mentioned before. The aim of the automated system is to
detect the actions performed and score them according to the rules.
More specifically, Ball-Drop scores include (a) auditory and visual
accuracy scores, (b) visual and auditory response inhibition scores
and (c) auditory rhythm scores.

5.1.1 Experimental Approach. The complete pipeline to score
the ball drop task consists of multiple parts. Videos are recorded at
the rate of 30 frames per second. The input video is broken down
into image frames which are decoded. As the first step for feature
extraction, we extract the body key-points of the participants. The
body key-points considered for this experiment are wrist points,
elbow points and shoulder points. A Convolutional Neural Network
based approach is used to extract the body key-points [Cao et al.
2018]. The system takes in the decoded image as input of sizew ×h.
The feed forward network predicts 2D confidence maps of the body
joint locations and a set of 2D vector fields of part affinity fields
which is the degree of association between the parts.

With the key-points extracted for every frame in the segment,
more detailed features such as the x-distance, y-distance between
the wrist points, elbow points, wrist and the shoulder points were
extracted. These features were used to detect various events during
the exercise. For every segment, the features were pre-processed
to remove noise. Noise includes any wrong detection of body key-
points, key-points not being detected etc. First, moving average is
computed on the features for every segment followed by applying
a low pass filter to remove the high frequency components caused
by hand jitters and minor movements.
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Figure 3: The ATEC setup includes two Kinect cameras, a large screen and a tablet interface for the administrator. Adminis-
tration takes place in classroom environments. Annotation software was developed to enhance manual scoring and annotate
the collected data, given the task rules and the cognitive measures to be assessed.

Figure 4: Complete pipeline to compute scores for the ball
drop task

A ball pass event occurs when the participant moves the hand
holding the ball towards the other hand, makes the transfer and
moves back to the original position. In such a scenario, the distance
between the wrist points decreases until the transfer happens and
increases again. Similarly, a hand raise event occurs when the par-
ticipant moves the hand holding the ball towards the shoulder of
the hand holding the ball and retreats back to the original position
where the distance between the wrist and the shoulder joint initially
increases and starts to decrease while retreating. A peak is formed
every time such an event occurs.

After processing the segmented features, we attempt to detect
peaks and valleys in the segment. Mathematically, peaks and valleys
represent local maxima and minima. A video segment T which
consists of n image frames, with x being the features for every
image frame, is defined by

T = {(f1,x1), (f2,x2), ..., (fn ,xn )} (1)

Peaks (P) and valleys (V) for a segment are defined by,

P = {(fi ,xi )|(xi−1 < xi > xi+1) ∨ (x1 > x2) ∨ (xn > xn−1)
and
V = {(fi ,xi )|(xi−1 > xi < xi+1) ∨ (x1 < x2) ∨ (xn < xn−1),
∀i = 2, 3, ...n − 1}

(2)
With the above equations, peaks and valleys are detected which

correspond to the respective events. Figure 5 (left) represents a ball
pass event in a video segment. Figure 5 (right) represents the task
being divided into different segments. In this approach, noise in the
signal was detected as a ball pass when there was no pass. Hence, a
threshold on the height of the peak was considered. The height of
the peak is the distance between a peak and a valley in the segment.
We used 998 segments from our dataset for this experiment. 15
percent (144 segments) of the data was used to identify the right

threshold for different events and 85 percent (854 segments) of the
data was used for evaluation. For these evaluations we use data
from 7 subjects performing 10 ball drop related tasks. Each subject
performed the exercises twice, two weeks apart, to determine test-
retest reliability.

Other than the proposed method, we also used two Neural net-
work based classifiers. A 1D Convolutional Neural Network (CNN)
was used where the input dimension for the CNN for each segment
was Nx16 with N representing the time steps. The network con-
sisted of two 1D convolutional layers followed by a fully connected
layer and a softmax output layer. Similarly, a recurrent neural net-
work based approach was also attempted with Gated Recurrent
Units (GRU) as proposed by [Maghoumi and LaViola Jr 2018]. The
input to the system was of dimension N , where N represents the
time steps and F ∈ R25×3.

The neural network and DeepGRU models were trained and
evaluated using sequence annotations for each subject and task.
The sequences were labeled as one of the 3 classes. The models
were trained using k-fold cross validation such that each fold is
tested in a user independent manner. The accuracy from each of
the 7 folds is averaged and reported in table 1.

Figure 5: left: Ball pass event in a video segment. Right: Seg-
mentation of features, given the presented stimuli

Method Overall Accuracy
1D-CNN 0.59
DeepGRU 0.61

Proposed Method 0.78

Table 1: Comparison with other Deep Neural Network based
methods
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Normalized Confusion Matrix

Pass No Pass Hand
Raise

Pass 0.89 0.11 0.00
No Pass 0.22 0.78 0.00

Hand Raise 0.31 0.00 0.69

Table 2: Confusion matrix for the proposed method

5.1.2 Results. Table 1 lists all of the attempted methods. The
proposed method performs highest with 78 percent accuracy. Table
2 represents the confusion matrix of the validation set using the
proposed method. Additionally, we evaluate rhythm for that partic-
ular event. An event is said to be in rhythm if the peak is within
an annotated time frame, determined by task. For a ball pass event,
the peak would occur in the middle of the segment as the hands
are closest together.

5.1.3 Discussion and future work. We observed that the deep
neural network based approach yielded low accuracy when com-
pared to the proposed method. This could be due to insufficient
training data and additionally, in the proposed method, we observed
that the system sometimes classified a no-pass as a pass. On looking
at such samples, the participants initiated a pass, but then retreated
without completing the pass. Similarly, a hand raise was also classi-
fied as ball pass when the participants raised their hand first and
then made a pass. Our current work involves working directly on
the RGB image frames. The lower accuracy of the neural network
methods can be explained by higher intra-class variance that is not
fully captured by our current data set. We suspect that these models
will surpass our proposed method as more subjects are recorded.

5.2 Sailor Step: Lower Body Activity
The purpose of the Sailor Step task is to assess both visual cue
processing and rhythm, based on the performed activity of the
child during each stimuli. As mentioned earlier, there are three
main movements involved in this exercise: moving left, moving
right, staying still. Scoring refers both to accuracy (whichmovement
was performed) and rhythm (when the movement was performed).

5.2.1 Experimental Approach. notes: Each segment includes the
movement performed during a presented stimuli (crab, clam). Fol-
lowing the approach of our preliminarywork [Buchanan et al. 2019],
and considering the nature of the required movements, the joint
coordinates for both feet were extracted from the Kinect skeleton
data. Since the duration is the same for each stimuli, each segment
is represented as a fixed-length vector of the feet joint coordinates.
More specifically, the segment consists of 45 frames, resulting in
a 90-dimensional vector for both feet (left-foot and right-foot). For
both visualization and normalization purposes, the gradient for
each vector was calculated. The annotation software was used to
visualize both video and the gradient plot for each segment to score
and annotate the videos of N = 15 recorded assessments, resulting
in N = 334 annotated segments.

Considering the scoring guidelines and the different stimuli,
the available annotations are [LeftComplete, LeftIncomplete, Right-
Complete, RightIncomplete, Still] given a "crab" segment and [Still,
HalfStill, NotStill] given a Happy Clam segment. An Other label was
also used for random or extraneous movements for future analysis.
Considering the task rules and the different stimuli (clams, crabs),

our experimental approach includes the training of five different
models which predict the following classes:

• M: [LeftComplete, LeftIncomplete, RightComplete, RightIncom-
plete, Still, HalfStill, NotStill]

• M1: [Left, Right, Still], where Left = [LeftComplete, LeftIncom-
plete] and Right = [RightComplete, RightIncomplete]

• M2: [LeftComplete, LeftIncomplete]
• M3: [RightComplete, RightIncomplete]
• M4: [Still, HalfStill, NotStill]

These models were selected considering the presented stimuli
and the scoring guidelines both for accuracy and rhythm. One ap-
proach would be to use a single modelM for all segments (stimuli-
required movement). Another approach, as proposed in our pre-
vious work [Buchanan et al. 2019], is a hierarchical one which
considers the presented stimuli of the segment. Given a red/blue
crab, the system uses model M1 to predict the direction of the
movement (Left, Right, Still). The predicted direction can be used
to score accuracy, compared to the required direction (task rules).
Given a predicted direction, in order to score for rhythm (Complete
= 2, Incomplete = 1, Still = 0), the system uses modelsM2 andM3
for left and right, respectively. Given a Happy Clam segment, the
system uses modelM4 which assigns an accuracy score (Still = 2,
HalfStill = 1, NotStill = 0).

In order to get an insight of the class distributions and evaluate
our classes selection, we applied truncated SVD for dimensionality
reduction to visualize a 2D projection of the datapoints (6). We
observe that there is a much clearer distinction between Right and
Left (complete/incomplete) classes, compared to the Still classes
(Still, Half-Still, Not-Still).

Figure 6: 2D projection of the data using truncated SVD

In order to train and evaluate the proposed models and get an
insight towards improvement, we compared different classifica-
tion and feature extraction approaches. More specifically, we used
K-Nearest Neighbor, Random Forest, Decision Tree and Multi-layer
Perceptron classifiers on two datasets, one with the raw data (gradi-
ent vectors) and one with manually extracted feature vectors. The
extracted features include the statistics [min, max, mean, median,
std] of the whole vector, of each foot, as well as for each half of each
foot segment (two beats), resulting to a set of 35 features. Addi-
tionally, we evaluated our data using a PyTorch implementation of
DeepGRU [Maghoumi and LaViola Jr 2018]. This model was chosen
because of its ability to explicitly model temporal features via a
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recurrent design. Instead of using the raw or processed features as
described above, we opted to use the body joint locations provided
by OpenPose [Cao et al. 2018]. Following [Maghoumi and LaVi-
ola Jr 2018], we augmented the data by applying random scaling,
translation, and gesture path stochastic resampling [Taranta et al.
2016].

5.2.2 Results and Discussion. Table 3 summarizes our results
for the defined models using (a) the gradient data, (b) the extracted
features and (c) the DeepGRU implementation.While all approaches
result to high accuracy scores, most classification approaches fail
to distinguish the classes in model M4, resulting in many false
negatives. This may be due to the imbalanced dataset, since there
are very few samples for Half-Still and Not-Still, compared to Still.
While our manually extracted features and the DeepGRU approach
did not result in improved total accuracy, the feature-based models
showed better results inM4. Different feature extraction approaches
or deep-learning approaches for automatic feature extraction and
classification will be further investigated to face the challenge of
imbalanced data and intra-class variability.

gradient data extracted features OpenPose + DeepGRUmodels KNN DT RF MLP KNN DT RF MLP
M 82.5 85.9 75.3 84.7 81.0 81.3 85.3 84.4 83.7
M1 98.3 96.4 90.1 98.7 97.7 98.0 98.7 97.4 83.1
M2 89.5 92.1 82.9 89.5 88.2 86.8 93.4 90.8 88.7
M3 92.5 92.5 90.8 95.8 88.3 94.2 95.0 93.3 92.9
M4 86.2 86.2 78.5 86.2 90.0 89.2 90.0 86.2 86.2

Table 3: Summary of classification accuracy

6 CONCLUDING REMARKS AND FUTURE
WORK

In this paper, we presented our preliminary results towards an auto-
mated scoring approach for two core tasks of the Activate Test for
Embodied Cognition. We presented the two exercises, Ball-Drop-to-
the-Beat and Sailor Step, designed to assess executive functioning
in children. Our main research goal is to design a fully-automated,
high-fidelity, and low-cost assessment system for embodied cogni-
tion. The purpose of this paper is to compare different approaches
and models for both tasks towards an improved scoring system.

Our ongoing work includes more data collection and improve-
ment of the currentmethods, considering the challenges highlighted
for each task. More detailed analysis is needed considering rhythm
scoring. Further analysis can be used to extract more information
related to performance delays and speed, self-correction, and extra-
neous movements, which will help us identify and model individual
differences in child performance.
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