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ABSTRACT
This paper proposes a novel system for assessing physical
exercises specifically designed for cognitive behavior mon-
itoring. The proposed system provides decision support to
experts for helping with early childhood development. Our
work is based on the well-established framework of Head-
Toes-Knees-Shoulders (HTKS) that is known for its suffi-
cient psychometric properties and its ability to assess cog-
nitive dysfunctions. HTKS serves as a useful measure for be-
havioral self-regulation[22]. Our system, CogniLearn, auto-
mates capturing and motion analysis of users performing the
HTKS game and provides detailed evaluations using state-of-
the-art computer vision and deep learning based techniques
for activity recognition and evaluation. The proposed system
is supported by an intuitive and specifically designed user in-
terface that can help human experts to cross-validate and/or
refine their diagnosis. To evaluate our system, we created a
novel dataset, that we made open to the public to encourage
further experimentation. The dataset consists of 15 subjects
performing 4 different variations of the HTKS task and con-
tains in total more than 60,000 RGB frames, of which 4,443
are fully annotated.
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INTRODUCTION
Cognitive impairments in early childhood can lead to poor
academic performance and require proper remedial interven-
tion at the appropriate time [22]. ADHD affects about 6-7%
of children [15, 25] and occurs about three times more fre-
quently in boys than in girls [31]. According to [5, 11, 19]
ADHD is a psychiatric neurodevelopmental disorder that is
very hard to diagnose or tell apart from other disorders. There
are specific symptoms that can be observed in individuals
suffering from the disease including inattention, inability to
follow instructions, distractibility, hyperactivity or acting im-
pulsively [21, 28]. Such cognitive insufficiencies hinder the
development of working memory and can affect school suc-
cess and even have long term effects that can result in low
self-esteem and self-acceptance[8]. As shown in [23], the
traditional game called Head-Toes-Knees-Shoulders (HTKS)
can provide sufficient psychometric observations and can be
used as a measure of behavioral self-regulation. According
to the authors in [23] and their extended research in the task,
HTKS is significantly related to cognitive flexibility, working
memory, and inhibitory control. The game has three sections
with up to four paired behavioral rules: “touch your head”
and “touch your toes;” “touch your shoulders” and “touch
your knees.” Subjects first respond naturally, and then are in-
structed to switch rules by responding in the “opposite” way
(e.g., touch their knees when told to touch their shoulders).
HTKS, along with other similar cognitive assessment meth-
ods are being already practiced in around 300 schools around
the US [35]. Our work aims to provide a computerized infras-
tructure for performing and evaluating the aforementioned as-
sessments. We propose a system that will be responsible for
training, monitoring and building cognitive abilities, which
helps with identifying and overcoming such cognitive impair-
ments. Our framework aims to provide useful performance
measures like accuracy and measure of correctness. We also



aim to provide qualitative and quantitative performance sum-
mary. The ultimate goal is to deliver meaningful information
to cognitive experts and help develop skills in children that
can result in overall improvement of child’s academic perfor-
mance.

To that end, we exploit the demonstrated efficiency of the
HTKS on predicting cognitive behavior and we provide a
prototype user interface for recording and analyzing mo-
tion, when children perform the HTKS in front of a Mi-
crosoft Kinect V2 camera. Our system operates based on
state-of-the-art machine learning techniques on pose estima-
tion from RGB video streams. In particular, we build upon
the deep-learning architecture proposed in [14] and we use
this as a base module for evaluating our task-specific applica-
tion. The selected deep-architecture exploits a Convolutional-
Neural-Network (CNN) and performs pose estimation pro-
viding highly accurate results regarding the relative posi-
tion of human body-joints. We monitor and analyze hand-
position with respect to the body joints of our interest (i.e.
Head,Toes,Knees and Shoulders) and we evaluate if user’s ac-
tion complies with the expected motion (i.e. What body part
did he/she touch, if he/she were asked to touch his/her head?).
To evaluate our system, we capture a novel dataset with 15
subjects performing four different modes of the HTKS game.
As these are our initial experimentation on the task, and ac-
cess to real subjects was not yet feasible, our dataset con-
sists of 15 adult individuals, mainly undergraduate students.
However all subjects had no previous experience on the game
or how their motion would be evaluated, thus avoiding un-
wanted biases. To illustrate results and motion analysis, we
developed a novel user interface that can facilitate therapists
and human experts who monitor the performing subjects and
provide them with the desired measurements.

The rest of the paper is structured as follows: First we present
related work on similar technologies and efforts and we jus-
tify our choices on the technical part. In following sections
we discuss in detail the methodology of our approach, the
experimental architecture, the proposed user interface, and fi-
nally our experiments by describing our data collection pro-
cess and the system accuracy obtained on our dataset. The
paper concludes with the presentation of our overall conclu-
sions and our next experimentation steps on the task.

RELATED WORK
Emerging technologies have significantly influenced several
medical related processes, such as diagnosis, rehabilitation
and treatment. The effect of computer science in the medical
domain is observable not only in the level of human computer
interaction but also on the quality and the quantity of useful
data that a modern system can automatically capture and pro-
vide to the experts as assistive material to the diagnosis.
The implementation of such systems must meet two major
criteria: a) keep the user motivated and b) provide meaningful
and understandable data to the domain experts[24]. Towards
that direction various works have been proposed that try to
access different but similar medical conditions. In [13], the
authors proposed after extended research, that active video
game play (i.e. consoles like Microsoft Kinect or Nitendo

Wii) can promote physical activity and rehabilitation of chil-
dren with Cerebral Palsy. In [18], an interactive game was
developed to assist stroke-patients improve their balance. In
[2], the authors focused on extending the attention span of
children with ADHD by designing a computer software ap-
plication that constantly monitors the users attention state us-
ing an eye-tracker and adapts its user interface for incorpo-
rating multiple stimuli. In [3], the researchers deployed a hu-
manoid robot to teach children who suffer from complex de-
velopmental disabilities, simple coordinated behaviors. The
authors in [32] designed a virtual-reality game for upper-limb
motor-rehabilitation, while in [27] a virtual reality environ-
ment was deployed for the assessment and rehabilitation of
attention deficits in children, and especially ADHD. In [6], a
set of new game designs is presented, that is based on psycho-
logical tests or tasks and aims to monitor or improve ADHD
related symptoms.
The system we propose in this paper fits very well as a com-
ponent to the framework suggested in [33], where the authors
proposed a system that combines two types of feedback to
the therapists (one directly from the user and one automati-
cally generated by a computer vision-based mechanism). Our
work is based on the well-established framework of HTKS as
a tool for assessing cognitive dysfunctions [22], while at the
same time employs state-of-the-art vision based techniques
for activity recognition and evaluation. In it is packaged with
a carefully designed UI that is intuitive and motivates both
users (therapists and patients) to interact with. Computation-
wise we exploit the remarkable performance reported on such
tasks by deep-learning approaches. Deep-learning and espe-
cially CNNs have shown very good results in activity recog-
nition tasks [9, 12] compared to traditional approaches based
on shallow classifiers and hand-crafted features [20, 36].
Finally as other similar systems [7, 26, 29, 34] our applica-
tion outputs metrics that are valuable to the experts and can
add significant information to the level of treatment and diag-
nosis. Those metrics are defined in the HTKS protocol and
are mainly related to the number of errors (if the subject per-
formed the expected motion) and the delay (how much time
did the subject require to perform a specific command).

METHODOLOGY
Our primary goal has been to build a novel framework, to au-
tomate capture and assessment of performance of the HTKS
self-regulatory task in order to provide a platform to our users
to monitor and advance participants’ cognitive skills. The pri-
mary purpose of this work is to provide a novel framework
that can serve as a tool for evaluating and assessing physi-
cal activities, which can reveal potential cognitive dysfunc-
tions. In particular, our systems deploys the HTKS frame-
work, which has proven value as a cognitive assessment tool.
More specifically, we provide a sophisticated system that is
easy to use by general users and provides valuable data and
meaningful measures and information that can benefit ad-
vanced users such as therapist and cognitive experts. For the
purpose of this paper, we use the terms ‘users’ and ‘instruc-
tor’ synonymously and the person being observed while per-
forming the HTKS task as the ‘participant’. The proposed
methodology is based on a well-defined, modular and well-



Figure 1: System Architecture

structured framework that consists of a user friendly front-
end and a robust and dynamic back-end and provides out-
comes based on latest computer vision and machine learn-
ing advances. We provide an automized module in our in-
terface to capture RGB data from subjects while performing
self-regulatory tasks according to the HTKS cognitive study
protocol[23]. The interface to capture this data aims to en-
hance and support collaboration between the instructor and
the participant during the study. Visual data is made avail-
able to the instructor to demonstrate the actual and intended
motion and audio instructions are delivered to the participant
to perform the preferred tasks and motion. Evaluations on
this captured data are performed solely on the captured RGB
dataset. The evaluation module of our interface gathers these
information and provides systematic feedback regarding the
assessment of these physical exercises to the human experts.

EXPERIMENTAL ARCHITECTURE
Our experimental setup is based on our framework as de-
scribed above and is shown in Figure 1. We perform evalua-
tion of HTKS motion accuracy over long sequences and pro-
vide performance measures such as whether the performed
movement was consistent with the instructions, the response
time of the participant and the steps where the participant
made the most incorrect movements. The analysis of this mo-
tion is performed in a frame-by-frame manner by recognition
of the HTKS gestures in each RGB frame and then perform-
ing analysis over longer video sequences. For this, first we
perform human body pose estimation and then we apply our
algorithm that classifies each RGB image frame into one of
the four HTKS gestures classes(Head, Shoulders, Knees and
Toes). Detailed description of this recognition and our algo-
rithm is provided in the Physical Activity recognition section.

Physical Activity Recognition
In our approach, we classify each frame separately as belong-
ing to one of the four H,T,K or S classes. We do this in two
steps: 1.) we localize full-body joints co-ordinates and 2.) we
use these co-ordinates to classify frames and assign image-
wise gesture labels.

Full-body Joints Localization
The quality of the second approach depends highly on the
skeleton detection and tracking algorithm. In many cases,
skeleton tracking offered by Kinect provides poor results due
to self-occlusions[37], This is observable in our dataset when
tracking the limbs while the person bends to touch knees or
toes. Some example visualizations of these self-occulusions
during Kinect’s skeleton tracking are shown in Figure 2 and
because of this we decided on following our own way of pose
recognition instead of using Kinect’s skeleton tracking.
RGB data can be more consistent and less noisy than Kinect’s
skeleton tracking data and can work better in different light-
ing conditions and interference. Depth data could also be a
valuable source of information to experiment with which we
have not yet explored but we would like to in our further re-
search. We decided on creating a computer vision based sys-
tem using the RGB data and taking advantage of the latest
technological advances in deep learning to obtain a pose esti-
mator that works well for our problem.
For the joint localization problem on RGB data, we explored
various existing state-of-the-art methods and considered dif-
ferent pose estimator models and decided on using a pose es-
timator called DeeperCut[14]. While some of the other pre-
trained models works well with upper-body pose[12] and use-
ful for certain other applications, our problem requires an ef-
ficient and accurate pose estimator for full-body human joint



localization as well as that could work with multi-person pose
estimation. Using this we track 14 body joint locations LS,
LE, LH, LW, LK, LA,H, N, RS, RE, RH, RW, RK, RA that cor-
respond to body parts ‘left shoulder’, ‘left elbow’, ‘left hand’,
‘left waist’, ‘left knee’, ‘left ankle’, ‘head’, ‘neck’, ‘right
shoulder’, ‘right elbow’, ‘right hand’, ‘right waist’, ‘right
knee’, ‘right ankle’ respectively. We choose to use the pose
estimator model stated above as it is the current state-of-the-
art pose estimator for multi-person pose estimation and also
provides competitive performance on single-person pose es-
timation as demonstrated by their results on popular datasets
for these problems. Here, the pose estimation is performed
by joints extraction using CNN-based body part detectors and
then by further using deep networks to perform conditioning
for these detected body parts pairwise for each image.
It is further beneficial for us to use this model as it is fast
and accurate to aid with robustness of our user interface and
its performance for multi-person pose estimation would be
helpful in our next steps of enhancing our interface for the
different settings that we mentioned before. This pre-trained
model works on recognizing poses of adult participants as
well as children as proven by the results on the popular MPII
human pose[1] dataset for single and multi-person pose esti-
mation which consists of annotated classes of adults as well
as children, for example images in the MPII dataset with ac-
tivity labels “Playing with children”, “Child care”.

Figure 2: Example visualizations of self-occlusions in
Kinect2 skeleton tracking (Left) Vs Vision-based pose es-
timation (Right)

Note that we use this pre-trained deep learning model and
perform experiments using Caffe framework[16] for which
we do not need to supply any training data from our own
dataset. Now that we obtain a pose estimation method to lo-
calize full body joints (top of head, neck, shoulders, elbows,
hands, waist, knees and toes) we formulate our algorithm to
obtain image-wise HTKS gesture labels.

CogniLearn HTKS Recognition Algorithm
The captured RGB data is directly input to the pose tracker
which outputs pixel locations for the 14 body joints. We
use these body joint joint locations obtained to measure the
distance between the hands and each of the the four body

parts of interest (Head, shoulders, knees and toes). To obtain
confidence scores for each of the four gestures (1–Head,
2–Shoulder, 3–Knees and 4–Toes) we follow these steps:

• Calculate r1 and l1 as euclidean distance from right
hand(RH) to head(H) and distance from left hand(LH) to
head(H) respectively.

• Calculate euclidean distances r2, r3, r4 as distances from
right hand(RH) co-ordinate to the three body parts shoul-
der(RS), knee(RK) and toe(RA) respectively. Similarly, cal-
culate euclidean distances l2, l3, l4 as distances from left
hand(LH) co-ordinate to the three body parts shoulder(LS),
knee(LK) and toe(LA) respectively.

• Calculate distances d1, d2, d3 and d4 where each di is av-
erage of ri and li for the corresponding body parts:

• Compute scores z1, z2, z3 and z4 from the distances
(where, x ∈ 1 to 4):

Scores(zx) = 1/dx

• Perform softmax over the scores to obtain probabilities:

σ(l)x =
ezx∑4
x=1 e

zx

In this way we obtain probability for the given frame of the
image to belong to each of the gesture classes H,T,K and S.
The gesture class with the highest P(gesture/frame) σ(l)x is
chosen as the gesture class classified for that frame.

Figure 1 describes this approach and its interaction flow with
the interface. Further, the modularity of our interface would
easily allow replacing the current to a pose estimator with a
better one technological advances in the state-of-arts for this
problem.
The gesture classes obtained from this algorithm are incor-
porated in the calculations for overall scores of instructions
in longer sequences of HTKS steps performed. The details
about calculations of these scores for the steps and sequences
that we record is specified in next sections. Visualizations
of this approach and gesture class obtained through this al-
gorithm are shown in the link: https://www.youtube.com/
watch?v=w63cqZtIeIk&t=14s. Accuracy of our system that
we obtain by using this approach is shown in the system ac-
curacy section of our paper.

COGNILEARN HTKS INTERFACE
Our interface consists of two main components: Recording
and Analysis. The recording module is for use by the instruc-
tor to conduct the HTKS task and collect data. The analy-
sis module is used to observe the data analysis provided by
the system. Both these modules are built following the self-
regulatory task protocol similar to that in [23] established
by cognitive experts and are part of a single program using
Electron: a Node JS framework used for using Node’s pow-
erful webapp tools to develop a standalone app with access
tools normally reserved for the server. The modular approach
of our GUI facilitates ease of using the interface for either

https://www.youtube.com/watch?v=w63cqZtIeIk&t=14s
https://www.youtube.com/watch?v=w63cqZtIeIk&t=14s


Figure 3: CogniLearn GUI Screenshot - Analysis module. a.) Screenshot that shows visualization and playback of
participant’s performance, it also contains prediction, instruction, command and confidence chart, b.) View Score section
displays scores for instructions for the step, c.) View Report generates report of Participant’s performance corresponding
to body parts(H,T,K and S).

or both of these tasks of capturing and analyzing participant
data. The interface is built keeping in mind good HCI prac-
tices to provide better visual features and enable ease of use
to capture and deliver information that would be accessible
and understandable for the user.

Recording Module
This part of the interface is built to be used by the instructor
to capture participant data while they perform self-regulatory
physical exercises from the HTKS task. In the recording
module, the avatar in the middle shows the names currently
corresponding to the body part, this way the instructor can
keep track of current tracking of words in the audio to the
body parts intended in the movement for the step that is cur-
rently recorded. Instructors also have the options to move
between the steps that they desire to record and to cancel or
restart the recording. Audio instructions are provided to the
participant by the system and not by the instructor. These in-
structions convey to the participant which physical exercises
to perform. The sequence displayed above this avatar in Fig-
ure 4 corresponds to the sequence of moves to be made. For
example, 1 corresponds to head, 2 to shoulders, 3 to head, and
4 to toes, as in the first step shown. When play is pressed, in-
structions are given, and the correct sections are highlighted
for the instructor to see.

Timestamped RGB data is collected simultaneously, which
is the primary advantage of using Electron. In our interface,
Electron communicates via a socket with a C# application
enables collection of Kinect data with proper metadata and
timing as provided by the front-end application. Once the
initial step is completed, the system moves to the next step,
which shuffles the body parts: the task switching. Each step
selected on the left corresponds to a different set in which dif-
ferent body parts are swapped, and a different sequence to be
followed. Instructor can move between these steps and allow
recording for all instructions within the step or a subpart of
it. The steps contained in our recording module and the audio
instructions and actual intended motion instruction provided
within those steps is provided in Table-1.

Figure 4: Recording module of HTKS Interface - This
screenshot shows Step-4 which has task switching for
’Toes’ and ’Head’. The comment on top of the screenshot
is just to show the audio instruction given by the system.

Analysis Module
The analysis interface provides front-end visualizations of
predictions obtained from our algorithm that runs at the back-
end. It allows for selection of participant and provides step-
wise as well as consolidated summary of participant perfor-
mance in terms of speed and accuracy of movement. In the
Figure 3(a.) we can see that the frame numbers are shown to
the bottom left of the image, which allows for precise manual
annotation, if needed. Shown to the right are three categories
of text: Spoken, Command, and Prediction. Spoken refers to
the word that is spoken by the system. Command refers to the
part that the participant is intended to move to, when swaps
are accounted for. Prediction refers to what the system thinks
the participant is touching. The graph below this is a predic-
tion confidence visualization as a doughnut chart that shows
the relative certainty for each body part. In the image, knees
has the highest relative certainty in the chart, so ”Knees” is
shown as the prediction above. The scores are given similar
to protocol on paper[23] where 0- incorrect, 1- almost cor-
rect, 2- correct. The evaluation that we perform are based
on timestamps of the image frames captured. The subject is
supposed to perform the instructed gesture in those 3 seconds



Step # Sequence Displayed Audio Instruction (Spoken) ”Touch your - ” Actual Intended Movement (Command)

1. 123434 H,S,K,T,K,T H,S,K,T,K,T
2. 2432123413 S,T,K,S,H,S,K,T,H,K K,T,S,K,H,K,S,T,H,S
3. 4321323423 T,K,S,,H,K,S,K,T,S,H H,K,S,T,K,S,K,H,S,K
4. 1242433132 H,S,T,S,T,K,K,H,K,S H,S,T,S,T,K,K,H,K,S

Table 1: CogniLearn Interface Steps

so based on how long the subject takes to get to the desired
gesture determines the correctness. A demo-video showing
an initial prototype of the proposed UI can be found here:
https://www.youtube.com/watch?v=lkSk1pCzXHM

EXPERIMENTS
For our experiments, we collect data from 15 participants
and perform analysis of participants’ performances, using our
CogniLearn interface. Here we present our algorithm for
score calculations and demonstrate participants’ scores using
this algorithm. We also provide our evaluations measures that
we use to calculate CogniLearn system accuracy and the our
results from these calculations.

Data Collection
Using the CogniLearn interface, we capture data following
steps similar to the well established self-regulatory proto-
col[23] from cognitive experts and provide analysis of this
data to deliver valuable performance measures to our users.
We use our interface for data collection from our participants
while performing the HTKS tasks as instructed by the au-
dio instructions. We collected RGB data from 15 participants
(9 Male and 6 Females) of age group 18 to 30 that we re-
cruited to follow the instructions provided by the interface
and perform the task sequences. All participants were re-
quired to perform all the four steps (see Table 1) that we fol-
low in the recording module of the HTKS interface to the best
of their cognitive abilities. RGB image frames are captured
while the participants perform these steps. They are stored
systematically in our database along with the timestamps for
each frame. Additional timestamps for start and end times of
every audio instruction delivered are stored along with the
image data collected. These start and end timestamps are
useful for analyzing participants’ performance and for score
calculations. During this study and data collection, the anal-
ysis interface provides to the us valuable measures of per-
formances of these participants such as scores for individual
instructions, summarized report for overall performance per
gesture class and visualizations of the steps performed. De-
scription of the participants’ performances from this dataset
for our study can be found in the participant accuracy sec-
tion. Our dataset and necessary annotations can be found at
the provided link: http://vlm1.uta.edu/˜srujana/HTKS/
CogniLearn_HTKS_Dataset.html. This dataset comprises of
over 60,000 frames of RGB data captured for the participants
which creates a substantial dataset for cognitive analysis as
well a baseline to perform gesture recognition for the physi-
cal exercises performed during the HTKS task. We provide
annotated gesture class labels for 4443 of these frames and

our annotation process and experimental details are provided
in the next section that describes our system accuracy.

Score Calculations
We analyze participants performance for each instruction
within steps and provide scores 0 - incorrect, 1 - almost cor-
rect and 2 - correct. For every step, the instructions are given
at an interval of 3 seconds, the recording stops 2 seconds
after the last instruction is provided. For each instruction,
tbegin specifies the start of the instruction. This is the times-
tamp that the audio instruction for this instruction is deliv-
ered and the participant is ready to perform the movement.
tend for each instruction is the timestamp at which the next
audio instruction is delivered. This states that the current in-
struction is complete and next instruction starts. That means
tendi

= tbegini+1
where i is the current instruction and i+1 is

the next instruction. To make up for the time that the partici-
pant takes to reach to the body part we add 30 milliseconds to
each tbegin. The scores for these instructions are calculated
according to the metric as follows:

• All frames are capture with a timestamp associated with
them. We denote the timestamp for each frame as the tf .

• Start time (tbegin) and End time (tend) of each instruction
captured are saved along with participants’ recorded videos
and data and are available for score calculations.

• For number of frames T , with tf in the range from tbegin
to tend, compare the predicted gesture class label with the
instruction provided. Keep a count C as the number of
frames within the instruction range that match with the in-
struction. Instruction score is assigned using the equation
below:

Performance(P ) =
C × 100

T
%

Instruction Score =


1, if P > 30% & P ≤ 60%

2, if P > 60% & P ≤ 100%

0, Otherwise

In our system, the scores range from 0 to 72, as a total of
scores from all four steps shown in Table 1. Max attainable
score for the first step is 12 and max attainable scores for the
steps 2,3 and 4 are 20 for each of these steps. Figure 5 de-
picts scores obtained by the 15 participants from our dataset
measured by the CogniLearn system. The graph here shows
step-wise and cumulative scored obtained by each participant.
This graph also contains confidence intervals (error bars) ac-
cording to our system accuracy. Such visualizations can be

https://www.youtube.com/watch?v=lkSk1pCzXHM
http://vlm1.uta.edu/~srujana/HTKS/CogniLearn_HTKS_Dataset.html
http://vlm1.uta.edu/~srujana/HTKS/CogniLearn_HTKS_Dataset.html


Figure 5: Participants’ Performance.

useful to understand participant performance, for. e.g. in this
case we can see that participants 15 and 8 performed the steps
really well and attained almost the max score whereas partic-
ipant 12 did well in the task with no task switching but lost
most points for the third step which has task switching for
’Head’ and ‘Toes’.

Evaluation Measures
Accuracy for our system is measured in terms of the perfor-
mance attained by our algorithm in successful classification
the four gestures (Head, Shoulder, Knees and Toes) as their
appropriate class. The input to our algorithm are RGB frames
from the participants. The unsupervised learning problem of
classification of gestures for each of these frames is solved
using our computer vision and deep leaning based algorithm
that performs image-wise analysis of these frames and de-
liver confidence scores for the four gesture classes for each
frame. These image-wise predictions need to be compared
with ground truth image gesture classes to obtain the ac-
curacy measure of the performance of our system. To get
these ground truth values we manually annotate of gesture
class labels for the images. We annotated all frames from
Step-1 recordings of all the 15 participants from our col-
lected dataset. Step 1 consists of instructions H,S,K,T,K,T
performed by these participants. Here, first 5 instructions are
captured for 3 seconds each and last instruction is of 2 sec-
onds. All recordings are at a frame rate of approximately 30
fps. These labeled gestures are compared to the predictions
made by the system for each frame within Step-1 of partici-
pants’ videos.
Performance is measured based on data from Step-1 record-
ings for all the 15 participants (9 Male and 6 Female) which
gives us a total of 4,443 image frames. Our algorithm does
not rely on the captured participant data for training and so
all conducted experiments are completely user-independent.

System Observations
While measuring system accuracy we observed a few dif-
ferent cases where the system did not perform well and for
which the performance could be easily improved by minor
changes to the algorithm. One such failure case is demon-
strated in Figure 6(a.). Here, for a human observer it is very
clear that the person is touching their head but the distances
d1 which the distance from hand to head (demoted by ‘a’ in
Figure 8a) and d2 which the distance from hand to shoulders
(demoted by ‘b’ in Figure 8a) are almost the same and thus
in some such cases the system predicts the output as “Shoul-
ders”. This is due to the fact that our joint localization method
outputs joint co-ordinate predictions for the wrist position for
the participant and not for the fingers or the tip of the hand.
Another reason is that the person can be touching some lower
part of the head for this gesture class (Head) during which the
wrist can get closer to the shoulder than to the top of the head
(H). Similarly, we observe there are such offsets when a per-
son touches their toes but the system predicts “Knees” when
the wrist is closer to knees than to toes, but the particiant’s
finger tips are actually closer to the toes. Using these ob-
servations we improve our algorithm by making up for these
offset distances due to wrist localization.
Other failure cases are when people have worn hats and this

occludes their faces and/or other body joints visible in the
RGB images. For these cases the system performs well for
cases of instructions “Head”, “Shoulder” and “Knees” as the
face is visible but occasionally fails to detect correct pose for
the “Toes” position. This can be improved as a future work
by tracking position of the joints across consecutive frames
so when a person bend and the face is no longer visible, the
system should still be able to provide a measure of there the
joints can be. Similarly, this kind of method would help if a



Figure 6: Visualizations of our method - a.) Demonstrates
need for offset as distances of wrist from head(a) and
shoulders(b) are almost similar, b.) Pose estimation fail-
ure for occlusion due to accessory (hat), c.) Correct esti-
mation with person in background and partially cropped
image (Toes not visible), d.) Correct classification of pose
for with accessory when face is visible.

person is occluded or a certain body part in occluded in cer-
tain frames of the captured data.

Algorithmic Improvements
Experiments with our dataset and observations from visual-
ization of our system performance demonstrated an oppor-
tunity for improvement of our algorithm by accounting for
certain offset distances from tip of the hand to wrist. Out-
put from our pose estimator provides us joint localizations
for wrist positions and not for fingers. These offsets need to
be considered while measuring distance of hand to different
body parts. It is necessary to consider this while performing
calculations for most cases of distance measured from hands
for “Head” and “Toes” gesture classes.
We follow an approach similar to [12] where we consider the
offset value according to the face height of a person. This pro-
vides a better estimate of the offset than setting a fixed value
as this offset would be scale invariant. The face height f is
calculated with the help of coordinates that we have avail-
able for ‘top of head - htop’ and ‘neck - n’. We use half of
this face height as the offset value. This obtained offset δ is
then deducted from the distances of hand from head and toes.
The offset needs to be deducted from distances of both the
hands and the HTKS algorithm described previously needs to
be modified in the following way:

δ =
f

2
Where, f = d(htop, n)

• Calculate d1 based on updated r1 and l1 where r1 = r1-δ,
l1 = l1-δ. Similarly, calculate d2 based on updated r2 and
l2 where r2 = r2-δ, l2 = l2-δ.

• Perform calculations for the remaining steps from the Cog-
niLearn HTKS recognition algorithm using these updated
values of d1 and d2.

These improvements help us avoid the common failure cases
stated above which are cause due to localization of wrist po-
sition instead of tip of the hand.

Figure 7: Confusion Matrix for system performance with
the algorithmic improvements

System Accuracy
We measure the accuracy of our system by comparing pre-
dicted gesture classes for the images with the ground truth
gesture class labels for our annotated 4443 image frames.
These include frames from all the 15 participants and the
experiments are completely user-independent. Figures - 7,8
show the confusion matrix for analyzing system accuracy
with and without introducing our algorithmic improvements.
Inclusion of the the improvements in the algorithm gives
overall system accuracy of 92.54% over the 4443 frames
which is a substantial improvement over the system accuracy
obtained from algorithm without improvements which was
85.05%. We observe a substantial improvement for correct
classification of “Head” gesture class which shows that half
of face height works as a good offset value of this gesture
class. This offset value also gave us some improvement over
“Toes” gesture class where the number of correctly classified
frames increased from 667 to 721. As a future work, we can
work on further improving these obtained accuracy values.

Comparison to Alternatives
In building an end-to-end system that we want to build, many
implementation choices need to be made. In order to help
make these choices, we collected a preliminary dataset that
covers all the possible subtasks within the HTKS task. There
are 16 variations that can be recognized within the HTKS task
according to hand movements. These 16 variations are sub-
sets of the HTKS task where each movement begins at one of
the four body parts (H,T,K or S) and ends at one of the four
body parts (H,T,K or S).
We gathered a preliminary dataset (see Figure 9) by recruiting
5 subjects (3 Males and 2 Females) and recording snippets for
the 16 distinct sub-tasks using Microsoft Kinect for Windows
V2. For this initial dataset, we captured multi-modal data of
three different modalities namely RGB, Depth and Skeleton
tracking 2D and 3D co-ordinates. For each sub-task, snippets
were recorded for approximately 5 to 7 seconds at 30 fps for



Figure 8: Confusion Matrix for system performance with-
out the algorithmic improvements

all the three modalities and at three different depth positions
of the participant from the Kinect V2 camera.

Activity recognition for these sub-tasks can be obtained by
different approaches. The alternative approaches that we con-
sidered before deciding on our current approach for our prob-
lem was to perform holistic recognition using a Convolution
Neural Network applied on raw video input to obtain frame-
wise gesture labels. For both these approaches, the current
and the alternative, input data is raw RGB video data and
frame-by-frame analysis of the RGB images of the video is
performed for classification into the following four gesture
classes: 1–Head, 2–Shoulder, 3–Knees and 4–Toes. Recogni-
tion over long sequences can then be performed on the output
from any of these gesture class classifiers by the algorithm
shown for score calculations.
We considered static frames or also using the motion energy
(See Figure 9 optic flow feature) images[4] that could serve
as an addition feature for the alternative approach of using
CNN model. Further, this approach can also be be improved
using Long-Short Term memory(LSTM) in the same manner
as proposed by [10].

Alternative Approach
Note that in our current approach there is no training set
used. We used a pre-trained deep learning based pose esti-
mator to get body part coordinates and then perform classifi-
cation based on distances between the body parts(CogniLearn
HTKS algorithm). The alternative approach that we consid-
ered to solve the gesture classification problem was to treat
it as a supervised learning problem. To perform experiments
according to this we divided our dataset into training, vali-
dation and test sections and annotated them image-wise with
gesture class labels. The architecture we used was the Caf-
feNet[17] network and used the model to perform training
using the Caffe[16] framework. To get better accuracy we
started the network with weights from a model pre-trained on
1.2M image ILSVRC-2012 dataset[30] which is an Imagenet
subset in order to obtain a powerful model and avoid over-

Figure 9: Multi-Modal data for preliminary experiments

fitting. We performed transfer learning and fine-tuned this
model using RGB data from our training set (80% of our ini-
tial data and consists of 2 Males and 1 Female participants)
and obtained accuracy on our initial test data(10% of our ini-
tial dataset and consists of 1 Male and 1 Female participants).
We perform user independent experiments on this dataset and
achieved 79.98% accuracy after training this network for 500
Iterations. This network performance can be improved in sev-
eral different ways such as adding more training data, using
additional modalities like flow images, depth information and
using LSTM as described before. Despite this accuracy ob-
tained, there are certain drawbacks to using this approach to
build our CogniLearn system.
The main drawback of using this approach is that this would
require fine-tuning of our system for all the different settings
in which our system could be used. For example, our sys-
tem could be used with single-person or with multiple people
in frame and for settings for conducting study for different
user groups such as adult, elderly and/or child participants.
The ultimate goal of our work is to obtain a system that is
capable of being deployed in all these different settings and
to be used in various environments such as in schools for as-
sessment of cognitive behavior in children, or to be used in
clinics with adults/children or elderly that need assessment
and enhancement of cognitive abilities, to be used for a sin-
gle participant or for group study that involves multi-person
cognitive assessment. Another drawback of this approach is
that it is a supervised learning problem and requires to label
all the different training data if we decide to train it to learn
all these different settings. This would require us to collect
labeled calibration data for every setting.

CONCLUSIONS
We proposed a system that is responsible for evaluating and
monitoring cognitive abilities of human subjects, based on
the well known framework of Head-Toes-Knees-Shoulders.
HTKS task has demonstrably been used as a cognitive eval-
uation tool for children and young adults in the past. We de-
veloped a system that deploys a deep learning architecture,
analyzes human activity, and provides informative measures



to the experts regarding the performance of the subject on the
task. The proposed framework is supported by a specifically
designed user interface that can help human experts, cross-
validate and/or refine their diagnosis. To evaluate our system,
we created a novel dataset with 15 subjects performing 4 dif-
ferent variations of the HTKS task (in total more than 60,000
frames of which, 4,443 are fully annotated). We illustrate the
accuracy of our method and we show detail results for each
specific task.

Our immediate future plans include three very important
goals. Firstly, we plan to update our dataset with more rep-
resentative data, captured from real children participants in
a more natural environment. Since, deep-learning is well-
known for it’s high invariant levels and also considering the
merits that can be achieved via transfer learning, our expecta-
tions are that environmental and other external factors will not
significantly affect the system accuracy. Secondly, we plan to
focus more on modeling temporal dependencies for recogniz-
ing activity. Temporal modeling may provide knowledge that
can have important impact on the activity evaluation step, as
it may reveal patterns that we are not able to recognize at the
moment. Finally, our far-reaching goal is to enrich our target
exercising tasks, and incorporate more similar cognitive tests
that rely on physical exercising.
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