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ABSTRACT
In sign languages, a periodic sign is one that contains re-
peated movements. Dynamic Time Warping (DTW) is of-
ten used in sign language recognition to generate a frame
alignment between two input signs that provides a measure
of their similarity. Alignments provided by DTW may not
be meaningful when the input contains periodic signs, es-
pecially when the number of periods di↵ers between inputs.
Additionally, the number of periods may change between in-
dividual signers and signs. Little work has been done to ad-
dress the problem of recognizing periodic signs in the context
of DTW. This work evaluates two DTW-based approaches.
The first uses a newly defined periodic warping path. The
second uses manual annotations to truncate periodic input
to contain no more than two periods. These two methods
are compared against a standard implementation of DTW.
Recognition accuracy and quality of alignment are analyzed.
The results motivate a need for further research in periodic
sign language recognition.

CCS Concepts
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and understanding; Matching;

Keywords
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1. INTRODUCTION
Sign Language Recognition (SLR) is the task of recogniz-

ing the sign or signs in a given video sequence. The input
sequence is typically a video of a user performing a sign.
This work focuses on isolated sign language recognition, in
which the input is assumed to be a single sign. An applica-
tion of this would be an ASL-to-English dictionary system
such as the one described in [18].
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Figure 1: Alignment of two similar synthetic exam-

ples with di↵ering amounts of periodicity. The input

sign (top) has an additional period. The red lines

are the points of the resulting warping path.

Many of the signs in American Sign Language consist of
a single motion and do not include repeated movements.
However, there are a significant number of signs that are
periodic in nature. A periodic sign includes at least one re-
peated movement. The inclusion of an additional movement
can change the meaning of a sign from its verb form to the
related noun. In many cases, a single movement indicates
the verb, whereas an additional repeated movement results
in the noun. Examples of this include CHAIR/SIT, AIR-
PLANE/FLY, and NEWSPAPER/PRINT [16]. There are
also certain signs that add repeated movements to indicate
the switch from singular to plural [16]. In some cases, the
end of a sign movement can be repeated to provide empha-
sis. Additionally, the number of periods contained in a sign
can vary among signers due to personal signing preference.
Figure 3 shows an example of a signer repeating the original
motion three additional times. In these cases, the repeated
movements do not change the meaning of the sign.

Due to fiscal and time constraints, large vocabulary sign
language datasets often contain few examples per sign and
are thus not well suited for probabilistic or parameterized
methods, which require larger amounts of training data.
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Figure 2: Meaningful alignment of two similar syn-

thetic examples with di↵ering amounts of periodic-

ity. The input sign (top) has an additional period.

This warping path is able to revisit the start of the

periodic motion (index 10).

Previous work has focused on the use of DTW [8] for measur-
ing the similarity between two signs. It has shown promising
performance for isolated sign language recognition, using as
few as one training example per sign class [18].

In DTW, the measure of similarity is based directly on
the cost of the frame alignment. When comparing two signs
this way, the resulting alignments are only meaningful when
the inputs contain the same number of periods. Even with
frame length normalization, two inputs that represent the
same sign could produce a high alignment cost if they di↵er
in the number of repeated movements.

Figure 1 shows an alignment resulting from two similar
synthetic examples with the input example having one ad-
ditional period. The blue lines are the 1D time signals. The
red lines between the two signals indicate the mapping be-
tween individual data points as defined by the warping path.
Note that the input (top) subsequence (indices 4 to 12) is
aligned to a single point (index 5) in the ground truth (bot-
tom) sample. For sign language recognition, this alignment
would indicate that the two signs are technically dissimi-
lar even if they are semantically the same. Intuitively, an
alignment that matches each period in the input to a similar
motion in the ground truth is desired. Figure 2 shows an
example of such an alignment.

Two methods based on DTW are evaluated for periodic
sign language recognition. The first approach uses a newly
defined periodic warping path which allows DTW to produce
meaningful alignments between periodic sequences with dif-
ferent numbers of periods. The second approach truncates
the input sign so that the redundant periodic motion is not
evaluated. Both of these approaches assume that the start
of the periodic sequences of a training sign is known in ad-
vance. Truncated DTW additionally requires that the start
of the periodic sequence of the test sign is known. They
can provide more meaningful alignments in cases of periodic
inputs. These changes do not adversely a↵ect the runtime.

The recognition accuracy and quality of alignments of the
new methods are evaluated using real sign language data.

The results show a small improvement in recognition accu-
racy over standard DTW, and motivate a need for further
research of periodic sign language recognition and automatic
periodicity detection methods.

2. RELATED WORK
Many methods have been applied to the task of Sign Lan-

guage Recognition. Probabilistic graphical methods such as
Hidden Markov Models (HMM) [6, 13, 15, 17] and, by exten-
sion, Conditional Random Fields (CRF) [19, 7] have been
the most popular. Most of these approaches use an HMM in
a Bakis or left-right structure. These structures do not al-
low transitions to previous states and thus do not explicitly
model periodicity.

Machine Learning methods have also been applied. Fang
and Gao use a Recurrent Neural Network (RNN) as a seg-
ment detector for the task of continuous SLR [4]. Ong et al.
use Sequential Patterns (SP) which provide spatio-temporal
feature selection in an e�cient tree-based classifier [3]. The
drawback to using statistical or machine learning methods
is their dependence on larger datasets.

The recent popularity of Deep Learning has motivated
work in SLR. In [11], Pigou et al. employ a Convolutional
Neural Network (CNN) as a feature extractor. The feature
vectors output by the CNN are used as input for a neural
network based classifier. Koller et al. embed the discrimi-
native power of a CNN into an HMM framework [6]. In this
work, the CNN is used to model the emission probability of
an HMM.

DTW is an exemplar-based approach that is useful in sit-
uations where there is not enough data to train a model. It
has been successfully applied in SLR as both a classifier [14,
18] and as a distance measure for extracting the most sim-
ilar segment between multiple sign sentences [9]. The work
presented in this paper evaluates the e↵ect of periodicity in
a DTW-based SLR system. We refer the reader to a survey
by Cooper et al. for more information on SLR [2].

Previous works have evaluated periodicity. He et al. use
HMMs for the task of periodic activity recognition [5]. The
structure includes a transition from the last state of the
HMM to the beginning. Ruiz et al. show that RNNs can
replicate a time varying periodic signal [12]. The work pre-
sented in this paper is motivated by that of an earlier study
of periodic SLR [10]. A search of the relevant literature pro-
duced no other studies of periodicity in the context of sign
language recognition.

3. METHODS
The aim of this work is to evaluate the recognition of peri-

odic signs using DTW as well as provide a way of improving
that performance. In this section, we describe the meth-
ods used to evaluate periodic sign data. In section 3.1, the
standard definition of a warping path is stated as is used
by DTW. Standard DTW is used as the baseline method
in our experiments. Section 3.2 defines a periodic warping
path which can be used by DTW in order to provide higher
quality alignments when comparing signs with di↵erent pe-
riodicity. In section 3.3, we utilize manual annotations of
periodic signs to remove excess periodic movements before
applying standard DTW.
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x4

(a) The first signer repeats the periodic motion 4 times.

x2

(b) The second signer repeats the periodic motion only 2
times.
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(c) 2D plot of dominant hand movement along x-axis over
time for the first signer.
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(d) 2D plot of dominant hand movement along x-axis over
time for the second signer.

Figure 3: Two di↵erent signers performing the sign ’calculus’. The number of additional periods varies

between the signers. The horizontal location in the plot is relative to the signer’s face. The period (blue)

and recovery (magenta) arrows represent the motion of the dominant hand along the horizontal axis.

3.1 Dynamic Time Warping
The speed at which a sign is performed can vary between

users. DTW produces a warping path which serves as an
alignment between the inputs in the time dimension. The
cost of aligning two inputs using DTW provides a reliable
similarity measure which is useful for classification tasks.

Following the description and notation from [8], given two
sign inputs X = (x1, x2, . . . , xN ) and Y = (y1, y2, . . . , yM ),
DTW computes a warping path W = (w1, . . . , wL) of length
L where wl = (nl,ml) refers to the mapping from frame Xnl

to frame Yml . In other words, W provides an alignment
between X and Y . The warping path must satisfy the fol-
lowing three constraints: boundary, monotonicity, and step
size. The boundary constraint ensures that the first and
last frames of X are aligned to the first and last frames of
Y . The step size and monotonicity constraints restrict the
warping path from skipping frames or jumping backwards

in time.

boundary: w1 = (1, 1) and wL = (N,M)

monotonicity: n1  n2  · · ·  nL and

m1  m2  · · ·  mL

step size: wl+1 � wl 2 {(1, 0), (0, 1), (1, 1)}
for l 2 [1 : L� 1].

In sign language recognition, the alignment cost provided
by DTW is used for classifying a sign. The cost C(W,X, Y )
of a warping path is defined as the sum of the local costs
corresponding to the alignment of X and Y :

C(W,X, Y ) =
LX

l=1

c(Xnl , Yml) (1)

The local cost c(Xnl , Yml) can be defined as the Euclidean
distance between the feature vectors describing each frame
Xnl and Yml . DTW calculates the overall lowest cost pro-
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vided by all possible warping paths:

DTW (X,Y ) = min
W

C(W,X, Y ) (2)

The cost of the alignment produced by DTW (X,Y ) is then
evaluated for all signs Y 2 Y in the training set. The sign
recognized by the system is the label of the sign Y corre-
sponding to the lowest cost returned by DTW (X,Y ).

3.2 Periodic Warping Path
The standard definition of a warping path provides poor

alignments when comparing two similar signs with di↵ering
periodicity. As a result, the higher cost of alignment may
lead to misclassifications in the sign language recognition
system. If the warping path was allowed to revisit periodic
movements, DTW could better align data points in the test
sign with those that are semantically similar in the training
sign.

Following [10], we loosely define a periodic sign by its
recovery and period movements. The period movement is
defined as the motion required by the signer to gesture the
sign. The recovery movement is the motion of returning
from the end of the period movement back to the beginning
of it. Figure 3 shows two signers performing the sign ’cal-
culus’. The period (blue) and recovery (magenta) motions
along the horizontal axis are overlaid onto the image.

In this work, we define a periodic warping path that allows
DTW to revisit the start of a periodic movement. Let r
be the frame of the start of the recovery motion of a sign.
The periodic warping path W = (w1, . . . , wL) satisfies the
following constraints:

boundary: w1 = (1, 1) and wL = (N,M)

monotonicity: n1  n2  · · ·  nL

step size: wl+1 � wl 2 {(1, 0), (0, 1), (1, 1), (0, r �ml)}
for l 2 [1 : L� 1],ml > r.

Note that the step size constraint is the only real change
between a standard and periodic warping path. The change
in the monotonicity constraint is implied by the step size
constraint. In practice, DTW can now map multiple frames
of the test sign X to that of the recovery start frame in the
training sign Y . No other changes need to be made for DTW
to provide an alignment using the periodic warping path.

Using the recovery frame r, a periodic warping path can
jump back to the beginning of a periodic motion at any point
ml > r. An example of this is shown in Figure 4. There is
no restriction on the number of times DTW can map back
to r.

The looser constraints of a periodic warping path may not
always lead to a correct result. Using this new definition
allows DTW to generate warping paths that were not pos-
sible under the standard definition. However, this can lead
to misclassifications as well. The periodic warping paths are
not a perfect solution to the problem. The periodic subse-
quences are not uniform. Noise from signing, image capture,
and other factors can cause these periodic sequences to vary
with respect to a sign. An example of this is shown in Figure
3.

3.3 DTW with Truncated Input
The final method evaluates the e�cacy of standard DTW

using truncated inputs. Assuming that the system knows
when each period begins in a sign, we truncate each sign
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Figure 4: Visualization of the periodic warping path

as seen in Figure 2. The input aligns to the end of

the ground truth and then jumps back to recovery

frame 10.

after the end of the second period. Obviously signs with
fewer than 3 periods are not a↵ected by this truncation.

4. EXPERIMENTS
The experiments performed in this work compare the ef-

ficacy of the three methods discussed in Section 3. We use
the ASLLVD [1] dataset which includes 1,113 distinct sign
classes. Each sign class has three examples which are per-
formed by a di↵erent user. We focus only on examples that
are periodic in nature and consist of a di↵erent number of
periods between examples. Following [10], we compare signs
that are periodic, pure, and non-circular. A periodic and
pure sign is one that has a similar trajectory path from one
occurrence to the next. A non-circular sign is one that has
no circular motions. Between the two subsets used, there
are 207 signs that are periodic, pure, and non-circular with
a di↵ering number of periods. We use these 207 examples
to build the test set.

The manual periodic annotations are provided by earlier
work on periodic sign language recognition [10]. We define
signs with excess periodic movements as those with more
than two periods.

4.1 Evaluation Protocol
The performance of each method is evaluated based on the

measures of accuracy described in [18]. Given a query sign
X, the measure of performance is the rank R(X) that the
method assigns to the correct result for X. Given an integer
k, we use a Boolean measure of success S(X, k), that is true
i↵ R(X)  k. The success rate S(k) over a test set of queries
is the average success rate S(X, k) over the test set.

4.2 Features and Normalization
Following the description given in [18], we extract location

and orientation features from each frame of a sign video.
The features are derived from the locations of the hands.
For these experiments, we use manual annotations provided
by [10] to minimize the amount of input noise.

Let X be a sign video of length N . Xn denotes the n-th
frame of that video, where n 2 [1 : N ]. Each frame of the
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(a) Input incorrectly matched with sign ’mouth’.
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(b) Input correctly matched. See section 4.3 for details.
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(c) Input correctly matched.

Figure 5: The resulting alignment using sign ’beer’

as input from (a) DTW, (b) DTW with a periodic

warping path, and (c) DTW with truncated inputs.

video provides the following features:

• Ld(Xn) and Lnd(Xn): The (x, y) centroid correspond-
ing respectively to the dominant hand and non-dominant
hand of the signer at frame n.

• L�(Xn): The relative position of the dominant hand
with respect to the non-dominant hand at frame n.
L�(Xn) = Ld(Xn)� Lnd(Xn).

• Od(Xn) and Ond(Xn): The unit vectors representing
the direction of motion from Ld(Xn�1) to Ld(Xn+1)
and from Lnd(Xn�1) to Lnd(Xn+1).

• O�(Xn): The unit vector representing the direction of
motion from L�(Xn�1) to L�(Xn+1).

We do not use hand appearance features as described in [18].
For one-handed signs, Lnd, L�, Ond, and O� are not cal-

culated. Instead, these features are set to 0 for each frame of
the input. All signs are resampled using linear interpolation
to have a length of 20 frames for these experiments. The
hand locations are normalized with respect to the diagonal
of the face bounding box. This normalization is necessary
due to the variation in the size of the person signing and
their distance from the camera.

Each feature di↵ers in their discriminative capabilities.
The range of values is also di↵erent between each one. For
these reasons, a weighted local cost function is used within
DTW. In our implementation, the weighting is done during
feature processing. Given the features defined above, the
local cost function used is as follows:

c(Xnl , Yml) =f1kLd(Xnl)� Ld(Yml)k+
f2kLnd(Xnl)� Lnd(Yml)k+
f3kL�(Xnl)� L�(Yml)k+
f4kOd(Xnl)�Od(Yml)k+
f5kOnd(Xnl)�Ond(Yml)k+
f6kO�(Xnl)�O�(Yml)k.

(3)

In our experiments, the weights fj are optimized using cross-
validation on the training set.

4.3 Alignment Visualization
Besides comparing the overall recognition accuracy of these

methods, it is important to look at the quality of the align-
ment provided in each case. By looking at the resulting
alignment between two sign inputs with a di↵ering number
of periods, we can easily observe how standard DTW is not
well suited for periodic signs. Figure 5 shows the alignments
provided by each of the described methods. In the figure, the
test sample is shown on the top while the training sign is on
the bottom. The red lines linking the two examples indicate
the alignment provided by DTW. Some of the alignments
were removed from the figures for clarity.

In Figure 5b, the green and magenta lines are those that
are mapped as a result of the periodic warping path. Note,
for example, that point 10 in the input (top) example aligns
back to point 8 in the ground truth (bottom) example. This
example shows how the periodic warping path allows for a
meaningful alignment. The period in the input sign from
frame 10 to frame 14 matches the shape in the ground truth
from frame 8 to frame 20. Likewise, the magenta alignment
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Figure 6: Comparison of DTW with a standard

warping path, periodic warping path, and truncated

inputs. The results are cross-validated between the

TB and LB datasets. The x-axis corresponds to val-

ues of K(s).

from input frames 15 to 20 matches the shape of the ground
truth from frame 8 to 20. The black vertical line at frame 8
indicates the recovery start frame r.

5. RESULTS
The results of the accuracy-based experiment described

in section 4 are reported here. We compare standard DTW,
DTW with periodic warping paths, and DTW with trun-
cated inputs.

Figure 6 shows a plot of the top-k accuracy of the three
DTW-based methods. The final accuracies are averaged be-
tween the result of using test samples from TB and training
from LB and vice versa. The percentage of queries for which
the correct sign is in the top 10 results is 55% for standard
DTW, 57% for DTW with periodic alignments, and 64%
using DTW with truncated inputs.

Using periodic warping paths shows a small improvement
over standard DTW in our experiments. Individual com-
parisons exemplify the ability of periodic warping paths to
provide a lower cost alignment. The alignments provided by
this approach match the periodic subsequences in a mean-
ingful way.

The downside to this approach is the ability to provide ad-
ditional warping paths that were not previously possible un-
der the standard definition. A practical result of this would
be a lower cost alignment for signs that are semantically
di↵erent. An example of this is shown in Figure 7.

The results show a stronger case for using truncated in-
puts. In both experiments, the overall results were better
using DTW with truncated inputs than DTW with periodic
warping paths. The first benefit to using truncated inputs is
that the standard definition of a warping path can be used.
These tightened constraints prevent erroneous alignments as
described before. The main benefit of using truncated in-
puts is that the redundant periods are no longer considered
as part of the alignment. The periodic movements signed
are typically not rigid and can vary between periods of the
same sign.
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Figure 7: Two semantically di↵erent signs are

matched using a periodic warping path. The input

sign is ’aunt’ and the ground truth sign is ’history’.

The red and green lines represent the alignment.

The green lines are those that are mapped due to

the periodic warping path.

6. CONCLUSION
We have evaluated and compared three approaches based

on DTW to handling periodic sign data. The first used
a standard definition of a warping path. The second uti-
lized a newly defined periodic warping path. The final used
truncated inputs based on periodic annotations. For each
method, we analyzed two desirable properties: recognition
accuracy and the quality of the resulting alignments.

The results of these experiments show a clear improve-
ment in recognition accuracy when the system can properly
handle periodic inputs. Using periodic warping paths pro-
duced more meaningful alignments which led to a marginal
increase in recognition accuracy in our tests. However, the
relaxed constraints can lead to warping paths that were
not previously possible under the standard definition. This
could lead to new misclassifications in a sign language recog-
nition system. For example, two signs that are semantically
di↵erent could be matched incorrectly. Using truncated in-
puts with standard DTW produced the greatest accuracy
improvement in these experiments.

7. FUTURE WORK
In both the case of periodic warping paths and truncated

inputs, the start of the recovery frames is provided by man-
ual annotation. For periodic warping paths, the start of the
recovery frames only needs to be provided for the training
examples. If we use truncated inputs, the start of the recov-
ery frames also should be known for the test signs. Provid-
ing such manual annotations for large datasets is not always
feasible and motivates the need for an automatic method.
Futhermore, requiring such information to be provided for
test signs makes the user interface more cumbersome. Fu-
ture work will look into detecting the subsequences of a sign
to detect recovery periods in an automatic way. The output
of these detected recovery periods could be used in place of
the manual annotations used in this work.
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