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Abstract

Drowsiness can put lives of many drivers and workers
in danger. It is important to design practical and easy-to-
deploy real-world systems to detect the onset of drowsiness.
In this paper, we address early drowsiness detection, which
can provide early alerts and offer subjects ample time to
react. We present a large and public real-life dataset1 of
60 subjects, with video segments labeled as alert, low vig-
ilant, or drowsy. This dataset consists of around 30 hours
of video, with contents ranging from subtle signs of drowsi-
ness to more obvious ones. We also benchmark a tempo-
ral model2 for our dataset, which has low computational
and storage demands. The core of our proposed method is
a Hierarchical Multiscale Long Short-Term Memory (HM-
LSTM) network, that is fed by detected blink features in se-
quence. Our experiments demonstrate the relationship be-
tween the sequential blink features and drowsiness. In the
experimental results, our baseline method produces higher
accuracy than human judgment.

1. Introduction
Drowsiness detection is an important problem. Success-

ful solutions have applications in domains such as driv-
ing and workplace. For example, in driving, National
Highway Traffic Safety Administration in the US estimates
that 100,000 police-reported crashes are the direct result
of driver fatigue each year. This results in an estimated
1,550 deaths, 71,000 injuries, and $12.5 billion in mone-
tary losses [4]. To put this into perspective, an estimated 1
in 25 adult drivers report having fallen asleep while driving
in the previous 30 days [31, 32]. In addition, studies show
that, when driving for a long period of time, drivers lose
their self-judgment on how drowsy they are [23], and this
can be one of the reasons that many accidents occur close
to the destination. Research has also shown that sleepiness
can affect workers’ ability to perform their work safely and
efficiently [1, 22]. All these troubling facts motivate the

1Available on: sites.google.com/view/utarldd/home
2Code available on: https://github.com/rezaghoddoosian

Figure 1. Sample frames from the RLDD dataset in the alert (first
row), low vigilant (second row) and drowsy (third row) states.

need for an economical solution that can detect drowsiness
in early stages. It is commonly agreed [29, 20, 18] that
there are three types of sources of information in drowsi-
ness detection: Performance measurements, physiological
measurements, and behavioral measurements.

For instance, in the driving domain, performance mea-
surements focus on steering wheel movements, driving
speed, brake patterns, and lane deviations. An example is
the Attention Assist system by Mercedes Benz [3]. As prac-
tical as these methods can be, such technologies are often-
times reserved for high-end models, as they are too expen-
sive to be accessible to the average consumer. Performance
measurements at workplace can be obtained by testing
workers’ reaction time and short-term memory [22]. Phys-
iological measurements such as heart rate, electrocardio-
gram (ECG), electromyogram (EMG), electroencephalo-
gram (EEG) [16, 28] and electrooculogram (EOG) [28] can
be used to monitor drowsiness. However, such methods are
intrusive and not practical to use in the car or workspace
despite their high accuracy. Wearable hats have been pro-
posed as an alternative for such measurements [2], but they
are also not practical to use for long hours.

Behavioral measurements are obtained from facial
movements and expressions using non-intrusive sensors like
cameras. In Johns’s work [12], blinking parameters are
measured by light-emitting diodes. However, this method
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is sensitive to occlusions, where some object such as a hand
is placed between the light emitting diode and the eyes.

Phone cameras are an accessible and cheap alternative to
the aforementioned methods. One of the goals of this pa-
per is to introduce and investigate an end-to-end processing
pipeline that uses input from phone cameras to detect both
subtle and more clearly expressed signs of drowsiness in
real time. This pipeline is computationally cheap so that it
could ultimately be implemented as a cell phone application
available for the general public.

Previous work in this field mostly focused on detecting
extreme drowsiness with explicit signs such as yawning,
nodding off and prolonged eye closure [19, 20, 25]. How-
ever, for drivers and workers, such explicit signs may not
appear until only moments before an accident. Thus, there
is significant value in detecting drowsiness at an early stage,
to provide more time for appropriate responses. The pro-
posed dataset represents subtle facial signs of drowsiness as
well as the more explicit and easily observable signs, and
thus it is an appropriate dataset for evaluating early drowsi-
ness detection methods.

Our data consists of around 30 hours of RGB videos,
recorded in indoor real-life environments by various cell
phone/web cameras. The frame rates are below 30 fps,
which makes drowsiness detection more challenging, as
blinks are not observed as clearly as in high frame-rate
videos. The videos in the dataset are labeled using three
class labels: alertness, low vigilance, and drowsiness
(Fig.1). The videos have been obtained from 60 partici-
pants. The need for research in early drowsiness detection
is further illustrated by experiments we have conducted,
where we asked twenty individuals to classify videos from
our dataset into the three predefined classes. The average
accuracy of the human observers was under 60%. This
low accuracy indicates the challenging nature of the early
drowsiness detection problem.

In addition to contributing a large and public realistic
drowsiness dataset, we also implement a baseline method
and include quantitative results from that method in the ex-
periments. The proposed method leverages the temporal
information of the video using a Hierarchical Multiscale
LSTM (HM-LSTM) network [7] and voting, to model the
relationship between blinking and state of alertness. The
proposed baseline method produces higher accuracy than
human judgment in our experimental results.

Previous work on drowsiness detection produced results
on datasets that were either private [9] or acted [19, 20].
By “acted” we mean data where subjects were instructed to
simulate drowsiness, compared to “realistic” data, such as
ours, where subjects were indeed drowsy in the correspond-
ing videos. The lack of large, public, and realistic datasets
has been pointed out by researchers in the field [18, 19, 20].

Our work is motivated to some extent by the driving do-

main (i.e., camera angle and distance in our dataset, and the
calibration period in our method as explained in Sec. 4.2).
However, our dataset has not been obtained from driving
and it does not capture some important aspects of driving
such as night lighting and camera vibration due to car mo-
tion. Given these aspects of our dataset, we do not claim
that our dataset and results represent driving conditions. At
the same time, the data and the proposed baseline method
can be useful for researchers targeting other applications
of drowsiness detection, for example in workplace environ-
ments.

The proposed dataset offers significant advantages over
existing public datasets for drowsiness detection, regardless
of whether those existing datasets have been motivated by
the driving domain or not: (a) it is the largest to date public
drowsiness detection dataset, (b) the drowsiness samples are
real drowsiness as opposed to acted drowsiness in [30], and
(c) the data were obtained using different cameras. Each
subject recorded themselves using their cell phone or web
camera, in an indoor real-life environment of their choice.
This is in contrast to existing datasets [30, 16] where record-
ings were made in a lab setting, with the same background,
camera model, and camera position.

Other contributions of this paper can be summarized as
follows: (a) introducing, as a baseline method, an end-to-
end real time drowsiness detection pipeline based on low
frame rates resulting in a higher accuracy than that of human
observers, and (b) combining blinking features with Hier-
archical Multiscale Recurrent Neural Networks to tackle
drowsiness detection using subtle cues. These cues, which
can be easily missed by human observers, are useful for de-
tecting the onset of drowsiness at an early stage, before it
reaches dangerous levels.

2. Related Work
Drowsiness Detection has been studied over several

years. In the rest of this section, a review of the available
datasets and existing methods will be provided.

2.1. Datasets

As pointed out above, there are numerous works in
drowsiness detection, but none of them uses a dataset that
is both public and realistic. As a result, it is difficult to
compare prior methods to each other and to decide what
the state of the art is in this area. Several existing meth-
ods [12, 17, 27, 29, 35] were evaluated on a small number of
subjects without sharing the videos. In some cases [11, 20]
the subjects were instructed to act drowsy, as opposed to
obtaining data from subjects who were really drowsy.

Some datasets [34, 33, 15] have been created for short
and general micro expression detection which are not ap-
plicable specifically for drowsiness detection. The NTHU-
driver drowsiness detection dataset is a public dataset which



Figure 2. The model design and configuration.

contains IR videos of 36 participants while they simulate
driving [30]. However, it is based on subjects pretending
to be drowsy, and it is an open question whether and to
what extent videos of pretended drowsiness are useful train-
ing data for detecting real drowsiness, especially at an early
stage.

The DROZY dataset [16], contains multiple types of
drowsiness-related data including signals such as EEG,
EOG and near-infrared (NIR) images. An advantage of the
DROZY dataset is that drowsiness data are obtained by sub-
jects who are really drowsy, as opposed to pretending to be
drowsy. Compared to the DROZY dataset, our dataset has
three advantages: First, we have a substantially larger num-
ber of subjects (60 as opposed to 14). Second, for each sub-
ject, we have data showing that subject in each of the three
predefined alertness classes, whereas in the DROZY dataset
some subjects are not recorded in all three states. Third, in
DROZY all videos were captured using the same camera
position and background, under controlled lab conditions,
whereas in our dataset each subject used their own cell
phone and a different background. Compared to DROZY,
our dataset also has the important difference that it provides
color video, whereas DROZY offers several other modali-
ties, but only NIR video.

Last but not least, Friedrichs and Yang [9], used 90 hours
of real driving to train and evaluate their method, but their
dataset is private and not available as a benchmark.

2.2. Drowsiness Detection Methods

Features in non-intrusive drowsiness detection by cam-
eras are divided into handcrafted features or features learned
automatically using CNNs. Regarding handcrafted features,
the most informative facial region about drowsiness is the
eyes, and commonly used features are usually related to
blinking behavior. McIntire et al. [17] show how blink fre-
quency and duration normally increase with fatigue by mea-
suring the reaction time and using an eye tracker. Svens-

son [28] has shown that the amplitude of blinks can also
be an important factor. Friedrichs and Yang [9] investigate
many blinking features like eye opening velocity, average
eye closure speed, blink duration, micro sleeps and energy
of blinks as well as head movement information. They re-
port a final classification rate of 82.5% on their own private
dataset, which is noticeably larger than the 65.2% accuracy
that we report in our experiments. However, all the features
in [9] are extracted using the Seeing Machines sensor [5]
that uses not only video information (with the frame rate of
60 fps) but also the speed of the car, GPS information and
head movement signals to detect drowsiness. In contrast, in
our work the data come from a cell phone/web camera.

Recent research examines the effectiveness of Deep
Neural Networks for end-to-end feature extraction and
drowsiness detection, as opposed to the works that use
handcrafted features with conventional classifiers or re-
gressors such as regression and discriminant analysis
(LDA) [27], or fitting a 2D Gaussian with thresholding [12].
The results of the mentioned studies were not validated
based on a large or public dataset.

Park et al. [19] fine-tune three CNNs and apply an SVM
to the combined features of those three networks to classify
each frame into four classes of alert, yawning, nodding and
drowsy with blinking. The model is trained on the NTHU
drowsiness dataset that is based on pretended drowsiness,
and tested on the evaluation portion of NTHU dataset which
includes 20 videos of only four people, resulting in 73%
drowsiness detection accuracy. We should note that the
accuracy we report in our experiment is 65.2%, which is
lower that the 73% accuracy reported in [19]. However, the
method of [19] was evaluated on pretended data, where the
signs of drowsiness tend to be easily visible and even exag-
gerated. Also, the work of Park et al. does not consider
pooling the temporal information in the videos and clas-
sifies each frame independently, thus it can only classify
based on the clear signs of drowsiness.



Bhargava et al. [20] show how a distilled deep network
can be of use for embedded systems. This is relevant to the
baseline method proposed in this paper, which also aims
for low computational requirements. The reported accuracy
in [20] is 89% using three classes (alert, yawning, drowsy),
based on training on patches of eyes and lips. Similar to
Park et al.’s work, Bhargava et al.’s network also classifies
each frame independently, thus not using temporal features.
The dataset they used is private, and based on acted drowsi-
ness, so it is difficult to compare those results to the results
reported in this paper.

3. The Real-Life Drowsiness Dataset (RLDD)
3.1. Overview

The RLDD dataset was created for the task of multi-
stage drowsiness detection, targeting not only extreme and
easily visible cases, but also subtle cases of drowsiness. De-
tection of these subtle cases can be important for detecting
drowsiness at an early stage, so as to activate drowsiness
prevention mechanisms. Our RLDD dataset is the largest to
date realistic drowsiness dataset.

The RLDD dataset consists of around 30 hours of RGB
videos of 60 healthy participants. For each participant we
obtained one video for each of three different classes: alert-
ness, low vigilance, and drowsiness, for a total of 180
videos. Subjects were undergraduate or graduate students
and staff members who took part voluntarily or upon receiv-
ing extra credit in a course. All participants were over 18
years old. There were 51 men and 9 women, from different
ethnicities (10 Caucasian, 5 non-white Hispanic, 30 Indo-
Aryan and Dravidian, 8 Middle Eastern, and 7 East Asian)
and ages (from 20 to 59 years old with a mean of 25 and
standard deviation of 6). The subjects wore glasses in 21 of
the 180 videos, and had considerable facial hair in 72 out of
the 180 videos. Videos were taken from roughly different
angles in different real-life environments and backgrounds.
Each video was self-recorded by the participant, using their
cell phone or web camera. The frame rate was always less
than 30 fps, which is representative of the frame rate ex-
pected of typical cameras used by the general population.

3.2. Data Collection

In this section we describe how we collected the videos
for the RLDD dataset. Sixty healthy participants took part
in the data collection. After signing the consent form, sub-
jects were instructed to take three videos of themselves by
their phone/web camera (of any model or type) in three dif-
ferent drowsiness states, based on the KSS table [6] (Table
1), for around ten minutes each. The subjects were asked to
upload the videos as well as their corresponding labels on an
online portal provided via a link. Subjects were given am-
ple time (20 days) to produce the three videos. Furthermore,

1- Extremely alert
2- Very alert
3- Alert
4- Rather alert
5- Neither alert nor sleepy
6- Some signs of sleepiness
7- Sleepy, no difficulty remaining awake
8- Sleepy, some effort to keep alert
9- Extremely sleepy, fighting sleep

Table 1. KSS drowsiness scale

they were given the freedom to record the videos at home
or at the university, any time they felt alert, low vigilant
or drowsy, while keeping the camera set up (angle and dis-
tance) roughly the same. All videos were recorded in such
an angle that both eyes were visible, and the camera was
placed within a distance of one arm length from the subject.
These instructions were used to make the videos similar to
videos that would be obtained in a car, by phone placed in
a phone holder on the dash of the car while driving. The
proposed set up was to lay the phone against the display of
their laptop while they are watching or reading something
on their computer. After a participant uploaded the three
videos, we watched the entire videos to verify their authen-
ticity and to make sure that our instructions were followed.
In case of any question, we contacted the participants and
asked them to share more details about the situation under
which they recorded each video. In some cases, we asked
them to redo the recordings and if the videos were clearly
not realistic (people faking drowsiness as opposed to being
drowsy) or off the standard, we simply ignored those videos
for quality reasons. The three classes were explained to the
participants as follows:

1) Alert: One of the first three states highlighted in the
KSS table in Table 1. Subjects were told that being alert
meant they were experiencing no signs of sleepiness.

2) Low Vigilant: As stated in level 6 and 7 of Table 1,
this state corresponds to subtle cases when some signs of
sleepiness appear, or sleepiness is present but no effort to
keep alert is required.

3) Drowsy: This state means that the subject needs to
actively try to not fall asleep (level 8 and 9 in Table 1).

3.3. Content

This dataset consists of 180 RGB videos. Each video is
around ten minutes long, and is labeled as belonging to one
of three classes: alert (labeled as 0), low vigilant (labeled
as 5) and drowsy (labeled as 10). The labels were provided
by the participants themselves, based on their predominant
state while recording each video. Clearly there is a subjec-
tive element in deciding these labels, but we did not find a
good way to remedy that problem, given the absence of any
sensor that could provide an objective measure of alertness.
This type of labeling takes into account and emphasizes the
transition from alertness to drowsiness. Each set of videos



was recorded by a personal cell phone or web camera re-
sulting in various video resolutions and qualities. The 60
subjects were randomly divided into five folds of 12 partic-
ipants, for the purpose of cross validation. The dataset has
a total size of 111.3 Gigabytes.

3.4. Human Judgment Baseline

We conducted a set of experiments to measure human
judgment in multi-stage drowsiness detection. In these ex-
periments, we asked four volunteers per fold (20 volunteers
in total) to watch the unlabeled and muted videos in each
fold and write down a real number between 0 to 10 estimat-
ing the drowsiness degree per video (see Table 1). Before
the experiment, volunteers (8 female and 12 male, 3 un-
dergraduates and 17 graduate students) were shown some
sample videos that illustrated the drowsiness scale. Then,
they were left alone in a room to watch the videos (they
were allowed to rewind back or fast forward the videos at
will) and annotate them. In order to make sure that each
judgment was independent of the other videos of the same
person, volunteers were instructed to annotate one video
of each subject before annotating a second video for any
subject. Results of these experiments are demonstrated in
section 5.3 and compared with the results of our baseline
method. Observers (aged 26.1 ± 2.9 (mean ± SD)) were
from computer science, psychology, nursing, social work
and information systems majors.

4. The Proposed Baseline Method
In this section, we discuss the individual components

of our proposed multi-stage drowsiness detection pipeline.
The blink detection and blink feature extraction are de-
scribed first. Then we discuss how we integrate a Hierarchi-
cal Multiscale LSTM module into our model, how we for-
mulate drowsiness detection initially as a regression prob-
lem, and how we discretize the regression output to obtain
a classification label per video segment. Finally, we discuss
the voting process that is applied on top of classification re-
sults of all segments of a video.

4.1. Blink Detection and Blink Feature Extraction

The motivation behind using blink-related features such
as blink duration, amplitude, and eye opening velocity, was
to capture temporal patterns that appear naturally in human
eyes and might be overlooked by spatial feature detectors
like CNNs (as it is the case for human vision shown in
our experiments). We used dlib’s pre-trained face detec-
tor based on a modification to the standard Histogram of
Oriented Gradients + Linear SVM method for object detec-
tion [8].

We improved the algorithm by Soukupová and Cech [26]
to detect eye blinks, using six facial landmarks per eye de-
scribed in [13] to extract consecutive quick blinks that were

initially missed in Soukupová and Cech’s work. Kazemi
and Sullivan’s [13] facial landmark detector is trained on
an “in-the-wild dataset”, thus it is more robust to vary-
ing illumination, various facial expressions, and moderate
non-frontal head rotations, compared to correlation match-
ing with eye templates or a heuristic horizontal or vertical
image intensity projection [26]. In our experiments, we
noticed that the approach of [26] typically detected con-
secutive blinks as a single blink. This created a problem
for subsequent steps of drowsiness detection, since multiple
consecutive blinks can be a sign of drowsiness. We added
a post-processing step (Blink Retrieval Algorithm), and ap-
plied on top of the output of [26], so as to successfully iden-
tify the multiple blinks which may be present in a single de-
tection produced by [26]. Our post-processing step, while
lengthy to describe, relies on heuristics and does not con-
stitute a research contribution. To allow our results to be
duplicated, we provide the details of that post-processing
step as supplementary material.

The input to the blink detection module is the entire
video (with a length of approximately ten minutes in our
dataset). In a real-world application of drowsiness detec-
tion, where a decision should be made every few minutes,
the input could simply consist of the last few minutes of
video. The output of the blink detection module is a se-
quence of blink events {blink1, ...,blinkK}. Each blinki

is a four-dimensional vector containing four features de-
scribing the blink: duration, amplitude, eye opening veloc-
ity, and frequency. For each blink event blinki, we de-
fined starti, bottomi, and endi as the “start”, “bottom”
and “end” points (frames) in that blink (Fig.3a) explained
in the Blink Retrieval Algorithm. Also, for each frame k,
we denoted:

EAR[k] =
|| ~p2 − ~p6||+ || ~p3 − ~p5||

|| ~p1 − ~p4||
(1)

where ~pi is the 2D location of a facial landmark from the
eye region (Fig.3b). Using this notation, we define four
main scale invariant features that we extract from blinki.
These are the features that we use for our baseline drowsi-
ness detection method:

Durationi = endi − starti + 1 (2)

Amplitudei =
EAR[starti]− 2EAR[bottomi] + EAR[endi]

2
(3)

Eye Opening Velocityi =
EAR[endi]− EAR[bottomi]

endi − bottomi
(4)

Frequencyi = 100× Number of blinks up to blinki

Number of frames up to endi
(5)

4.2. Drowsiness Detection Pipeline
Preprocessing: A big challenge in using blink features

for drowsiness detection is the difference in blinking pattern



(a) (b)

Figure 3. (a) The EAR sequence during an entire blink and the
start, bottom and end points. (b) The eye landmarks to define EAR
for each frame.

across individuals [9, 11, 28, 21], so features should be nor-
malized across subjects if we are going to train the whole
data together at once. In order to tackle this challenge, we
use the first third of the blinks of the alert state to compute
the mean and standard deviation of each feature for each in-
dividual, and then use Equation 6 to normalize the rest of
the alert state blinks as well as the blinks in the other two
states of the same person(m) and feature(n):

Featuren,m =
Featuren,m − µn,m

σn,m
(6)

Here, µn,m and σn,m are the mean and standard deviation
of feature n in the first third of the blinks of the alert state
video for subject m.

We do this normalization for both the training and test
data of all subjects and features. A similar approach has
been taken in [11, 28]. This normalization is a realistic con-
straint: when a driver starts driving a new car or a worker
starts working, the camera can use the first few minutes
(during which the person is expected to be alert) to com-
pute the mean and variance, and calibrate the system. This
calibration can be used for all subsequent trips or sessions.
The detector decides the state of the subject relative to the
statistics collected during the calibration stage. We should
clarify that, in our experiments, the alert state blinks used
for normalization are never used again either for training or
testing. After the per-individual normalization, we perform
a second normalization step, where we normalize each fea-
ture so that, across individuals, the distribution of the fea-
ture has a mean of zero and a variance of one.

Feature Transformation Layer: Instead of defining a
large number of features initially, and then selecting the
most relevant ones[9], we let the network use the four main
blink features and learn to map them to a higher dimen-
sional feature space to minimize the loss function. The goal
of the fully connected layer before the HM-LSTM module
is to take each 4D feature vector at each time step as in-
put and transform it to an L dimensional space with shared
weights (W ∈ R4×L) and biases (b ∈ R1×L) across time
steps. Define T as the number of time steps used for the
HM-LSTM Network and fi ∈ R1×L for each blink at each
time step i , so that:

F = ReLU(BW + b) (7)

where F =
[
fT1 , f

T
2 , ..., f

T
T

]T
, b =

[
bT ,bT , ...,bT

]T
,

b ∈ RT×L and B =
[
blinkT

1 ,blink
T
2 , ...,blink

T
T

]T
.

HM-LSTM Network: Our approach introduces a tem-
poral model to detect drowsiness. The work by[29], using
Hidden Markov Model (HMM), suggests that drowsiness
features follow a pattern over time. Thus, we used an HM-
LSTM network[7] to leverage the temporal pattern in blink-
ing. It is also ambiguous how each blink is related to the
other blinks or how many blinks in succession can affect
each other. To remedy this challenge, we used HM-LSTM
cells to discover the underlying hierarchical structure in a
blink sequence.

Chung et al. [7] introduces a parametrized boundary de-
tector, which outputs a binary value, in each layer of a
stacked RNN. For this boundary detector, positive output
for a layer at a specific time step signifies the end of a seg-
ment corresponding to the latent abstraction level for that
layer. Each cell state is “updated”, “copied” or “flushed”
based on the values of the adjacent boundary detectors. As
a result, HM-LSTM networks tend to learn fine timescales
for low-level layers and coarse timescales for high-level lay-
ers. This dynamic hierarchical analysis allows the network
to consider blinks both in short and long segments, depend-
ing on when the boundary detector is activated for each cell.
For additional details about HM-LSTM, we refer the read-
ers to [7].

The HM-LSTM network takes each row of F as input at
each time step and outputs a hidden state hl ∈ R1×H only
at the last time step for each layer l. H is the number of
hidden states per layer.

Fully Connected Layers: We added a fully connected
layer (with W1,l ∈ RH×L1 as weights and b1,l ∈ R1×L1 as
biases) to the output of each layer l with L1 units to capture
the results of the HM-LSTM network from different hierar-
chical perspectives separately. Define e1l ∈ R1×L1 for each
layer, so that:

e1l = ReLU(hlW1,l + b1,l) (8)

Then, we concatenated e1l ∀ l ∈ {i|i = 1, 2, ..., L} to form
e1 = [e11, e12, ..., e1L], where e1 ∈ R1×(L1.L) and L is the
number of layers.

Similarly, as shown in Fig. 2, e1 is fed to more fully
connected layers (with ReLU as their activation functions)
in FC2,FC3 and FC4, resulting in e4 ∈ R1×(L4), where L4

is the number of units in FC4.
Regression Unit: A single node at the end of this net-

work determines the degree of drowsiness by outputting a
real number from 0 to 10 depending on how alert or drowsy
the input blinks are (Eq.9). This 0 to 10 scale helps the
network to model the natural transition from alertness to
drowsiness unlike the previous works [19, 20], where inputs
were classified directly into different classes discretely.

out = 10× Sigmoid(e4Wo + bo) (9)



Here, Wo ∈ RL4×1 and bo ∈ R1×1 are the regression
parameters, and out ∈ R1×1 is the final regression output.

Discretization and Voting: When someone is drowsy,
it does not mean that all their blinks will necessarily repre-
sent drowsiness. As a result, it is important to classify the
drowsiness level of each video as the most dominant state
predicted from all blink sequences in that video. As the first
step, we used Eq.10 to discretize the regression output to
each of the predefined classes.

class(out) =


Alert, 0.0 ≤ out < 3.3

LowV igilant, 3.3 ≤ out ≤ 6.6
Drowsy, 6.6 < out ≤ 10

(10)

Suppose there are K blinks in video V. Using a sliding win-
dow of length T, each T consecutive blinks form a blink
sequence that is given as input to the network (Eq.7), result-
ing in possibly multiple blink sequences. The most frequent
predicted class from these multiple sequences would be the
final classification result of video V. The positive effect of
voting is shown later in our results.

Loss Function: Our model learns not to penalize pre-
dictions (outi) that are within a certain distance

√
∆ of true

labels (ti) for all N training sequences, and instead penal-
izes less accurate predictions quadratically by their squared
error. As a result, our model is more concerned about classi-
fying each sequence correctly rather than perfect regression.
This attribute helps us to jointly do regression and classifi-
cation by minimizing the following loss function:

loss =

∑N
i=1 max(0, |outi − ti|2 −∆)

N
(11)

5. Experiments
5.1. Evaluation Metrics

We designed four metrics to fully evaluate our model
from different views and at various stages of the pipeline.

Blink Sequence Accuracy (BSA): This metric evaluates
the results before “the voting stage” and after “discretiza-
tion” across all test blink sequences.

Blink Sequence Regression Error (BSRE): We define
BSRE as follows:

BSRE =

∑M
i=1 C

s
i |outi − Si|2

M
(12)

In the above equation, Cs
i is a binary value, equal to 0

if the i-th blink segment has been classified correctly, and
equal to 1 otherwise. Eq.12 penalizes each wrongly classi-
fied blink sequence i by a term quadratic to the distance of
the regressed output to the nearest true state border (Si) de-
fined in Eq.10. Blink sequences classified correctly do not
contribute to the BSRE error.

Video Accuracy (VA): “Video Accuracy” is the main
metric of accuracy, it is equal to the percentage of entire

(a) (b)

Figure 4. The effect of blink sequence size and ∆ to the accuracy
metrics.

videos (not individual video segments) that have been clas-
sified correctly.

Video Regression Error (VRE): VRE is defined as:

V RE =

∑Q
j=1 C

v
j | 1

Kj

∑Kj

i=1(outi,j)− Sj |2

Q
(13)

In the above, Q is the total number of videos in the test
set, and Cv

j is a binary value, equal to 0 if the j-th video
has been classified correctly and equal to 1 otherwise. Kj

is the number of all blink sequences in video j. Correctly
classified videos do not contribute at all to the VRE error.
For a fixed VA, the value of VRE indicates the margin of
error for wrongly classfied videos.

5.2. Implementation

We used one fold of the RLDD dataset as our test set, and
the remaining four folds for training. After repeating this
process for each fold, the results were averaged across the
five folds. For parameter T defined in Section 4.2, which
specifies the number of consecutive blinks provided as in-
put to the network, we used a value of 30 (Fig. 4a). Videos
with less than 30 blinks were zero padded. Blink sequences
were generated by applying this sliding window of 30 blinks
on each video, with a stride of two. If the window size is
too large, the long dependency on previous blinks can sig-
nificantly delay the correct output while transitioning from
one state to the other.

We annotated all sequences with the label of the video
they were taken from. Our model was trained on around
7000 blink sequences (depending on the training fold) us-
ing Adam optimizer [14] with a learning rate of 0.000053,
∆ of 1.253 (Fig.4b), and batch size of 64 for 80 epochs in
all five folds. We also used batch normalization and L2 reg-
ularization with a coefficient (λ) of 0.1. The HM-LSTM
module has four layers with 32 hidden states for each layer.
More details about the architecture is shown in Fig.2.

5.3. Experimental Results

In this section, we evaluate our baseline method with re-
spect to the human judgment benchmark explained in sec-
tion 3.4. Due to lack of a state-of-the-art method on a re-
alistic and public dataset, we compare our baseline method
with two variations of our pipeline to show that the whole



Model Evaluation Metric

BSRE VRE BSA VA

HM-LSTM network 1.90 1.14 54% 65.2%
LSTM network 3.42 2.68 52.8% 61.4%
Fully connected layers 2.85 2.17 52% 57%
Human judgment — 2.01 — 57.8%

Table 2. This table numerically compares the performance of our
model with two simplified versions of the network and human
judgment using four predefined metrics. The above values are the
final averaged values across all test folds.

pipeline performs best with HM-LSTM cells. The first ver-
sion has the same architecture, as our network, with typical
LSTM cells [10] used instead of HM-LSTM cells. The sec-
ond version is a simpler version with the same architecture
after removing the HM-LSTM module, where the input se-
quence is fed to a fully connected multilayer network.

The results of our comparison with these two variations
and the human judgment benchmark are listed in Table 2.
This table shows the final cross validation results of drowsi-
ness detection by the predefined metrics. This compari-
son not only highlights the temporal information in blinks,
but also shows the 4% increase in accuracy we gained af-
ter switching to HM-LSTM from typical LSTM cells. As
indicated by BSRE and VRE metrics in Table 2, the mar-
gin of error for regression is also considerably lower in the
HM-LSTM network compared to the other two. The results
for LSTM and HM-LSTM networks suggest that tempo-
ral models provide better solutions for drowsiness detection
than simple fully connected layers.

As mentioned before, all blink sequences in each video
were labeled the same. However, in reality, not all blinks
represent the same level of drowsiness. This discrepancy
is an important reason that BSA is not high, and “voting”
makes up for that resulting in a higher accuracy in VA.

Fig.5a shows that the middle class (low vigilant) is, as
expected, the hardest to classify, where it is mostly misclas-
sified for “drowsy”. On the other hand, our model classifies
alert and drowsy subjects very confidently with over 80%
accuracy, and rarely misclassifies alertness for drowsiness
or vice versa. This means, that the results are mostly reli-
able in practice.

In addition, our model detects early signs and subtle
cases of drowsiness better than humans in the RLDD dataset
by just analyzing the temporal blinking behavior. The de-
tailed quantitative results for all folds and the final aver-
aged values are listed in Table 3 and Table 2 respectively.
Our drowsiness detection model has approximately 50,000
trainable parameters. Storing those parameters does not oc-
cupy much memory space, and thus the model can be easily
stored on even low-end cell phones. In terms of running
time (at the evaluation stage, after training ), the end-to-end

(a) (b)

Figure 5. Confusion matrices for: (a) our proposed model and (b)
human judgment results (video accuracy).

Case Metric-Fold

A-f1 R-f1 A-f2 R-f2 A-f3 R-f3 A-f4 R-f4 A-f5 R-f5

PM 0.64 2.42 0.61 1.04 0.70 0.58 0.64 0.85 0.67 0.81
HJ 0.62 1.37 0.59 2.3 0.60 1.96 0.53 2.32 0.55 2.07

A-f i: VA for fold i
R-f i: VRE for fold i

Table 3. Results of our Proposed Model (PM) and Human Judg-
ment (HJ) measured by VA and VRE

system processes approximately 35-80 frames per second
( for the frame size range of 568x320 to 1920x1080), on
a Linux workstation with an Intel Xeon CPU E3-1270 V2
processor running at 3.5 GHz, and with 16GB of memory.

6. Conclusions
In this paper, we presented a new and publicly available

real-life drowsiness dataset (RLDD), which, to the best of
our knowledge, is significantly larger than existing datasets,
with almost 30 hours of video. We have also proposed
an end-to-end baseline method using the temporal relation-
ship between blinks for multistage drowsiness detection.
The proposed method has low computational and storage
demands. Our results demonstrated that our method out-
performs human judgment in two designed metrics on the
RLDD dataset.

One possible topic for future work is to add a spatial deep
network to learn other features of drowsiness besides blinks
in the video. In general, moving from handcrafted features
to an end-to-end learning system is an interesting topic, but
the amount of training data that would be necessary is not
clear at this point. Overall, we hope that the proposed pub-
lic dataset will also encourage other researchers to work on
drowsiness detection and produce additional and improved
results, that can be duplicated and compared to each other.
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Blink Retrieval Algorithm
In our experiments, we noticed that the approach of

Soukupová and Cech [26] typically detected consecutive
quick blinks as a single blink. This created a problem for
subsequent steps of drowsiness detection, since multiple
consecutive blinks can typically be a sign of drowsiness.
We added a post-processing step on top of the output of
[26], that successfully identifies the multiple blinks which
may be present in a single detection produced by [26].

According to[26], define EAR, for each frame, as be-
low:

EAR =
|| ~p2 − ~p6||+ || ~p3 − ~p5||

|| ~p1 − ~p4||
(14)

In the above, each ~pi ∈ {pi|i = 1, ..., 6} is the 2D loca-
tion of a facial landmark from the eye region, as illustrated
by Figure 6. In [26], an SVM classifier detects eye blinks
as a pattern of EAR values in a short temporal window of
size 13 depicted in Fig.7. This fixed window size is chosen
based on the rationale that each blink is about 13 frames
long. A single blink takes around 200ms to 400ms on av-
erage [21, 24], which translates to six to twelve frames for
a video recorded at 30fps. Even if 13 frames is a good es-
timate for the length of a blink, this approach would not
handle consecutive quick blinks.

As depicted in Figure 7, each value in this 13 dimen-
sional vector corresponds to the EAR of a frame with the
frame of interest located in the middle. The SVM classi-
fier takes these 13D vectors as input and classifies them as
“open” or “closed” (more specifically referred to the frame
of interest in each input vector). A number of consecutive
“closed” labels represent a blink with the length ofM . Sub-
sequently, the EAR values of these M frames are stored
in x in order, and fed to the “Blink Retrieval Algorithm”,
explained in Alg.1, for post-processing (Fig. 8a). The se-
quence of EAR values for one blink by [26] will be consid-
ered as a candidate for one or more than one blinks.

This algorithm runs in Θ(M) time, whereM is the num-
ber of frames in the video segment that is used as input to
the algorithm. In practice, the algorithm runs in real time. In
addition, Alg.1 sets a definite frame on when a blink starts,
ends or reaches its bottom point based on the extrema of

Figure 6. Six points marking each eye.

Figure 7. Presenting each frame (at t=7) by 13 numbers (EARs)
concatenated from 13 frames as a feature vector.

its EAR signal. For better results, x is passed through a
median/mean filter to clear the noise and then fed to the al-
gorithm.

At step 1, the derivative of x is taken. Then, zero deriva-
tives are modified, at steps 2 and 3, so that those derivatives
have the same sign as the derivative at their previous time
step. This modification helps to find local extrema, as points
where the derivative sign changes (steps 4 to 7). The thresh-
old, defined at step 8, is used to suppress the subtle ups and
downs in x due to noise and not blinks. The extrema in x
are circled in Figure 8b, and labeled (+1 or -1) relative to the
threshold (steps 9 to 11). Each two consecutive extrema are
indicative of a downward or upward movement of eyes in a
blink if those two are connected, so that the link or links be-
tween them pass the threshold line (steps 12 and 13). Fig.8c
highlights these links in red. Finally, each pairing of these
red links corresponds to one blink with start, end and bot-
tom points as depicted in Figure 8d (steps 14 to the end).



(a)

(b)

(c)

(d)

Figure 8. The Blink Retrieval Algorithm steps: (a) x with size
M = 15 as the input for Alg. 1. (b) The indices of circled points
form e, and the set of +1 and -1 labels forms t with P = 8. (c) The
red lines indicate where z values are negative. (d) Two (N = 2)
blinks are retrieved with definite start, end and bottom points.

Algorithm 1 Blink Retrieval Algorithm
Input The initial detected EAR signal x ∈ RM , where

M is the size of the x time series, as a candidate for one or
more blinks and epsilon=0.01

Output N retrieved blinks, N �M

1: ẋ[n]← x[n+ 1]− x[n], ∀ n ∈ {i|i = 0, 1, ...,M − 2}
2: if ẋ[0] = 0 then ẋ[0]← −1× epsilon
3: ẋ[n]← ẋ[n− 1]× epsilon, ∀ n ∈ {i|ẋ[i] = 0∧ i 6= 0}

to avoid zero derivatives for steps 4 and 6
4: c[n]← ẋ[n+ 1]× ẋ[n], ∀ n ∈ {i|i = 0, 1, ...,M − 3}
5: Define e ∈ RP+2, P ≤ M − 2 to store the indices for

the P extrema, the first and the last points in x
6: e[0] ← 0, e[P + 1] ← M − 1, supposing the first and

last points in x are maxima
7: e[k] ← n + 1, ∀ (n ∈ {i|c[i] < 0} ∧ k ∈ {i|i =

1, 2, ..., P}) . Indices of P+2 extrema, including the
first and last points in x are stored in order

8: Define THR ← 0.6 × max(x) + 0.4 × min(x), as a
threshold

9: Define t ∈ RP+2 , to store +1 or -1 for extrema above
and below threshold respectively

10: t[0]← +1, t[P + 1]← +1, supposing the first and last
points in x are maxima

11: Append +1 in t for each n ∈ {i|x[e[i]] > THR}, and
append -1 in t for each n ∈ {i|x[e[i]] ≤ THR}, all in
the order of the indices in e

12: Define z ∈ RP+1, z[n]← t[n+ 1]× t[n]
13: Define s, to store the indices of all negative values in z,

representing the downward and upward movements of
eyes in a blink

14: N ← length(s)
2 . N is the number of sub blinks, and

length(s) is always an even number
15: for i←0 to N − 1 do . Define for blinki:
16: StartIndex← e[s[2× i]],
17: EndIndex← e[s[2× i+ 1] + 1],
18: BottomIndex← e[s[2× i+ 1]]

return start, end and bottom points of the N retrieved
blinks in x


