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Abstract Similarity search in large sequence databases is a problem ubiquitous in
a wide range of application domains, including searching biological sequences. In
this paper we focus on protein and DNA data, and we propose a novel approximate
method method for speeding up range queries under the edit distance. Our method
works in a filter-and-refine manner, and its key novelty is a query-sensitive mapping
that transforms the original string space to a new string space of reduced dimension-
ality. Specifically, it first identifies the t most frequent codewords in the query, and
then uses these codewords to convert both the query and the database to a more com-
pact representation. This is achieved by replacing every occurrence of each codeword
with a new letter and by removing the remaining parts of the strings. Using this new
representation, our method identifies a set of candidate matches that are likely to sat-
isfy the range query, and finally refines these candidates in the original space. The
main advantage of our method, compared to alternative methods for whole sequence
matching under the edit distance, is that it does not require any training to create the
mapping, and it can handle large query lengths with negligible losses in accuracy.
Our experimental evaluation demonstrates that, for higher range values and large
query sizes, our method produces significantly lower costs and runtimes compared to
two state-of-the-art competitor methods.
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1 Introduction

Similarity search in large sequence databases is a frequently occuring problem. De-
spite the plethora of string matching methods currently available, there is still a high
demand for new, robust, and scalable similarity search methods that can handle large
queries and large similarity ranges. These methods could be highly beneficial to ex-
perts in different application domains, such as searching biological sequences, com-
paring large text corpora, and spell-checking.

In this paper, we study the problem of whole sequence matching in string databases.
In other words, given a database of strings and a query, we want to efficiently identify
those strings that are most similar to the query under the edit distance, which is the
most commonly used measure for this problem. We particularly focus on the case
where the query string is long, i.e., hundreds of characters or longer. More specifi-
cally, the problem at hand is to find, for a specific query string Q and a user-defined
range r, all the database strings whose edit distance from Q is within this range.
For convenience, we typically express r as a percentage of the query length |Q|, i.e.,
r = δ |Q|. Thus, if the query length is 1000 and δ = 15%, we want to retrieve all
database strings whose distance from Q is less than or equal to 150.

In many application domains, such as biology, being able to handle large query
lengths and large query-range values can be highly beneficial.

– Large query lengths: In bioinformatics, a very common way of representing
large genomes is by using Expressed Sequence Tag (EST) databases. Such databases
contain portions of genes expressed as mature mRNA, where the length of each
sequence is at least 500− 800 nucleotides long. In these databases, large scale
searches need to be performed against other genomic databases to determine lo-
cations of genes (Jongeneel 2000). In practice, genes may vary in size from hun-
dreds to thousands of nucleotides. Searches can also target whole chromosomes,
where the goal is to find chromosome similarities across different organisms.
Since chromosomes can be relatively large, such searches require algorithms that
can handle large queries efficiently.

– Large query-range values: Due to high evolutionary divergence, the task of
identifying distantly related gene or protein domains by sequence search tech-
niques is not always that trivial. For example, during the mutation process, in-
termediate sequences may possess features of more than one protein and facili-
tate detection of remotely related proteins (Bhadra et al 2006). Hence, supporting
large range queries, also known as remote homology search in bioinformatics, can
be highly beneficial for searching proteins and genomes (Liu et al 2013; Bhadra
et al 2006).

The importance of this problem is not limited to biology. For example, in text
mining, given a collection of texts, an interesting problem is to find groups of texts
with relatively high similarity. This can be useful in a plagiarism detection setting,
where texts correspond to homework submitted by students, and highly similar texts
could be considered suspicious for plagiarism.

Hence, it becomes evident that efficient similarity search in string databases where
query length and range are both large is a crucial problem for various application
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domains. At the same time, approximate methods could be used for substantially re-
ducing the high computational cost, as long as they can achieve very high retrieval
accuracy. Our focus in this paper is on biological sequences, and more specifically on
searching protein and DNA databases under the edit distance.

Evaluating the similarity between two strings under the edit distance is linear to
the product of the lengths of the two strings. This can be computationally expensive,
especially as the size of the two strings grows. In addition, as far as our target ap-
plication domain is concerned, it is known that the distribution of pairwise distances
between long protein strings has low variance, which implies that such distances are
very likely to have values relatively close to a certain mean distance. This property is
a manifestation of the well-known curse of dimensionality and makes tree-like index
structures (Traina et al 2000; Vieira et al 2004) ineffective for this problem. These
structures are typically used for pruning the search space using the triangle inequal-
ity. Alternative methods define an index structure (e.g., q-gram inverted lists (Li et al
2008a)) that is used for identifying candidate matches efficiently, or use alternative
string representations (e.g., alphabet reduction in Papapetrou et al (2009)). Nonethe-
less, the curse of dimensionality is present in both cases, with the former being unable
to handle large query sizes and the latter requiring a tedious and computationally ex-
pensive training process in order to build the index.

In this paper, we propose an effective and efficient approximate method for simi-
larity search in string databases. Our approach overcomes the curse of dimensionality
and can handle large query sizes without requiring any substantial pre-processing.
Specifically, our method defines an informative mapping that transforms the query
and database strings into a new string space, where distances can be measured or-
ders of magnitude faster. The construction of the mapping is query-sensitive and it is
built online based on the appearances of a relatively small set of substrings within the
query. These substrings are found based on how frequently they occur in the query,
and the t most frequent ones of length l, called codewords, form the set of substrings.
Using these codewords each string is converted to a new string, which basically shows
the occurrences of the codewords in the original string. This representation captures a
significant amount of information between strings, since the more similar two strings
are, the more likely it is for them to have common substrings. Hence, the distance
between the mapped strings is highly indicative of the distance between the original
strings. Moreover, each original string is mapped into a much shorter string (assum-
ing some appropriate choices in defining the mapping), making distance computation
in the new string space much faster than in the original space.

Furthermore, we should ensure that the retrieval accuracy remains as high as pos-
sible, while speeding up similarity search. Towards this goal, we follow a filter-and-
refine approach. In particular, for each query, the filter step has a fast, but less ac-
curate, way of identifying a small set of candidate strings from the database. The
mapping proposed in this paper is used to obtain an efficient filtering process. The
refine step then performs the expensive similarity evaluations in the original space to
determine which of the candidates match the desired search criteria.

In short, the main contributions of this paper are:
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– We propose DRESS (shorthand for Dimensionality Reduction for Efficient Se-
quence Search), a novel filter-and-refine approximate method for speeding up
similarity search under the edit distance. The key novelty of DRESS is that it
does not require any training or computationally expensive pre-processing step
compared to competitors, and can handle large query sizes and similarity ranges
while maintaining competitive accuracy and retrieval runtime.

– We introduce an efficient way of representing strings in a new space, which is
based on a set of codewords that are query-specific. In this new space, distance
computation between strings is significantly faster than in the original space.

– We provide an extensive experimental evaluation of the proposed method against
q-grams and a well-known reference-based string matching method on protein
and DNA sequences. The experimental results on three large protein datasets and
two large DNA datasets show that our method outperforms both competitors in
terms of retrieval cost and runtime, while retaining most of the times an accuracy
of over 99%.

2 Related Work

Several sequence matching algorithms have been proposed in the literature for se-
quence alignment. Depending on their objective, they can be divided into global
alignment and local alignment methods. There is a fundamental difference between
the two families of methods. Global alignment can be seen as a full-sequence match-
ing approach for global optimization, where the objective is to identify the minimum
number of changes that should be performed to one sequence so as to convert it to the
other, by forcing the alignment to span the whole sequence. In contrast, the objective
of local alignment is to identify local regions within the compared sequences that are
highly similar to each other, while they could be globally divergent. Hence, the result
of local alignment is to match several subsequences within the two sequences, while
allowing for gaps in the alignment.

Starting with methods for local alignment, BLAST (Altschul et al 1990) is a well-
known tool used to compute local alignments for long biological sequences. Since it
is based on a heuristic search technique, BLAST is not guaranteed to always find
the optimal local alignment. An improved version of BLAST, known as BLAST2
(Altschul et al 1997), achieves better accuracy by allowing a limited number of in-
sertions and deletions during the alignment formation and improves search speed by
imposing more stringent criteria when performing a local alignment. Other improve-
ments of BLAST include MegaBLAST (Zhang et al 2000), MPBLAST (Korf and
Gish 2000) and miBLAST (Kim et al 2005b). MegaBLAST is a greedy algorithm for
detecting sequences that differ slightly as a result of sequencing. MPBLAST and mi-
BLAST are different versions of BLAST used for parallel queries. BLAT (Kent 2002)
builds an index of the database and then, given a query, it linearly scans the query
searching for matches in the index. Apart from using an inverse index, BLAT differs
from BLAST and BLAST2 in that it triggers extensions on any number of perfect hits
whereas in BLAST extensions are triggered when one or two hits occur in proximity
to each other. Several hash-based approaches (Kalafus et al 2004; Ning et al 2001)
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have been developed for further speed up. A key limitation of all the above-mentioned
variants of BLAST is that their accuracy and retrieval cost deteriorate as the query
size increases. Also, as the volume of biological sequence databases increases, all the
aforementioned exhaustive systems become prohibitively expensive. Another widely
applied local alignment similarity measure is Smith-Waterman (Smith and Water-
man 1981), on which OASIS is based (Meek et al 2003). The Shift-Or algorithm
(Baeza-Yates and Gonnet 1992) and its extended variant (Wu and Manber 1992) are
bit manipulation methods that also search for a query in a target sequence.

An embedding-based method for subsequence matching under local alignment
is RBSA (Papapetrou et al 2009). The method employs an alphabet reduction tech-
nique, where, essentially, groups of letters are collapsed to one symbol (for example
all the odd letters of the alphabet are replaced by 1 and all the even letters are replaced
by 0). Employing the above technique in conjunction with reference-based embed-
dings, RBSA achieves very promising results. In particular, RBSA performs well for
large queries and provides very accurate results, while it requires very expensive pre-
processing and training. More importantly, it is designed for solving the problem of
subsequence matching (under both edit distance and Smith-Waterman), which is or-
thogonal to the whole-sequence matching problem studied in this paper. In addition,
the alphabet reduction technique used by RBSA does not reduce the length of the
sequences, and as a result the time to compute the distance between two sequences
with and without alphabet reduction is the same. In contrast, the method proposed
here drastically reduces the length of the sequences, and thus it dramatically speeds
up the computation of approximate distances.

Another family of methods, known as short-read sequencing methods, are widely
used for aligning biological sequences. The key objective of short-read sequencing is
to perform near-exact subsequence matching, which is fairly similar to local align-
ment, since a local segment of the target sequence is matched with the query. More
specifically, in this setting, queries are substantially shorter than the target sequences,
they are expected to match locally, with or without gaps in the alignment, and more
importantly they assume the presence of a subsequence match in the target database
sequence that is highly similar to the query. Methods of this family include SOAP
(Li et al 2008c), Maq (Li et al 2008b), and Bowtie (Langmead et al 2009). The lat-
ter is essentially based on the properties of the Burrows-Wheeler Transforms (BWT)
(Burrows and Wheeler 1994) to index the target sequence(s). The advantage of the
index built, which can be seen as a suffix tree variant, is the small amount of memory
used. WHAM (Li et al 2012) is another very recently proposed short-read sequencing
method that employs the edit distance to align two sequences, while allowing for an
arbitrary number of mismatches and gaps. It builds hash indexes on subsequences of
the target sequence, and uses subsequences as seeds to find valid matching sequences.
In addition, the fragments on which it is based on are non-overlapping subsequences,
while it takes advantage of current memory sizes in order to provide fast alignments.
The target queries are rather short, i.e., of size up to 100 base pairs. The PartEnum
algorithm (Arasu et al 2006) is related to WHAM as it exploits similar ideas and
computes the Hamming distance between binary vectors representing sets, which is
not related to the problem we deal with in this paper. Also, in all the above studies,
query lengths are very short, i.e., 58 base pairs on average, while the database se-
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quence size is much longer (up to the size of a genome, i.e., 3.5 billion base pairs). A
general framework for sequence matching in both time series and sequence databases
has also been proposed (Zhu et al 2012). The framework reports matching results as
pairs of query and database subsequences. However, this method is also restricted to
short queries of size up to 20 base pairs. Additional methods on short-read sequencing
include ARSM (Vergoulis et al 2012) and RCSI (Wandelt et al 2013). All the afore-
mentioned methods are designed for solving the problem of short-read sequencing.
Clearly, this problem is completely orthogonal to the problem we are studying in this
paper, since our objective is full-sequence matching and not subsequence matching,
while no assumptions are being made regarding the expected matching ranges.

Regarding global alignment methods, the Needleman-Wunch method (Needle-
man and Wunsch 1970) is a brute-force solution to our problem employing the edit
distance. In addition, there have been several q-gram based methods proposed in the
literature for approximate sequence matching in large sequence databases (Kim et al
2005a; Li et al 2007; Litwin et al 2007; Yang et al 2008; Li et al 2008a), where a
q-gram is defined as a subsequence of length q. Q-gram methods are based on the
pigeon-hole principle, according to which if two sequences have a certain degree of
similarity they must share a minimum number of subsequences (q-grams). In the off-
line step the occurrence of each q-gram in each of the database objects is recorded in
an inverted list. Given a query Q, all the q-grams of the query are extracted and their
corresponding inverted lists are used to identify the database objects that share a min-
imum number of q-grams with the query. Next, a refine step is performed to identify
which of the candidates match the search requirements. This method is guaranteed to
always return all the objects that match the search criteria. One of the differences be-
tween this method and ours is that we do not use all of the possible subsequences of
the query; instead, we map it to a reduced alphabet space based on the most frequent
subsequences. The actual implementation that we have used for q-grams is from the
publicly available Flamingo Package (Behm et al 2010). That package uses a smart
implementation of the edit distance that stops the building of the matrix if it can be
easily determined that the distance will be larger than the required threshold. Such
quick determinations can be obtained using letter counting, and also using partial
distance estimates computed by building the lower and upper half of the distance
matrix separately.

Another indexing method that seems promising for the problem examined in this
paper, and thus has been also implemented, uses a set of reference objects and the
triangle inequality (Venkateswaran et al 2006). The distances from the reference ob-
jects to the query and to the database objects are used in conjunction with the triangle
inequality to determine if a database object is certainly within the required similarity
range (and as a result it should be part of the search result), certainly outside of it
(excluded from the search result) or a possible candidate. The resulting candidates
are then evaluated using the edit distance and the result set is updated. This method
is also exact, rendering all the objects that match the search criteria. Its efficiency
depends on the pruning power of the distances to the reference objects, and is thus
hindered by the low variance in the distribution of pairwise distances.

In a similar flavour, methods in the area of graph indexing have been developed
for subgraph discovery using discriminant patterns. For example, Yan et al. (Yan et al
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2005) proposed an indexing model based on discriminative frequent subgraph com-
ponents that are identified through a graph mining process, and used it for building
a compact graph index for speeding up subgraph search. In addition, an approximate
graph matching technique has been proposed (Tian et al 2007) for similarity search in
biological graphs, which allows for node gaps, node mismatches and graph structural
differences. Both methods are not directly applicable to our problem setting since we
are focusing on sequences and not graphs.

To recap, there exists a plethora of methods in the literature for aligning biologi-
cal sequences and sequences. Nonetheless, in this paper we focus on the problem of
full-sequence matching, or global alignment, under the edit distance. Hence, the only
applicable competitor methods are q-grams, embedding-based full-sequence match-
ing (Venkateswaran et al 2006) (which also uses the edit distance), and the brute-force
edit distance (which is equivalent to the Needleman-Wunch approach).

3 Background

In this section, we provide the basic notation used throughout the paper and formulate
our problem. Note that, for the remainder of the paper, we shall use the terms “string”
and “sequence” interchangeably.

Consider X to be a space of strings defined over an alphabet A . A string X ∈
X of size |X | is defined as X = (X1, . . . ,X|X |), where Xi ∈ A for i = 1, . . . , |X |. A
subsequence of X including its first i elements (for any i ∈ [1, |X |]) is denoted as X1:i.
A collection of strings defines a string database and is denoted as S. We will use X
to denote a database string and Q to denote a query string. Given two strings Q and
X , their edit distance is computed by function D(Q,X).

3.1 Edit Distance

The edit distance D(Q,X) is a function measuring how dissimilar the strings Q and X
are. This is achieved by computing the minimum cost of editing operations (insertion,
deletion, and substitution) needed to convert one string to the other. Note that a cost
should be specified for each editing operation. These costs are denoted as follows:

– Cins: denotes the cost of the edit operation that inserts a letter to string Q.
– Cdel: denotes the cost of the edit operation that deletes a letter from string Q.
– Csub(Q j,Xi): denotes the cost of the edit operation that replaces letter Q j with

some letter Xi 6= Q j, where i ∈ [1, |X |], j ∈ [1, |Q|].

The most commonly used version of edit distance uses Cins = Cdel = Csub = 1,
and in that case D(Q,X) is the smallest total number of insertions, deletions, and
substitutions that can convert Q to X . For simplicity, in the remainder of this paper,
we assume the above setting of costs.

In order to compute D(Q,X), we will use an auxiliary matrix a, such that a j,i

corresponds to the smallest possible distance between Q1: j and X1:i. We also define
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an auxiliary function C(Q j,Xi) that denotes the cost of matching letter Q j with letter
Xi:

C(Q j,Xi) =

{
Csub if Q j 6= Xi

0 if Q j = Xi
(1)

Hence, D(Q,X) and the corresponding best alignment of Q and X can be found
using dynamic programming, by computing a j,i(Q,X) for j = 1, . . . , |Q| and i =
1, . . . , |X |, as follows:

initialization:
a0,0 = 0,a j,0 = a0,i = ∞ . (2)

loop:

a j,i(Q,X) = min


a j,i−1(Q,X)+Cins
a j−1,i(Q,X)+Cdel
a j−1,i−1(Q,X)+C(Q j,Xi)

(3)

( j = 1, . . . , |Q|; i = 1, . . . , |X |) .

termination:
D(Q,X) = a|Q|,|X |(Q,X) . (4)

Complexity: The evaluation of the edit distance D(Q,X) requires time O(|Q||X |).
We should also note that the alignment path can be found by keeping track, in each
application of Equation 3, of the predecessor selected for each ( j, i), and by back-
tracking at termination from position (|Q|, |X |).

3.2 Problem Statement

Given a database S, a query Q, and a similarity range r = bδ |Q|c, δ ∈ R+, we want
to retrieve all database strings X , such that:

D(Q,X)≤ r.

In other words, we are interested in performing a range query in S to identify all
strings that are within edit distance δ |Q| from Q. Note that Q and r are provided by
the user.

4 DRESS: Dimensionality Reduction for Efficient Sequence Search

DRESS works in a filter-and-refine manner. Its key component is the dimensionality
reduction technique that it uses to transform the strings from their original represen-
tation to a more compact one. Effectively, this results in a mapping of the original
string space to a new string space of reduced dimensionality. Note that in our case
dimensionality corresponds to the length of the strings. At query time, both query and
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database strings are mapped to the new string space based on a query-sensitive tech-
nique described next. Similarity search under the edit distance is then performed in
the new space, where candidate matches are identified. These candidates are passed
over to the refine step, where the database strings satisfying the desirable range are
identified and returned as the result set. Next, we describe these steps in more detail.

4.1 Filter-and-Refine Framework

4.1.1 Mapping step

DRESS essentially performs dimensionality reduction from the original string space
to a new space. This step is called the mapping step. For each query Q that belongs
to the set of strings X, we identify a set E= {E1, . . . ,Et} of codewords consisting of
the t most frequent substrings of length l. The set of codewords has the property that
there is no pair of strings that have overlapping suffix-prefix. This is provided more
formally in the following definition.

Definition 1 (codewords) A set of codewords E is a set of strings such that, for any
strings E1,E2 ∈ E, no prefix of E1 is a suffix of E2, and no prefix of E2 is a suffix of
E1.

In our implementation, the set of codewords E is not fixed. Instead, the number t
of codewords and their length l are fixed (and are identified after appropriate training),
and the actual codewords are chosen individually for each query. This query-sensitive
selection of E can improve performance in practice, in datasets where the t most
frequent codewords of Q typically appear with high frequency in the most similar
database matches for Q, but not in database sequences unrelated to Q.

To find the t most frequent codewords of Q, we first count, for each possible
codeword of length l, the number of times it occurs in Q. This is done by simply
creating an array of size equal to the number of codewords, initializing the contents
of that array to 0, and then walking through Q from left to right, examining each
substring of length l, and incrementing the corresponding counter in the array. The
index of the counter corresponding to a substring can be identified in constant time
using a hash function.

After we find the t most frequent codewords of Q, we perform these steps:

1. Set E= /0.
2. Find codeword E with highest count, such that:

– Codeword E is still not an element of E.
– No suffix of any codeword of E is a prefix of E.
– No prefix of any codeword of E is a suffix of E.

3. Insert E to E.
4. If |E| 6= t, go to step 2, else we are done.

Next, once we have selected the set E of codewords, we map the database and the
query to a new space according to the occurrence of these codewords. To do so, we
first need to provide the definition of the E-mapping.
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X	  =	  (babfcde)	  

E	  =	  {ab,cd}	  

X	  =	  (babfcde)	  

X	  =	  (b1f2e)	  

x	  =	  (12)	  

ab	  	  	  	  

cd	  

1	  

2	  

Fig. 1 An example of the dimensionality reduction performed during the mapping step of DRESS.

Definition 2 (E-mapping) Given a set of codewordsE and a string X , theE-mapping
of X is a new string where all instances of each codeword Ei ∈ E are replaced by a
new character ei while the remaining parts of X are removed.

A simple way to obtain the E-mappings of all database sequences would be to
simply scan each database sequence and produce its embedding by replacing occur-
rences of each codeword with the corresponding symbol and ignoring all other letters
of the sequence. More specifically, this could be done as follows:

– Each string X ∈ S is parsed from left to right.
– When a codeword, e.g., Ei, is found in X , it is assigned with a new letter, ei, where

i ∈ [1, t]. Note that each Ei corresponds to one ei.
– All the remaining parts of the original string X are deleted. The resulting mapped

version of X is denoted as x.

Similarly, the E-mapping of Q is a new string denoted as q. Consider the example
shown in Figure 1. The E-mapping of string (bab f cde) according to the codeword
set E= {ab,cd} is (12), where ab is mapped to 1 and cd is mapped to 2.

The time it takes to create the E-mappings of the database sequences with the
procedure described above is linear to the size of the database. However, we can do
better than that, by precomputing an inverted index IND of the database, where we
specify, for each possible codeword (i.e., each possible substring of length l), all the
sequences where it occurs, and the positions at which it occurs at each sequence. In
other words, for substring E of length l, IND[E][i] is a (possibly empty) list of all
positions where E occurs in the i-th database sequence.

We note that E is a string, whereas in notation IND[E][i] we treat E as an integer
index to array IND. We can easily map E to an integer in constant time using a
hash function. We should also note that building the inverted index incurs a one-time
preprocessing cost. The time it takes to build this index is linear to the size of the
database.

At runtime, when we want to compute the E-embedding of the i-th database se-
quence Xi, we follow these steps:

1. Set Pairs = /0
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2. For each E ∈ E:
– Set e to the letter assigned to keyword E.
– For each position pos in IND[E][i]:

– Insert pair (e, pos) to Pairs.
3. Sort Pairs in ascending order of the positions (i.e., the second elements of the

pairs).
4. Set xi to be the empty string.
5. For each pair (e, pos) in Pairs, considered in sorted order:

– Insert letter e to the end of xi.

At the end of these steps, xi is the E-embedding of database sequence Xi. The
time it takes to compute xi is O(|xi|log|xi|). Typically the length of xi is significantly
smaller than the length of the original database sequence Xi, and thus the method we
use for computing the embedding of Xi is faster than simply scanning Xi.

According to the mapping step, the resulting strings are significantly shorter than
their original counterparts. For example, the alphabet A for protein sequences in-
cludes 20 letters, which give rise to 400 possible codewords with length l = 2. If we
only select t = 4 codewords, and the selection is made randomly, then we expect that
the proposed mapping will reduce the length of a sequence by (on average) a factor
of 100. In that case, we expect that computing the edit distance between two dimen-
sionality reduced strings will be faster by a factor of 10,000. Note that, since the
selection of codewords is not random, for our method we anticipate that the length of
a sequence will be reduced by less than 100 times.

4.1.2 Filter and Refine steps

Next, we perform brute force search between each mapped database string x and the
mapped query q under the edit distance. The database strings that are within a certain
percentage δ ′ of the length of the mapped query are considered as candidate matches
to the query, in other words they pass the filter step. More information about δ ′ is
given in the following section.

These candidates are further evaluated in the refine step by applying brute force
search in the original space, i.e., the edit distance is computed between each candidate
database string X and the query Q. Finally, the database strings that are within a δ

percentage of the length of the query belong to the result set of matches to Q. The
pseudo-code of our method is given by Algorithm 1, and in Figure 2 we show the
main steps of DRESS.

4.1.3 Search Range

The percentage δ ′ that we use in the target space depends on δ , i.e., the percentage
that the user has specified in the original space, and is equal to δ f , where f is a scal-
ing factor greater than one. For example, if δ = 15% and f = 2, then δ ′ = 30%. δ ′ is
higher than δ to account for the cases where the distance in the new string space is
a higher percentage of the mapped query length. This can easily happen because the
mapped query and database strings are drastically shorter than the original strings.
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subsequences (q-grams). In the o↵-line step the occurrence
of each q-gram in each of the database objects is recorded
in an inverted list. Given a query Q, all the q-grams of the
query are extracted and their corresponding inverted lists
are used to identify the database objects that share a mini-
mum number of q-grams with the query. Next, a refine step
is performed to identify which of the candidates match the
search requirements. This method is guaranteed to always
return all the objects that match the search criteria. One of
the di↵erences between this method and ours is that we do
not use all of the possible substrings and that we preserve
some of the location/ordering information from the origi-
nal strings. The actual implementation that we have used
for q-grams is from the publicly available Flamingo Package
[5]. That package uses a smart implementation of the edit
distance that stops the building of the matrix if it can be
easily determined that the distance will be larger than the
required threshold. Such quick determinations can be ob-
tained using letter counting, and also using partial distance
estimates computed by building the lower and upper half of
the distance matrix separately. We note that this method is
exact, while ours performs approximate string matching.

Another indexing method that seems promising for the
problem examined in this paper, and thus is also imple-
mented, uses a set of reference objects and the triangle in-
equality [20]. The distances from the reference objects to
the query and to the database objects are used in conjunc-
tion with the triangle inequality to determine if a database
object is certainly within the required similarity range (that
is it should be part of the search result), certainly outside of
it (excluded from the search result) or a possible candidate.
The resulting candidates are then evaluated using the edit
distance and the search result set is updated. This method
is also exact, rendering all the objects that match the search
criteria. Its e�ciency depends on the pruning power of the
distances to the reference objects and is thus hindered by
the low variance in the distribution of pairwise distances.

3. PROBLEM SETTING
In this section we provide some basic notation that is used

throughout the paper and formulate our problem. Note
that, for the remainder of the paper, we shall use the terms
“string” and “sequence” interchangeably.

Consider X to be a space of strings. A string X 2 X of
size |X| is defined as X = (X1, . . . , X|X|). A collection of
strings defines a string database and is denoted as S. We
will use X to denote a database string and Q to denote a
query string. Given two strings Q and X, their edit distance
is computed by function D(Q, X).

Problem Statement: Given a database S, a query Q,
and a similarity range � 2 N, we want to retrieve all database
strings Xi, such that:

D(Q, Xi)  b�|Q|c .

In other words, we are interested in performing a range query
in S to identify all strings that are within edit distance �|Q|
from Q.

4. DR-PROT: DIMENIONALITY REDUCTION
FOR PROTEIN SEARCH

DR-PROT works in a filter-and-refine manner. Its key
component is the dimensionality reduction technique that it
uses to tranfrom the strings from their original representa-
tion to a more compact one. E↵ectively, this results in an
embedding of the original string space to a new space of re-
duced dimensionality. Note that in our case dimensionality
corresponds to the length of the strings as well as their rep-
resentation. The database is transformed to the embedded
space o✏ine. At query time, the same mapping is applied
to the query and similarity search is then performed in the
new space. Next, we describe these steps in more detail.

4.1 Filter-and-Refine Framework

4.1.1 Embedding step
DIRE-PROT essentially performs dimensionality reduc-

tion from the original string space to a new space. This
step is also called the embedding step. For each query that
belongs to the set of strings X, we identify in a greedy man-
ner a set E = {E1, . . . , Et} of codewords consisting of the t
most frequent substrings of length l. The set of codewords
has the property that there is no pair of strings that have
overlapping su�x-prefix.

Definition 1. A set of codewords E is a set of strings
such that, for any strings E1, E2 2 E, no prefix of E1 is a
su�x of E2, and no prefix of E2 is a su�x of E1.

Next, we embed the query and the database according to
the occurrence of these codewords. This is done as follows:

• Each string X is parsed drom left to right.

• When a codeword, e.g., Ei, is found in X, it is assigned
with a new letter ei.

• All instances of each codeword Ei are replaced by their
corresponding letters ei for all X 2 S.

• All the remaining parts of each original string X are
deleted. The resulting embedded version of X is de-
noted as x.

Following the above procedure, it can be seen that the result-
ing strings are significantly shorter than their original coun-
terparts. The embedding step is performed on all database
strings before the database is ready to receive queries.

For example, the embedding of string babfcde according
to the codeword set E = {ab, cd} is 12, where ab is mapped
to 1 and cd is mapped to 2.

4.1.2 Filter and Refine steps
At query time, given a query Q defined in the original

string space X, we map Q to each embedded counterpart
q, following the same process described in Section 4.1.1.
Next, we perform brute force search between each embed-
ded database string x and the embedded query q under the
edit distance. The database strings that are within a cer-
tain search range �0 of the length of the embedded query are
considered as candidate matches to the query, or else they
pass the filter step.

These candidates are further evaluated in the refine step
by applying brute force search using the query in the origi-
nal space, i.e., edit distance is performed between each can-
didate database string X and the query Q. Finally, the
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Given	  a	  query	  Q	  
defined	  in	  the	  

original	  string	  space.	  

Iden8fy	  the	  t	  
most	  common	  
codewords	  of	  
size	  l	  in	  Q.	  	  	  

online	  mapping	  
step	   Map	  Q	  to	  its	  mapped	  

version	  q	  and	  each	  X	  to	  
its	  mapped	  version	  x.	  

Perform	  range	  query	  search	  
in	  the	  new	  string	  space	  using	  

δ’	  under	  distance	  D.	  

filter	  step	  

Iden8fy	  a	  set	  of	  
candidate	  matches.	  

Refine	  each	  candidate	  under	  
D	  by	  valida8ng	  whether	  it	  is	  a	  

r-‐range	  query	  result.	  

refine	  step	  

Fig. 2 An overview of the main steps of DRESS.

While we expect similar strings to map to similar mapped strings, the loss of infor-
mation incurred by the mapping can lead to higher distances as percentages of query
length. Good values for f are estimated in a straight-forward manner, using a train-
ing set of queries. This training set can be chosen as a subset from the database, or
alternatively we can use randomly generated strings. More details on how we set the
value of f can be found in Section 5.1.4.

4.2 Theoretical Analysis

Here, we provide a theoretical analysis of DRESS. We mainly show that the mapping
is contractive and prove that the definition requirements of a codeword are necessary
to guarantee the contractiveness of the mapping. A mapping E is contractive if for
any X ,Y , D(X ,Y )≥D(E(X),E(Y )).

We first start by showing that the conditions for a legal set of codewords E from
Definition 1 are necessary for proving that the mapping is contractive. We can show
this with a simple example. Let E = {ca,ac}. We note that, in E, codeword ac has
a suffix (its last letter c) that is a prefix of another codeword (ca), and thus E is not
a legal set of codewords. Suppose that we map ca to new letter 1 and we map ac to
new letter 2. Let X = (eaca), and Y = (caca). The E-mapping of X is x = (2) (ac
and ca both occur, but their occurrences overlap and ac takes precedence), and the
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Algorithm 1: DRESS
Input: Query sequence Q ∈ X, database S ⊂ X, percentage δ , number of codewords t, adjustment

scaling factor for the target space f .
Output: Result set of database objects ⊂ S.

1 begin
2 Find the top t most frequent codewords of Q, E.
3 Map Q according to E, yielding q.
4 r = bδ |Q|c.
5 δ ′ = δ f .
6 for each X ∈ S do
7 if abs(|X |− |Q|)> r then
8 //(Length Filter)
9 Reject X .

10 end
11 else
12 Map X according to E: x = E(X).
13 if D(x,q)≤ δ ′|q| then
14 //X is a candidate - refine the search
15 if D(X ,Q)≤ r then
16 Add X to the result set.
17 end
18 end
19 end
20 end
21 end

E-mapping of Y is y = (11). The lower bound property is not satisfied: D(X ,Y ) =
1�D(x,y) = 2, and thus the mapping is not contractive.

The reason why this mapping is not contractive is that making a single edit oper-
ation on X , namely replacing the initial e with a c, results to two edit operations on
the E-mapping of X , converting (2) to (11). This situation arises because, in (eaca),
there is an occurrence of codeword ac overlapping with an occurrence of codeword
ca. In computing the E-mapping of (eaca), ac takes precedence because it is to the
left of ca. By replacing e with c, we create a new occurrence of ca, but also by re-
moving the occurrence of ac we allow the other occurrence of ca to be reflected on
the E-mapping. If the set of codewords is legal, and thus no suffix of a codeword is
a prefix of another codeword, then it is not possible for occurrences of codewords to
be overlapping,

Proposition 1 If the set of codewords E is legal according to Definition 1, then a
single edit operation (i.e., a single insertion, deletion, or substitution) on a string Y
can only lead to zero or one edit operation on the E-mapping of Y .

Proof Let y be the E-mapping of Y . An edit operation can happen either within the
occurrence of a codeword (destroying that codeword), or outside of the occurrence of
a codeword.

– Case 1: the edit operation occurs within the occurrence of a codeword E1,
thus destroying that occurrence. Suppose that e1 is the letter that theE-mapping
replaces E1 with. We have two subcases:
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– Subcase 1a: another occurrence of a codeword E2 is generated, in which case
the edit operation causes a substitution of letter e1 at the appropriate position
of y. It is also possible that E2 = E1. For example, if ca is a codeword, Y =
(caaaa), and we delete the second letter, essentially we destroy an occurrence
of keyword ca but at the same time we create another occurrence of the same
keyword. If E2 = E1, then the edit operation on Y leads to no edit operation
on y, otherwise it leads to a single edit operation (a substition) on y.

– Subcase 1b: no occurrence of another codeword is generated, which causes a
deletion of letter e1 at the appropriate position of y.

Since codeword occurrences do not overlap, all other existing codeword occur-
rences in Y are not affected by the edit operation in Case 1.

– Case 2: the edit operation is outside any existing occurrence of any codeword
in Y . Again, we have two subcases:

– Subcase 2a: a new occurrence of a codeword E2 is generated, in which case
the edit operation causes an insertion of the letter corresponding to E2 at the
appropriate position of y.

– Subcase 2b: no occurrence of another codeword is generated, in which case
no changes to y are made

We note that, if a new occurrence of some codeword E2 has been generated in
case 2, this new occurrence cannot overlap with any pre-existing codeword oc-
currences in Y , because it is impossible for occurrences of codewords to overlap
as long as the set of codewords is legal according to Definition 1. Therefore, any
pre-existing occurrences of codewords in Y are not affected by the edit operation
in case 2.

In summary, under subcase 2b, and sometimes under subcase 1a, y is not changed.
In all other cases y is changed by a single edit operation. �

We are now ready to prove that the proposed mapping is contractive.

Theorem 1 (Contractiveness) Let X ,Y be two strings, and E be a set of codewords
that is legal according to Definition 1. Let x and y be the E-mappings of X and Y .
Then D(X ,Y )≥D(x,y).

Proof: Let D = D(X ,Y ). Then, D edit operations suffice to convert X to Y . Each of
those edit operations causes zero or one edit operation to x, so in total the D edit
operations on X cause at most D edit operations on x. The result of these at most D
edit operations on x converts x into y, so D(x,y)≤ D = D(X ,Y ). �

Contractiveness is important theoretically; when a mapping is contractive, then
filter-and-refine retrieval can be performed so as to guarantee retrieving all results
within a desired range (Hjaltason and Samet 2003). However, in the filter-and-refine
method described in Sections 4.1.2 and 4.1.3, we actually do not use the contrac-
tiveness property. The method described in those sections obtains significantly more
attractive trade-offs between accuracy and efficiency, by filtering more aggressively
and missing a small percentage of matches within the desired range. Using contrac-
tiveness as described by Hjaltason and Samet (Hjaltason and Samet 2003) would lead
to not missing any matches, but at the cost of much higher running time.
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5 Experiments

In this section, we benchmark the performance of DRESS on the biology domain,
and demonstrate its superiority in terms of retrieval cost and recall against two state-
of-the-art methods for full-sequence matching under the edit distance.

5.1 Experimental Setup

5.1.1 Datasets

For our experiments we used two datasets from the biology domain, a protein dataset
and a DNA dataset.

Proteins. The UniProt dataset 1 is a commonly used freely available dataset that
consists of protein sequences. Specifically, it includes 530,264 strings defined over
an alphabet of 25 letters. The protein strings have variable length ranging from 2
to 35213 (amino-acids). To study the performance of DRESS against the competi-
tor methods in terms of different sequence sizes, we created three datasets. These
datasets are disjoint subsets of UniProt and are referred to as Dataset800

401 , Dataset1600
801 ,

and Datasetmax
1601. Each dataset consists of three subsets: the validation set, the test set,

and the database (Table 1). Dataset800
401 contains 130,962 sequences in total (100 for

validation, 500 for testing, and the rest for the database), and the length of each se-
quence is between 401 and 800. Dataset1600

801 consists of 28,155 sequences (100 for
validation, 500 for testing, and 27,555 for the database), and the lengths range from
801 to 1600. The third dataset, Datasetmax

1601, includes all sequences of UniProt with
lengths greater than 1600, which are in total 3,879 (100 for validation, 100 for testing,
and 3,679 for the database). For each dataset all 3 subsets (validation, test, and the
database) are disjoint, and membership in each subset was randomly assigned.

DNA. We have created two datasets of DNA sequences taken from Human Chromo-
some 1 freely available at the NCBI repository 2. The full size of this chromosome
is 249,250,621 bases. The first dataset contains 500,500 DNA sequences randomly
selected from the full chromosome (without duplicates) of lengths between 100 and
500 nucleotides. The second dataset contains 500,500 sequences, selected again in a
similar manner, of lengths between 500 and 1,000 bases. Similar to UniProt, for each
dataset we created a test set, a validation set, and a database. First, for each dataset we
randomly selected 100 sequences for the test set and 100 for the validation set. Next,
we added different levels of noise (from 5% to 30% in steps of 5%) to each sequence.
Specifically, for each noise level z%, we performed edit operations (insertions, dele-
tions, or substitutions) on z% of the sequence length. This resulted in a set of 600
new test sequences (100 per noise level) and 600 validation sequences. The remain-
ing 500,500 sequences, including the original (without noise) test and validation set
sequences, were used as the database. The two datasets are referred to as Dataset500

100
and Dataset1000

500 (Table 1).

1 http://www.ebi.ac.uk/uniprot/
2 ftp.ncbi.nlm.nih.gov
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Table 1 Summary of datasets used in the experimental evaluation.

UniProt DNA
Dataset800

401 Dataset1600
801 Datasetmax

1601 Dataset500
100 Dataset1000

500
sequence length [401,800] [801,1600] [1601,35213] [100,500] [500,1000]
total # of sequences 130,962 28,155 3,879 500,500 500,500
# of seq. in validation set 100 100 100 600 600
# of seq. in database 130,362 27,555 3,679 500,500 500,500
# of seq. in test set 500 500 100 600 600

The full UniProt dataset, its three subsets, and the two DNA datasets we experimented
with can be found at http://vlm1.uta.edu/~akotsif/dress.

5.1.2 Methods

We compare DRESS with two competitor methods that have been proposed for speed-
ing up whole sequence matching and can be used in biological databases:

– Reference-based embeddings (RBE): the method proposed by Venkateswaran
et al (2006) that uses distances to reference objects to define an embedding space
and the triangle inequality to quickly identify a small set of candidate matches.
For this method we have built a new index for each search range.

– q-grams: the method described by Li et al (2008a) that uses inverted indexes of
q-gram occurrences to quickly identify candidate matches. For our experiments
we used the publicly available Flamingo Package code (Behm et al 2010). Note
that for simplicity we have used exact q-grams. As it has also been shown by
Papapetrou et al (2009) the performance of near-exact q-grams deteriorates in a
similar manner since they are designed to tolerate only low values of δ , i.e., less
than 15%.

Note that the brute force approach is the edit distance, as described in Section 3.1,
that compares each query with all database sequences in the original space.

5.1.3 Evaluation Measures

The measures that we used for the comparative evaluation of DRESS with RBE and
q-grams are provided next.

Recall: We measure the percentage of database objects that are within the desired
search range and are successfully retrieved by the system. When we report cumula-
tive results on a set of queries, we sum up the total number of correct results that the
system retrieves and we divide it by the total number of correct results that should be
retrieved. RBE and q-grams are exact methods and they guarantee a recall of 100%,
while DRESS does not, since it is an approximate method. Hence, in the experimental
results we only report the accuracy of DRESS. It is important to note that the refine
step of our method assures no false matches.

http://vlm1.uta.edu/~akotsif/dress
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Runtime: We compute the average runtime per query that is needed by each method
to retrieve the final matches.

Retrieval cost: One limitation of measuring efficiency using running times is that
those times can depend significantly on particular aspects of the hardware, such as
memory, cache size, bus speed, and so on. Running times also depend on the effi-
ciency of the implementation, compiler optimizations, and choice of programming
language. As an alternative platform-independent measure we employ a more theo-
retical estimate, where we try to use upper-bound (and thus less favorable) estimates
for DRESS and lower-bound (and thus more favorable) estimates for the competitors.
We believe that these numbers help in obtaining a clearer picture of the efficiency that
our method achieves compared to the competitors. We note that one-time preprocess-
ing costs, like building the inverted index of Section 4.1.1, are considered neither for
our method nor for the competitors, in calculating retrieval cost.

Our measure of retrieval efficiency is reported as a percentage of brute force
search. Brute force has to compute entries on dynamic programming tables. If |Q|
denotes the length of the query and |S| denotes the sum of lengths of database strings,
then the number of entries that must be computed in these dynamic programming ta-
bles is |Q||S|. Since all methods we evaluate have a refine step, we measure, at each
experiment, a quantity that we denote as x′. This quantity corresponds to the sum of
lengths of all database strings that are considered at the refine step. Thus, fraction
x′/|S| is a lower bound of the computational cost of a method, since it does not take
into account the cost of any processing outside of the refine step (such as the cost of
the filter step).

For q-grams and RBE we report x′/|S| as our estimate of retrieval efficiency. As
noted above, this is a favorable approach for those methods as it ignores all costs
outside of the refine step.

For our method we add to x′/|S| two additional quantities: an estimate of the on-
line mapping cost and an estimate of the filter cost. Taking advantage of the inverted
index of the database, for the mapping cost we consider every letter of the mapped
database strings to cost as much as computing an entry in a dynamic programming
table. For the filter cost, the computation is more straightforward as the filter step
measures edit distances in the new string space. Hence, we count the total number of
entries in the dynamic programming tables computed during this step. So, overall, the
efficiency of our method is measured in units of dynamic programming table entries,
and we divide that cost by the cost of brute force search.

To report the retrieval efficiency over a set of queries, we provide the average of
the retrieval costs, x′/|S| (plus the two additional quantities for DRESS), attained by
the queries.

5.1.4 Implementation Choices

DRESS. To implement DRESS we need to make certain choices. Here, we document
the choices we have made and the process for making those choices.

– Length of codewords (l): Performing training on the validation set, we obtained
satisfactory results in terms of recall for codewords with l = 2 for all datasets.
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However, for completeness, we also experimented with l = 3 and l = 4 for the
three UniProt datasets. In the experimental results, unless otherwise stated, we
present the results for l = 2.

– Number of codewords (t): We have experimented on the validation set with us-
ing 2, 3, and 4 codewords. For all datasets, using 4 codewords worked better in
terms of the tradeoff between recall and cost, so that is the setting we used for the
test sets.

– Scaling factor ( f ): As a reminder, the scaling factor f is used in equation δ ′ =
f δ , where δ is the user-specified percentage, and δ ′ is the percentage that our
system uses in the new space. Larger values of f bring recall up to 100%, as
they eventually lead to the filter step not pruning any items and passing the entire
database to the refine step, but also yield a search cost closer to the cost of brute
force search. To choose f for each experiment, we exploited the validation set and
we identified the smallest value of f that produced over 99% recall. The reason
for choosing 99% was that we wanted to be close to 100% recall, but at the same
time to prevent f from being determined by a few query outliers. Note that, while
the chosen value of f produced over 99% recall on the validation set, we still
needed to measure the actual recall obtained on the test set, which is shown in our
experimental results.

q-grams. For q-grams, we made the following choices in our experiments:

– We used the DivideSkip merging algorithm, because it was reported as being the
most efficient one by Li et al (2008a), and it also performed better in a few initial
experiments with our datasets.

– For all UniProt datasets we used a filter tree with a length filter and fan of 10 for
4-grams. We ran experiments for δ = 5%−40% with 5% step and q-gram lengths
between 2 and 6, and we found 4 to be the optimal value. We also experimented
with different fanout values, 5, 20, and 30, for all search ranges, but they did
not make a difference. Since the retrieval cost of q-grams, especially for large δ

values, was approaching that of brute force, we did not consider them further for
the DNA datasets.

RBE. In order to construct the reference set of UniProt Dataset800
401 and Dataset1600

801
we used 2,000 random sample objects from each database, while for Datasetmax

1601
we used 500 reference objects due to the total size of this dataset. For the DNA
Dataset500

100 and Dataset1000
500 500 reference objects were randomly selected from each

database. Thus, when a query is presented, each database object is evaluated based
on the 2,000 triangle inequalities for the first two datasets, and the 500 inequalities
for the other three datasets.

Recall that, for both q-grams and RBE, in the reported cost we have excluded all costs
outside of the refine step.

All methods were implemented in Java, and experiments were ran on a 2GHz Intel
Xeon (QuadCore, but we used a single core) with 4GB of RAM, under Windows 7.
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Fig. 3 Retrieval cost for all methods for UniProt Dataset800
401 (left), Dataset1600

801 (middle), and Datasetmax
1601

(right), respectively. Parameter δ is the percentage of the query length within which we want to retrieve
database matches.
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Fig. 4 Retrieval cost for DRESS and RBE methods for the DNA datasets Dataset500
100 (left) and Dataset1000

501
(right). Parameter δ is the percentage of the query length within which we want to retrieve database
matches.

5.2 Experimental Results

5.2.1 Retrieval Cost and Recall

The retrieval cost (as defined in Section 5.1.3) of all methods for searches in the three
UniProt datasets within ranges 5%−40% (with a step of 5%) of the query length are
shown in Tables 2, 3, 4, and Figure 3. Tables 5 and 6 and Figure 4 show the retrieval
cost for the two DNA datasets, respectively, DRESS and RBE methods for searches
within ranges 5%−30% (with 5% step) of the query length. We note that our method
achieves significantly lower costs than the competitors, especially for large range
values.

More specifically, as an example of the UniProt datasets, the retrieval cost of
DRESS with l = 2 for the three datasets is just 1.51%, 0.46%, and 0.21% for δ =
25%, and 8.73%, 13.85%, and 0.5% for δ = 35%, respectively. These costs are signif-
icantly lower than those of the competitor methods. DRESS beats RBE for all datasets
and search ranges. For Dataset800

401 the retrieval cost of DRESS is lower by about 1.5,
16, 29, 35, 10, 4.6, 3, and 1.7 times for the eight search ranges, for Dataset1600

801 by
5, 23, 35, 41, 31, 2.5, and 1.7 times for δ = 5%− 35%, and for Datasetmax

1601 by 7.5,
31, 50, 63, 61, 75, 39, and 3.7 times for the eight ranges, respectively. Based on these
results, we observe that the longer the test and database sequences, the better our
method performs.
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Regarding q-grams, their retrieval cost is much worse than that of RBE for δ ≥
25% for all datasets. For the first dataset the cost is close to 45%, 80%, 83%, and 90%,
while for Dataset1600

801 the cost is 77%, 80%, 86%, and 90% for δ = 25%,30%,35%,40%,
respectively. For Datasetmax

1601 the cost of q-grams is more than 99% for δ ≥ 25%.
As a result, our method achieves approximately 30, 18, 10, and 5 times lower cost
than q-grams for the first dataset and δ = 25%,30%,35%,40%, respectively. For
Dataset1600

801 DRESS achieves more than 167, 10, 6, and 3 times lower cost than q-
grams for the same four ranges. For Datasetmax

1601 and δ = 25%,30% DRESS has more
than 461 times lower cost than q-grams, for δ = 35% more than 199 times, and for
δ = 40% about 16 times.

For the DNA datasets, the retrieval cost for all δ values is less than 16%, and
it is much lower than that of RBE. Specifically, for Dataset500

100 , the cost of DRESS
is lower by about 9, 11.5, 12, 6.9, 5.2, and 2.9 times for δ = 5%− 30%, and for
Dataset1000

500 , the cost of DRESS is lower by about 3, 4.5, 5, 3.5, 3, and 3.4 times for
δ = 5%−30%, respectively.

We would like to underline that these comparisons are unfair for our method,
since the retrieval costs for the two competitor methods do not include any costs out-
side of the refine step as opposed to DRESS, which includes all costs. Thus, the gain
of using DRESS is even larger than each factor reported above. Another observation
is that DRESS benefits significantly from very large sequences. We also note that,
while our method does not guarantee 100% recall, the actual recall obtained does not
fall below 98% and is actually measured above 99% for most cases, and even 100%
(for UniProt Datasetmax

1601 and δ = 40%, and most δ values for the DNA datasets).

Table 2 Retrieval cost for all methods for UniProt Dataset800
401 . Parameter δ is the percentage of the query

length within which we want to retrieve database matches. Note that in the reported cost for RBE and
q-grams all costs outside of the refine step have been excluded.

δ DRESS(l = 2) RBE q-grams
recall (%) Cost (%) Cost (%) Cost (%)

5% 98.20 0.2127 0.3172 0.0047
10% 98.97 0.2327 3.8266 0.0098
15% 99.22 0.2566 7.3660 0.0165
20% 98.89 0.3253 11.2688 0.0541
25% 99.44 1.5121 15.6807 44.8125
30% 98.95 4.5712 20.9975 80.4539
35% 98.57 8.7319 27.3194 83.1394
40% 98.96 19.6296 34.1353 89.6902

5.2.2 Runtime

The average brute force runtime per query for UniProt Dataset800
401 , Dataset1600

801 , and
Datasetmax

1601 is 256.80, 176.93, and 178.29 seconds, for DNA Dataset500
100 it is 279.16,

and for Dataset1000
500 it is 1,646.22 seconds, respectively.

In Table 7 and Figure 5 we show the runtimes for the three UniProt datasets
and the three methods for all search ranges. The runtimes suggest that DRESS with
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Table 3 Retrieval cost for all methods for UniProt Dataset1600
801 . Parameter δ is the percentage of the query

length within which we want to retrieve database matches. Note that in the reported cost for RBE and
q-grams all costs outside of the refine step have been excluded.

δ DRESS (l = 2) RBE q-grams
recall (%) Cost (%) Cost (%) Cost (%)

5% 99.12 0.1277 0.5850 0.009
10% 99.94 0.1601 3.6452 0.0149
15% 99.14 0.1929 6.6974 0.0306
20% 98.83 0.2483 10.2436 0.1238
25% 98.82 0.4629 14.3579 77.3736
30% 99.86 7.4873 18.7941 80.1438
35% 99.72 13.8502 23.9686 85.7722
40% 99.77 29.8850 29.1247 90.1262

Table 4 Retrieval cost for all methods for UniProt Datasetmax
1601. Parameter δ is the percentage of the query

length within which we want to retrieve database matches. Note that in the reported cost for RBE and
q-grams all costs outside of the refine step have been excluded.

δ DRESS (l = 2) RBE q-grams
recall (%) Cost (%) Cost (%) Cost (%)

5% 98.00 0.0686 0.5133 0.0183
10% 98.94 0.1039 3.1776 0.0500
15% 99.47 0.1226 6.1311 0.0769
20% 99.54 0.1505 9.4873 0.1951
25% 99.63 0.2100 12.8964 99.9937
30% 99.72 0.2168 16.1533 100
35% 99.51 0.5014 19.5718 100
40% 100 6.2159 23.0382 100

Table 5 Retrieval cost for DRESS and RBE for the DNA Dataset500
100 . Parameter δ is the percentage of the

query length within which we want to retrieve database matches. Note that in the reported cost for RBE
all costs outside of the refine step have been excluded.

δ DRESS (l = 2) RBE
recall (%) Cost (%) Cost (%)

5% 100 1.4304 13.0093
10% 100 1.8792 21.6184
15% 100 2.4021 28.6427
20% 98 5.1251 35.1539
25% 99 7.8182 41.0073
30% 100 15.9593 46.1054

Table 6 Retrieval cost for DRESS and RBE for the DNA Dataset1000
500 . Parameter δ is the percentage of

the query length within which we want to retrieve database matches. Note that in the reported cost for RBE
all costs outside of the refine step have been excluded.

δ DRESS (l = 2) RBE
recall (%) Cost (%) Cost (%)

5% 100 1.6818 5.0706
10% 99 2.4278 10.8592
15% 100 3.1381 14.7995
20% 100 5.4510 19.1777
25% 100 9.9005 30.9222
30% 100 9.3096 31.7492
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Table 7 Runtimes for all methods and UniProt datasets. Parameter δ is the percentage of the query length
within which we want to retrieve database matches. Note that the runtimes for RBE include only the refine
step, and the results reported for DRESS are for l = 2. All runtimes are reported in seconds.

Dataset800
401 Dataset1600

801 Datasetmax
1601

δ DRESS RBE q-grams DRESS RBE q-grams DRESS RBE q-grams
5% 0.45 2.77 0.02 0.11 1.43 0.04 0.08 0.62 0.11
10% 0.35 13.19 0.04 0.21 7.03 0.06 0.15 3.75 0.23
15% 0.50 23.25 0.08 0.31 12.68 0.13 0.19 7.39 0.34
20% 0.75 34.22 0.22 0.44 19.24 0.51 0.24 11.74 0.62
25% 5.51 40.50 24.09 0.85 26.81 139.24 0.35 16.30 75.31
30% 10.58 60.88 78.75 13.48 35.05 186.52 0.37 20.90 96.07
35% 20.12 78.36 148.18 24.90 44.56 219.80 0.89 25.90 122.66
40% 45.00 96.59 208.94 53.68 54.05 244.18 11.17 31.24 133.70

Table 8 Runtimes for DRESS and RBE methods and DNA datasets. Parameter δ is the percentage of the
query length within which we want to retrieve database matches. Note that the runtimes for RBE include
only the refine step, and the results reported for DRESS are for l = 2. All runtimes are reported in seconds.

Dataset500
100 Dataset1000

500
δ DRESS RBE DRESS RBE

5% 4.4 47.35 48.18 325.65
10% 5.39 76.08 54.68 499.42
15% 7.11 100.53 73.22 636.37
20% 14.7 121.28 115.72 772.42
25% 22.25 140.91 192.35 941.61
30% 44.56 158.01 187.33 1021.47

l = 2 is much faster than RBE for all datasets and search ranges. Specifically, for
Dataset800

401 DRESS is faster by more than 6, 37, 46, 45, 7, 5.7, 3.8, and 2.1 times
for δ = 5%− 40% (with 5% step), for Dataset1600

801 by more than 13, 33, 40, 43, 31,
2.5, and 1.7 times for δ = 5%− 35%, and for the third dataset by about 7.8, 25,
39, 49, 47, 56, 29, and 3 times for the eight search ranges. Notice that the runtimes
of RBE include only the refine step. Hence, DRESS is even more efficient than the
aforementioned factors.

With regard to q-grams competitor method, for the first UniProt dataset DRESS
(with l = 2) is slower for δ = 5%,10%,15%,20%, but faster by more than 4.3,
7.4, 7.3, and 4.6 times for δ = 25%,30%,35%,40%, respectively. For Dataset1600

801
DRESS is faster than q-grams for δ = 20%,25%,30%,35%,40% by more than 1.15,
163, 13.5, 8.5, and 4.5 times, respectively. For the last UniProt dataset q-grams are
slower than DRESS by approximately 1.4, 1.5, 1.8, 2.6, 215, 260, 138, and 12 times
for the eight search ranges. It should be mentioned that for Dataset1600

801 the runtimes
of q-grams for δ ≥ 30% are higher than the runtime of the brute force approach, mak-
ing the benefit obtained by our method much more obvious. In Figure 5 we demon-
strate the runtime of all methods for the last dataset and all search ranges.

In Table 8 and Figure 6 we show the runtimes for the DNA datasets, for DRESS
(with l = 2) and RBE and all search ranges. For Dataset500

100 DRESS is faster than RBE
for more than 10.7, 14.1, 14.1, 8.2, 6.3, and 3.5 times, and for Dataset1000

500 for more
than 6.7, 9.1, 8.6, 6.6, 4.8, and 5.4 times for the six search ranges δ = 5%− 30%,
respectively, showing again the efficiency of our method.
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Fig. 5 Runtime in seconds for all methods for UniProt Dataset800
401 (left), Dataset1600

801 (middle), and
Datasetmax

1601 (right), respectively. Parameter δ is the percentage of the query length within which we want
to retrieve database matches.
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Fig. 6 Runtime in seconds for DRESS and RBE for DNA Dataset500
100 (left) and Dataset1000

500 (right). Pa-
rameter δ is the percentage of the query length within which we want to retrieve database matches.

5.2.3 DRESS

In Tables 9, 10, 11, 14 and 15 we see the performance of DRESS with l = 2 for
different search ranges in the five datasets. For each search range we show the recall,
retrieval cost, runtime, and also the scale factor f and resulting δ ′ percentage in the
new space. As discussed in Sections 5.2.1 and 5.2.2, DRESS achieves significantly
lower cost and runtimes compared to the competitor methods. In addition, it attains
very high recall, between 98% and 100%, in all cases. We also observe that for the
UniProt datasets f ranges between 1.4 and 4.3, depending on δ , while for the DNA
datasets f ranges from 1.3 to 2.

For completeness, in Tables 12 and 13 we also present the recall, retrieval cost,
and runtime of DRESS with l = 3 and l = 4, respectively, for all UniProt datasets
and search ranges. For each of the three datasets, the scaling factor used for each δ

is the one presented in Tables 9, 10, and 11, respectively. Based on these results, we
observe that the highest recall is 97.87% (for Datasetmax

1601 and δ = 10%), and that
for all datasets and search ranges the recall values are much lower than the respec-
tive ones for DRESS with l = 2; in some cases the recall is even less than 70%. In
addition, DRESS with l = 3 achieves much better recall than DRESS with l = 4 for
all UniProt datasets and search ranges, except for Dataset800

401 where it is worse for
δ = 5%,10%,20%. The reason for obtaining lower recall values for DRESS with
l = 3 and l = 4 than DRESS with l = 2 is because there are not many codewords with
such lengths and high frequency. As a result, the length of the mapped strings is very
small, and useful information is lost. Referring to the retrieval cost, for all cases it
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is less than 1% showing that the number of database strings evaluated is very small.
However, this is reflected in the recall attained, since oftentimes the database strings
used in the refine step do not include the correct ones (of which the distance from the
queries is within the search range). Note that the runtimes are also very small and, in
general, lower than the respective ones for DRESS with l = 2 (especially for large δ

values).

Table 9 The performance of DRESS with l = 2 on UniProt Dataset800
401 . The number of codewords is 4,

and δ ′ is the percentage used in the new string space: δ ′ = δ f .

δ recall Cost Runtime f δ ’
(%) (%) (seconds) (%)

5% 98.20 0.2127 0.45 4.3 21.50
10% 98.97 0.2327 0.35 2.9 29.00
15% 99.22 0.2566 0.5 2.5 37.50
20% 98.89 0.3253 0.75 2.2 44.00
25% 99.44 1.5121 5.51 2.1 52.50
30% 98.95 4.5712 10.58 1.9 57.00
35% 98.57 8.7319 20.12 1.7 59.50
40% 98.96 19.6296 45.00 1.6 64.00

Table 10 The performance of DRESS with l = 2 on UniProt Dataset1600
801 . The number of codewords is 4,

and δ ′ is the percentage used in the new string space: δ ′ = δ f .

δ recall Cost Runtime f δ ’
(%) (%) (seconds) (%)

5% 99.12 0.1277 0.11 3.6 18.00
10% 99.94 0.1601 0.21 3.5 35.00
15% 99.14 0.1929 0.31 2.7 40.50
20% 98.83 0.2483 0.44 2.2 44.00
25% 98.82 0.4629 0.85 1.9 47.50
30% 99.86 7.4873 13.48 1.9 57.00
35% 99.72 13.8502 24.9 1.7 59.50
40% 99.77 29.8850 53.68 1.6 64.00

Table 11 The performance of DRESS with l = 2 on UniProt Datasetmax
1601. The number of codewords is 4,

and δ ′ is the percentage used in the new string space: δ ′ = δ f .

δ recall Cost Runtime f δ ’
(%) (%) (seconds) (%)

5% 98.00 0.0686 0.08 2.9 14.50
10% 98.94 0.1039 0.15 3 30.00
15% 99.47 0.1226 0.19 2.3 34.50
20% 99.54 0.1505 0.24 2 40.00
25% 99.63 0.2100 0.35 1.8 45.00
30% 99.72 0.2168 0.37 1.5 45.00
35% 99.51 0.5014 0.89 1.4 49.00
40% 100 6.2159 11.17 1.4 56.00
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Table 12 The performance of DRESS with l = 3 on all UniProt datasets. The scaling factor used for each
δ value is the one reported in Tables 9, 10 and 11 for each of the three datasets, respectively. The number
of codewords is 4, and the runtimes are reported in seconds.

Dataset800
401 Dataset1600

801 Datasetmax
1601

δ Recall (%) Cost (%) Runtime Recall (%) Cost (%) Runtime Recall (%) Cost (%) Runtime
5% 86.94 0.1935 0.28 95.22 0.1082 0.04 92.00 0.0567 0.05
10% 80.76 0.1968 0.26 88.79 0.1117 0.09 97.87 0.0782 0.09
15% 88.31 0.2020 0.31 96.57 0.1246 0.13 82.91 0.0894 0.11
20% 78.94 0.2059 0.49 89.38 0.1350 0.19 89.40 0.1063 0.15
25% 81.44 0.2421 1.42 84.64 0.1476 0.26 89.38 0.1353 0.21
30% 80.11 0.3189 1.07 80.67 0.2689 0.52 78.03 0.1391 0.23
35% 64.41 0.3458 1.64 72.80 0.3971 0.80 80.78 0.1820 0.30
40% 68.58 0.7694 2.30 69.54 0.8321 1.53 85.29 0.3846 0.68

Table 13 The performance of DRESS with l = 4 on all UniProt datasets. The scaling factor used for each
δ value is the one reported in Tables 9, 10 and 11 for each of the three datasets, respectively. The number
of codewords is 4, and the runtimes are reported in seconds.

Dataset800
401 Dataset1600

801 Datasetmax
1601

δ Recall (%) Cost (%) Runtime Recall (%) Cost (%) Runtime Recall (%) Cost (%) Runtime
5% 92.57 0.1952 0.59 90.09 0.1076 0.09 86.00 0.0565 0.16
10% 87.70 0.1969 0.50 86.33 0.1119 0.18 85.11 0.0786 0.17
15% 82.83 0.2006 0.60 88.11 0.1214 0.24 79.37 0.0866 0.19
20% 80.90 0.2048 0.93 75.64 0.1250 0.34 79.26 0.1053 0.24
25% 79.92 0.2179 2.00 64.41 0.1290 0.46 75.82 0.1221 0.27
30% 69.16 0.2194 1.46 64.02 0.1583 0.61 62.25 0.1267 0.31
35% 58.50 0.2235 1.61 49.85 0.1698 0.73 58.39 0.1437 0.32
40% 59.80 0.2587 1.64 52.61 0.2169 0.83 72.07 0.1922 0.40

Table 14 The performance of DRESS with l = 2 on DNA Dataset500
100 . The number of codewords is 4, and

δ ′ is the percentage used in the new string space: δ ′ = δ f .

δ recall Cost Runtime f δ ’
(%) (%) (seconds) (%)

5% 100 1.4304 4.4 2 10.00
10% 100 1.8792 5.39 1.8 18.00
15% 100 2.4021 7.11 1.5 22.50
20% 98 5.1251 14.7 1.6 32.00
25% 99 7.8182 22.25 1.5 37.50
30% 100 15.9593 44.56 1.4 42.00

Table 15 The performance of DRESS with l = 2 on DNA Dataset1000
500 . The number of codewords is 4,

and δ ′ is the percentage used in the new string space: δ ′ = δ f .

δ recall Cost Runtime f δ ’
(%) (%) (seconds) (%)

5% 100 1.6818 48.18 1.5 7.50
10% 99 2.4278 54.68 1.5 15.00
15% 100 3.1381 73.22 1.5 22.50
20% 100 5.4510 115.72 1.7 34.00
25% 100 9.9005 192.35 1.5 37.50
30% 100 9.3096 187.33 1.3 39.00

In Tables 16, 19, 20, and 23 we show the difference in average length between
the original database strings (Tables 16 and 19) and query strings (Tables 20 and
23) and their mapped versions for DRESS with l = 2 after applying the length fil-
ter. We also present the respective differences in average length for DRESS with
l = 3 and l = 4 for the database strings (Tables 17 and 18) and query strings (Ta-
bles 21 and 22). For a specific δ value in the new space, for each query, the sum of
the lengths of the mapped database strings that pass the length filter is found, along
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with the average mapped database string length. Then, the average mapped database
string length over all queries is computed, which is the value reported in Tables 16-
19 for each search range. According to the results, we note that, on average, for
DRESS with l = 2 the mapped queries were about 18-20 times shorter than the orig-
inal queries, and that the mapped database strings were about 50 times shorter than
the original database strings for UniProt Dataset800

401 and Dataset1600
801 , and about 35

times shorter for Datasetmax
1601. For DRESS with l = 3, the mapped queries were about

50-70 shorter than the original queries, and the mapped database strings about 700
times shorter than the original database strings for Dataset800

401 and Dataset1600
801 , and

400 shorter for Datasetmax
1601. For DRESS with l = 4, the mapped queries were shorter

than the original ones by 80-130 times, and the mapped database strings by more
than 8,500 times for UniProt Dataset800

401 and Dataset1600
801 , and about 2,700 times for

the last UniProt datasets. Referring to the DNA datasets and DRESS with l = 2, on
average, mapped queries were about 4.1 times shorter than the original queries, and
the mapped database strings were about 4.6 times shorter than the original database
strings for Dataset500

100 and 4.5 times shorter for Dataset1000
500 .

The fact that the mapped queries are not shortened by as large a factor as the
database strings is expected; the mapping used for every query (and that is applied
to the database, so as to process that query) is query-specific, and identifies the most
frequently occurring codewords in the query. This conclusion is more obvious in
the UniProt datasets due to the fact that they have a much larger alphabet size than
the DNA datasets. Moreover, by looking carefully at column “DRESS-4%” for all
UniProt datasets, we conclude that the ratio of the average mapped database string
length over the original average database string length decreases as the δ value in-
creases. This is reasonable since, when the search range increases, more and longer
database strings pass the length filter, resulting in more deleted elements while the
top t most frequent codewords are the same.

Table 16 The average length of the database sequences in the original space and in the new string space
produced by DRESS using the top 4 codewords (DRESS-4) and l = 2 for all UniProt datasets. The %
columns show the ratio between the new size and the original size (e.g., in DRESS-4% for δ = 5% and the
database of Dataset800

401 , 2.0381% = 10.85/532.36 * 100).

Dataset800
401 Dataset1600

801 Datasetmax
1601

δ original DRESS-4 DRESS-4% original DRESS-4 DRESS-4% original DRESS-4 DRESS-4%
5% 532.36 10.85 2.0381 1,036.16 21.01 2.0277 2,423.41 72.98 3.0115

10% 532.36 10.77 2.0231 1,036.16 20.85 2.0122 2,423.41 71.09 2.9335
15% 532.36 10.77 2.0231 1,036.16 20.69 1.9968 2,423.41 69.17 2.8542
20% 532.36 10.55 1.9817 1,036.16 20.54 1.9823 2,423.41 67.51 2.7857
25% 532.36 10.55 1.9817 1,036.16 20.40 1.9688 2,423.41 65.27 2.6933
30% 532.36 10.49 1.9705 1,036.16 20.30 1.9592 2,423.41 63.52 2.6211
35% 532.36 10.45 1.9630 1,036.16 20.25 1.9543 2,423.41 60.67 2.5035
40% 532.36 10.44 1.9611 1,036.16 20.26 1.9553 2,423.41 58.63 2.4193

5.2.4 RBE

In Tables 24 and 25 we show the performance of RBE for the three UniProt and the
two DNA datasets, respectively. In particular, for different search ranges, we show
the retrieval cost, the percentage of database objects that were pruned using the em-
bedding, and the runtime. For completeness, we mention that the embedding cost for



DRESS: Dimensionality Reduction for Efficient Sequence Search 27

Table 17 The average length of the database sequences in the original space and in the new string space
produced by DRESS using the top 4 codewords (DRESS-4) and l = 3 for all UniProt datasets. The %
columns show the ratio between the new size and the original size.

Dataset800
401 Dataset1600

801 Datasetmax
1601

δ original DRESS-4 DRESS-4% original DRESS-4 DRESS-4% original DRESS-4 DRESS-4%
5% 532.36 0.77 0.1416 1,036.16 1.51 0.1457 2,423.41 6.99 0.2884

10% 532.36 0.76 0.1428 1,036.16 1.48 0.1428 2,423.41 6.36 0.2624
15% 532.36 0.75 0.1409 1,036.16 1.47 0.1419 2,423.41 6.01 0.2480
20% 532.36 0.74 0.1390 1,036.16 1.45 0.1399 2,423.41 5.80 0.2393
25% 532.36 0.73 0.1371 1,036.16 1.44 0.1390 2,423.41 5.51 0.2274
30% 532.36 0.73 0.1371 1,036.16 1.43 0.1380 2,423.41 5.27 0.2175
35% 532.36 0.73 0.1371 1,036.16 1.43 0.1380 2,423.41 4.96 0.2047
40% 532.36 0.73 0.1371 1,036.16 1.43 0.1380 2,423.41 4/77 0.1968

Table 18 The average length of the database sequences in the original space and in the new string space
produced by DRESS using the top 4 codewords (DRESS-4) and l = 4 for all UniProt datasets. The %
columns show the ratio between the new size and the original size.

Dataset800
401 Dataset1600

801 Datasetmax
1601

δ original DRESS-4 DRESS-4% original DRESS-4 DRESS-4% original DRESS-4 DRESS-4%
5% 532.36 0.07 0.0131 1,036.16 0.14 0.0135 2,423.41 1.33 0.0549

10% 532.36 0.06 0.0113 1,036.16 0.13 0.0125 2,423.41 1.06 0.0437
15% 532.36 0.06 0.0113 1,036.16 0.12 0.0116 2,423.41 0.95 0.0392
20% 532.36 0.06 0.0113 1,036.16 0.12 0.0116 2,423.41 0.90 0.0371
25% 532.36 0.06 0.0113 1,036.16 0.12 0.0116 2,423.41 0.82 0.0338
30% 532.36 0.06 0.0113 1,036.16 0.12 0.0116 2,423.41 0.74 0.0305
35% 532.36 0.06 0.0113 1,036.16 0.11 0.0106 2,423.41 0.67 0.0276
40% 532.36 0.06 0.0113 1,036.16 0.11 0.0106 2,423.41 0.64 0.0264

Table 19 The average length of the database sequences in the original space and in the new string space
produced by DRESS using the top 4 codewords (DRESS-4) and l = 2 for the DNA datasets. The %
columns show the ratio between the new size and the original size (e.g., in DRESS-4% for δ = 5% and the
database of Dataset1000

500 , 21.8069% = 163.58 / 750.13 * 100).

Dataset500
100 Dataset1000

500
δ original DRESS-4 DRESS-4% original DRESS-4 DRESS-4%

5% 300.21 67.01 22.3210 750.13 163.58 21.8069
10% 300.21 65.07 21.6748 750.13 164.20 21.8895
15% 300.21 66.52 22.1578 750.13 166.83 22.2401
20% 300.21 64.21 21.3884 750.13 166.63 22.0802
25% 300.21 62.87 20.9420 750.13 165.54 22.0682
30% 300.21 62.52 20.8254 750.13 168.58 22.4734

Table 20 The average length of the test sequences in the original space and in the new string space pro-
duced by DRESS using the top 4 codewords (DRESS-4) and l = 2 for all UniProt datasets. The % columns
show the ratio between the new size and the original size (e.g., in DRESS-4% for Dataset800

401 , 5.6711% =
30.18/532.17 * 100). Note that the sizes are independent of δ for the test sequences.

Dataset800
401 Dataset1600

801 Datasetmax
1601

original DRESS-4 DRESS-4% original DRESS-4 DRESS-4% original DRESS-4 DRESS-4%
532.17 30.18 5.6711 1,019.56 52.42 5.1414 3,263.87 165.34 5.0658

this method reflects computing the distances between the query and the reference ob-
jects, and it is 1.53%, 7.25%, and 18.93% of the brute force cost for the three UniProt
datasets, and less than 0.1% for the DNA datasets, respectively. Note that, as men-
tioned in Section 5.1.3, for all costs reported for this method we have excluded the
above embedding cost. The same holds for the runtimes, where only the runtime of
the refine step is reported. Finally, the percentage of database objects that were pruned
drops from approximately 99% (δ = 5%) to around (on average) 69% (δ = 40%) for
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Table 21 The average length of the test sequences in the original space and in the new string space pro-
duced by DRESS using the top 4 codewords (DRESS-4) and l = 3 for all UniProt datasets. The % columns
show the ratio between the new size and the original size. Note that the sizes are independent of δ for the
test sequences.

Dataset800
401 Dataset1600

801 Datasetmax
1601

original DRESS-4 DRESS-4% original DRESS-4 DRESS-4% original DRESS-4 DRESS-4%
532.17 10.73 2.0163 1,019.56 16.38 1.6066 3,263.87 47.90 1.4676

Table 22 The average length of the test sequences in the original space and in the new string space pro-
duced by DRESS using the top 4 codewords (DRESS-4) and l = 4 for all UniProt datasets. The % columns
show the ratio between the new size and the original size. Note that the sizes are independent of δ for the
test sequences.

Dataset800
401 Dataset1600

801 Datasetmax
1601

original DRESS-4 DRESS-4% original DRESS-4 DRESS-4% original DRESS-4 DRESS-4%
532.17 6.49 1.2195 1,019.56 9.77 0.9583 3,263.87 25.89 0.7932

Table 23 The average length of the test sequences in the original space and in the new string space pro-
duced by DRESS using the top 4 codewords (DRESS-4) for the DNA datasets. The % columns show
the ratio between the new size and the original size (e.g., in DRESS-4% for δ = 5% and the database of
Dataset1000

500 , 24.1956% = 171.07/707.03 * 100).

Dataset500
100 Dataset1000

500
δ original DRESS-4 DRESS-4% original DRESS-4 DRESS-4%

5% 289.71 72.08 24.8801 707.03 171.07 24.1956
10% 289.61 70.68 24.4052 707.09 171.57 24.2642
15% 289.71 72.08 24.8801 705.93 173.52 24.5803
20% 289.86 70.62 24.3635 706.27 173.43 24.5558
25% 289.56 70.29 24.2748 705.97 172.55 24.4415
30% 289.80 69.64 24.0304 706.75 174.46 24.6848

the UniProt datasets, from 88% (δ = 5%) to 55% (δ = 30%) for the DNA Dataset500
100 ,

and from 93% (δ = 5%) to 61% (δ = 30%) for DNA Dataset800
401 .

Table 24 The performance of RBE for all UniProt datasets. For Dataset800
401 and Dataset1600

801 2,000 refer-
ence objects were randomly selected, and for Datasetmax

1601 500 reference objects were used (again randomly
chosen). The reported cost does not include any costs outside of the refine step.

Dataset800
401 Dataset1600

801 Datasetmax
1601

δ Cost (%) Pruned (%) Runtime Cost (%) Pruned (%) Runtime Cost (%) Pruned (%) Runtime
5% 0.3172 99.71 2.77 0.585 99.38 1.43 0.5133 99.38 0.62

10% 3.8266 96.07 13.19 3.6452 96.13 7.03 3.1776 96.17 3.75
15% 7.3660 92.44 23.25 6.6974 92.95 12.68 6.1311 92.71 7.39
20% 11.2688 88.42 34.22 10.2436 89.24 19.24 9.4873 88.87 11.74
25% 15.6807 83.83 40.5 14.3579 84.92 26.81 12.8964 85.05 16.3
30% 20.9975 78.26 60.88 18.7941 80.28 35.05 16.1533 81.47 20.9
35% 27.3194 71.61 78.36 23.9686 74.86 44.56 19.5718 77.70 25.9
40% 34.1353 64.50 96.59 29.1247 69.54 54.05 23.0382 73.89 31.24

6 Conclusions and Future Work

We have proposed a novel method for whole sequence matching in large string databases.
The main advantage over state-of-the-art competitors is that it does not require any
cumbersome training step and it can handle large query sizes efficiently without loss
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Table 25 The performance of RBE for the DNA datasets. For both datasets 500 reference objects were
randomly selected. The reported cost does not include any costs outside of the refine step.

Dataset500
100 Dataset1000

500
δ Cost (%) Pruned (%) Runtime Cost (%) Pruned (%) Runtime

5% 13.0093 88.33 47.35 5.0706 93.06 325.65
10% 21.6184 79.89 76.08 10.8592 85.70 499.42
15% 28.6427 73.00 100.53 14.7995 80.83 636.37
20% 35.1539 66.53 121.28 19.1777 75.52 772.42
25% 41.0073 60.52 140.91 30.9222 62.29 941.61
30% 46.1054 54.91 158.01 31.7492 61.13 1021.47

in accuracy. The experimental results on three protein datasets and two DNA datasets
demonstrate that for higher values of search range DRESS produces significantly
lower costs and runtimes than the competitors. One price that we pay, compared to
the competitors, is the loss of guarantee of 100% recall. At the same time, we believe
that this price can be an acceptable trade-off in several domains, given the significant
runtime savings that our method achieves.

It will be interesting to explore directions for further improving the performance
of our method. One approach may be to implement multiple filter steps, in place of the
single filter step that our method uses. These filter steps can be applied in sequence,
so that each filter step is applied only on the candidates selected by the previous step,
and each filter step does somewhat more work (e.g., by using more codewords) than
the previous step, so as to prune some more candidates. Finally, we would like to
study the performance of DRESS on sequences from other domains, such as text.
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