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Abstract Many distance or similarity measures have been proposed for time

series similarity search. However, none of these measures is guaranteed to be

optimal when used for 1-Nearest Neighbor (NN) classification. In this paper we

study the problem of selecting the most appropriate distance measure, given a

pool of time series distance measures and a query, so as to perform NN classifi-

cation of the query. We propose a framework for solving this problem, by identi-

fying, given the query, the distance measure most likely to produce the correct

classification result for that query. From this proposed framework, we derive

three specific methods, that differ from each other in the way they estimate the

probability that a distance measure correctly classifies a query object. In our

experiments, our pool of measures consists of Dynamic Time Warping (DTW),
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Move-Split-Merge (MSM), and Edit distance with Real Penalty (ERP). Based

on experimental evaluation with 45 datasets, the best-performing of the three

proposed methods provides the best results in terms of classification error

rate, compared to the competitors, which include using the Cross Validation

method for selecting the distance measure in each dataset, as well as using a

single specific distance measure (DTW, MSM, or ERP) across all datasets.

Keywords Time series · Classification · Distance Measures

1 Introduction

Collections of time series data are produced in vast quantities and in a wide

range of application domains. Such time series data contain valuable informa-

tion, which can be extracted using efficient knowledge discovery methods. A

fundamental task in knowledge discovery is 1-Nearest Neighbor (NN) classi-

fication. According to this task, given a dataset of time series belonging to

certain categories/classes (also known as training time series) and an unclas-

sified query time series, we identify its class by looking at the class of its

nearest neighbor. The nearest neighbor is found by computing the distance

between the query and all time series in the dataset via a distance measure,

and then selecting the time series with the smallest distance. In such a setting,

the key challenge is to define or choose an appropriate distance measure that

is expected to retrieve the correct class label for a given query.

Several distance and similarity measures have been developed for perform-

ing whole sequence matching between two time series [27], such as Dynamic

Time Warping (DTW) [17], Edit Distance on Real sequence (EDR) [8], Edit

distance with Real Penalty (ERP) [7], Time Warp Edit Distance (TWED) [22],

and Move-Split-Merge (MSM) [25]. Moreover, alternative methods have been

developed for the same problem, that focus on global or local structural sim-
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ilarity, such as SpaDe [9], Shapelets [29], DFT [1], Bag-Of-Patterns [20], and

SAX [19]. Nonetheless, none of these methods is guaranteed to be optimal for

the task of NN classification. In other words, some measure or method may

fail to correctly classify some queries, while some other measure or method

may be successful with these queries, and vice versa.

We will now illustrate the previous observation with a motivating example.

The UCR time series repository [15] provides a collection of 45 time series

datasets from a variety of application domains. More information about these

datasets can be found in Section 5.1. Suppose that we have a pool of distance

measures to choose from, consisting for example of DTW and MSM. Our main

question is the following: given a query time series, that we want to classify,

which of these two measures is more likely to classify the query correctly under

nearest neighbor classification? Unfortunately the answer to this question is

not straightforward.

In Figure 1 we present, for each of the 45 datasets in the UCR repository,

the number of time series where the class of the NN for DTW is different than

that of MSM (red diamond). We also show, for these datasets, how many time

series are classified correctly by either DTW or MSM (blue cross and green

circle, respectively). Finally, we show the number of time series misclassified

by both DTW and MSM (black asterisk). We note that, in each dataset, there

are several objects where DTW and MSM produce different class labels. In

some of those cases DTW gives the right answer, in some of those cases MSM

gives the right answer. Neither of the two distances has a clear advantage.

The more distance measures we have available to choose from, the higher

the chance that at least one of those distance measures correctly classifies

the given query. Figure 2 illustrates results of our study when more distance

measures are added to our pool. Specifically, we show for each dataset the

number of misclassified time series when the pool consists of only DTW (blue
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Fig. 1 An example that illustrates the challenging nature of our problem. We used 45
datasets from the UCR time series repository [15] (x axis). On the y axis we show the
number of time series for each dataset that are classified correctly by either DTW or MSM,
or misclassified by both, when the class of the Nearest Neighbor object is different between
DTW and MSM. It can be seen that the number of time series correctly classified by DTW
is comparable to that of MSM.

asterisk), or MSM and DTW (black cross), or ERP, MSM, and DTW (red

circle). For example, for datasets with IDs 41 and 44, there are respectively

788 and 396 time series misclassified when our pool consists of only DTW.

When MSM is also added to the pool, the numbers of time series misclassified

by both MSM and DTW drop to 413 and 179, respectively. Finally, when ERP

is also included in the pool, the numbers of time series that are misclassified

by all three measures drop further to 342 and 145, respectively, for the same

datasets.

The typical way of performing nearest neighbor classification is to choose a

specific distance measure, and use that distance measure to classify every single

test object. However, by looking at Figures 1 and 2, we note that different
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Fig. 2 An example showing that the number of available distance measures may affect the
classification accuracy. We used 45 datasets from the UCR time series repository (x axis).
On the y axis we show the number of time series for each dataset that are misclassified by
all measures in the pool. It can be seen that as the number of measures in the pool increases
(from 1 to 3), the number of time series that are still incorrectly classified by all measures
in the pool decreases for most of the datasets, or remains the same.

distance measures oftentimes disagree with each other. In such cases, a natural

question that arises is whether we can obtain a method that can automatically

choose, given a query object, the distance measure that produces the correct

answer for that query object. If we had such a method, and it worked perfectly,

then we would only misclassify objects for which all distance measures produce

a wrong answer. For example, with such a perfect method, the error rates

attained for the 45 datasets of Figure 2 would correspond to the red circles,

as opposed to the higher rates attained when simply using a single distance

measure in all cases.

This is exactly the challenging problem that we study in this paper: given

a pool of distance measures and a query time series, how to identify the most

appropriate distance measure for NN classification for that query. Note that
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the focus of this paper is not to find the best distance measure or “golden”

standard method for time series NN classification, but the most suitable one

for a given query in a predefined pool of measures.

More precisely, the novelty of our paper can be summarized by the following

four key contributions:

– To the best of our knowledge, there exists no relevant work towards select-

ing the best measure, given a query and a pool of measures, for time series

NN classification.

– We propose a framework for solving the aforementioned problem, where

the selection of the appropriate distance measure is performed by measur-

ing, for each distance measure, the likelihood that the distance measure

will produce the correct result for a query. The framework is also query-

sensitive, i.e., the selected distance measure can be different for each query.

– Within this framework we propose three methods, that employ different

schemes for measuring the likelihood that a distance measure will correctly

classify a specific query object. All three methods measure this likelihood

based on the concept of the T -neighborhood of a query: this T -neighborhood

is a set of training objects that are similar to the query in some specific

property. The three methods differ from each other in that each method

uses a different property to identify training objects similar to the query.

– We provide an extensive experimental evaluation of the proposed methods

on a large collection of 45 time series datasets from the UCR repository

[15]. In this evaluation, out of the three proposed methods, the method

that produces the best performance in terms of classification results is

called homogeneity-based. This method also outperforms all competitors

in a statistically significant manner.
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2 Related Work

Several methods and time series representations have been proposed for time

series similarity search [27]. The most common measure for computing the

distance between time series is DTW [17], which can be used to compare

sequences that may vary in time or speed. Several variants of DTW have also

been proposed, such as constrained DTW (cDTW) [24], EDR [8], and ERP

[7]. The most attractive property of these algorithms is that they are robust to

misalignments along the temporal axis, i.e., to differences in the speed in which

observations evolve across time. The first variant, cDTW, avoids the matching

of elements that are temporally far away from each other, by bounding the

difference of the sequences’ indices. ERP is more robust to noisy data compared

to EDR, while both can be used for pruning purposes since they satisfy the

triangle inequality. Some of these methods, such as DTW and cDTW, have

been shown to achieve high accuracy in applications such as time series mining

and classification [8,14].

A novel measure for time series, called MSM, was proposed recently [25].

MSM is metric and uses three fundamental operations, Move, Split, and Merge,

which can be applied in some sequence to transform any time series into any

other time series. In addition, it is invariant to the choice of origin, as opposed

to ERP. Another widely used measure for finding the similarity between two

sequences is the Longest Common SubSequence (LCSS) [5,6]. As its name

implies, LCSS finds the largest number of elements that are common in both

sequences, and it allows for gaps on both sequences during their alignment.

The Edit distance [18], which is a metric measure, can be used to find the

distance between two strings. It is defined as the minimum number of edit

operations needed to transform one string into the other, with the allowable

operations being insertion, deletion, and substitution of a single character.
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The Edit distance with several variations has also been used for time series

matching, for example in music retrieval [16,26]. Finally, TWED [22] is a

metric distance measure whose goal is to find a sequence of edit operations

(deleting an element from any time series and matching two elements) allowing

for the simultaneous transformation of two time series so as to superimpose

them with minimal cost. Additionally, TWED is an elastic measure supporting

local time shifting using timestamp differences between compared points. All

the above measures could be used in our pool of measures for NN classification.

Another recent line of research has been focusing on identifying discrimi-

nant time series subsequence patterns, known as Shapelets [29] and variants

[13,21,23,28]. Shapelets are mainly used for time series classification, since due

to their construction they are expected to be more informative and represen-

tative of some class. Other time series representations that capture global or

local structural characteristics include SpaDe [9], DFT [1], and SAX [19]. The

proposed method is orthogonal to these classification methods; these methods

could be employed for NN classification in time series databases, and hence

can be added in the pool of measures from which the proposed framework

selects the best one for each query.

In order to deal with the curse of dimensionality when performing NN clas-

sification, a linear discriminant analysis has been proposed [12] to estimate an

effective metric for computing neighborhoods. Based on centroid information,

local decision boundaries are determined, the neighborhoods are shrunk in

directions orthogonal to these boundaries, and any NN classifier can be per-

formed on the modified neighborhoods. Similarly to this approach, Domeniconi

et al. [11] propose an adaptive NN classification method to minimize estima-

tion bias in high dimensions. Based on Chi-squared distance analysis, a flexible

metric, which depends on query locations in the feature space, is estimated

for computing neighborhoods that are constricted along the most influential
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feature dimensions. Both of these methods are designed for patterns that are

represented as vectors in Euclidean space, and thus they are not applicable to

time series, which is the focus of this work. Furthermore, they do not select

the most appropriate query-based measure from a pool of measures, rather

they try to find the most influential dimensions. Finally, Athitsos et al. [2]

proposed a method for approximate nearest neighbor retrieval by mapping

objects from the original space to a real vector space using a set of reference

objects. The query-sensitive nature of that work is that the distance measure

used in the vector space is a weighted Lp-norm, where the weights are learned

via boosting during an expensive pre-processing step. In our work, we tackle a

much different problem, that of classifying a time series by selecting the most

appropriate distance measure for the given query out of a pool of measures.

3 Background

Fig. 3 Illustration of the 1-NN classification task. Given a query Q and a collection of time
series T , the class of the retrieved 1-NN (closest) time series will be the class of Q.
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Table 1 Notation Table.

Notation Explanation

X = (x1, . . . , x|X|) A 1-dimensional time series of length |X|.
dist A distance measure.

ddist(X,Y ) A distance function computing dist between X and Y .

L = {dist1, . . . , distn} A pool of distance measures.

T = {X1, . . . , XN} A collection of N training time series.

Ddistx
Xi,T Set of distances between Xi and all time series in T using distx.

fscheme A scheme function.

si The score given by a scheme function fscheme for Xi.

oi The closest to Xi training time series for some distx.

cri The 1-NN classification result for Xi using distx.

s An array of all si values for some distx.

o An array of all oi values for some distx.

cr An array of all cri values for some distx.

s′distx The sorted values of s for some distx.

o′distx The sorted indices of o based on the sorting of s′distx .

cr′distx The sorted indices of cr based on the sorting of s′distx .

Q A query time series.

Qo The closest to Q training time series.

Qs The score given by a scheme function fscheme for Q.

pos(Qs, s
′distx) The position of Qs in s′distx .

T The T -neighborhood parameter.

vdistx
The T -neighborhood classification vector for some distx.

P distx

E The 1-NN classification error probability for some distx.

distmin The measure with the lowest classification error probability.

VT The set of T -neighborhood classification vectors for all measures.

pval(VT , α) The p-value computed by ANOVA with significance threshold α.

In this section we introduce some background definitions and formulate the

problem studied in this paper. For the convenience of the reader, in Table 1

we present the notation used throughout the paper.

Let X = (x1, . . . , x|X|) and Y = (y1, . . . , y|Y |) be two time series, where

xi, yj ∈ R, ∀(i = 1, . . . , |X|; j = 1, . . . , |Y |). A time series can be seen as a

variable evolving over time, sampled at regular time intervals. Examples of

time series are shown in Figure 3. Given a distance measure dist, the dis-
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tance between X and Y is defined as a function ddist(X,Y ). Additionally,

L = {dist1, . . . , distn} defines a pool of distance measures, where each distx,

x = 1, . . . , n, is a distance measure.

Problem Setting. Given a collection of time series T = {X1, . . . , XN}, a

pool of distance measures L, and a query time series Q, we want to identify

the distance measure distx ∈ L that is most suitable to perform NN classifi-

cation for Q.

An illustration of the 1-NN classification task is given in Figure 3. The class

of the retrieved 1-NN will be the class assigned to Q. In this paper we explore

three time series distance measures, which are used to construct our pool L.

These measures are: Dynamic Time Warping (DTW) [17], Edit distance with

Real Penalty (ERP) [7], and Move-Split-Merge (MSM) [25]. The selection of

these measures is based on the following three rationales: (1) DTW is exten-

sively used for time series matching and has been shown to provide excellent

classification accuracy results [27], (2) ERP is a variant of DTW and Edit

Distance that fixes the non-metric property of DTW, and (3) MSM is a met-

ric distance measure that has been proposed very recently and is shown to

outperform ERP and DTW in terms of NN classification accuracy for several

datasets. These three measures are described next in more detail.

It should be noted that we do not make any claim that these are the best

measures among all existing ones. Our aim is to demonstrate that the proposed

framework can achieve very competitive performance to existing measures in

terms of NN classification accuracy, since instead of using only a single distance

measure it exploits the strengths of each measure in the pool and identifies
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the most appropriate one for a given query. Hence, other measures could be

used alternatively without any change in the framework.

3.1 Dynamic Time Warping

DTW identifies an optimal alignment between two time series and computes

the matching cost of that alignment in quadratic computational time. Each

time series element is allowed to match with at least one element of the

other time series, allowing for local stretching and shrinking along the time

axis. Given two time series X and Y , their DTW distance dDTW(X,Y ) is

defined recursively using a dynamic programming matrix [4] Cost of size

(|X|+1)×(|Y |+1). A null element is added at the beginning of X and Y , and

it matches the other null element with zero score and any other element with

a score of ∞. Let Costi,j denote the element at the i-th row and j-th column

of Cost. Denoting with Lp(xi, yj) the Lp norm based distance measure of xi

and yj , we define dDTW(X,Y ) as follows:

Initialization:

Cost0,0(X,Y ) = 0 , Cost0,j(X,Y ) =∞ , Costi,0(X,Y ) =∞ .

Main Loop:

Costi,j(X,Y ) = Lp(xi, yj) + min


Costi,j−1(X,Y ),

Costi−1,j(X,Y ),

Costi−1,j−1(X,Y )


∀(i = 1, . . . , |X|; j = 1, . . . , |Y |) .
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Output:

dDTW(X,Y ) = Cost|X|,|Y |(X,Y ) .

3.2 Edit distance with Real Penalty

ERP [7] is a metric distance measure with quadratic time complexity that can

be seen as a variant of the L1-norm, EDR, and DTW. The main advantage

over DTW is that it satisfies the triangle inequality. Specifically, while DTW

replicates the value of the previous element when a gap is introduced in either

time series, ERP applies a nonnegative constant penalty g for computing the

distance between the gap and the corresponding element from the other time

series. In the case of non-gap elements, the matching penalty is simply their

L1 norm. Given a nonnegative constant parameter g, function G is used in

computing values for the Cost array, where G(xi, yj) is defined as follows:

G(xi, yj) =


|xi − yj |, if xi and yj are not gaps,

|xi − g|, if yj is a gap,

|g − yj |, if xi is a gap .

The distance dERP(X,Y ) is now defined as follows:

Initialization:

Cost0,j(X,Y ) =

|Y |∑
j=1

|yj − g|

Costi,0(X,Y ) =

|X|∑
i=1

|xi − g|
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Main Loop:

Costi,j(X,Y ) = min


Costi−1,j−1(X,Y ) +G(xi, yj),

Costi−1,j(X,Y ) +G(xi, gap),

Costi,j−1(X,Y ) +G(gap, yj)


∀(i = 1, . . . , |X|; j = 1, . . . , |Y |) .

Output:

dERP(X,Y ) = Cost|X|,|Y |(X,Y ) .

3.3 Move-Split-Merge

MSM [25] is a metric time series distance measure, robust to misalignments,

translation invariant, and has again a quadratic computational time complex-

ity. Given two times series X and Y , MSM transforms X to Y by employing

three fundamental operations: Move, Split, and Merge. The Move operation

changes the value of a single point of the time series, the Split operation splits

a single point of the time series into two consecutive points that have the same

value as the original point, while the Merge operation merges two successive

equal values into one. Thus, the MSM distance between X and Y , dMSM(X,Y ),

is defined as the cost of the lowest-cost transformation of X to Y . Similarly to

DTW and ERP, given two time series X and Y , their MSM distance can be

computed using dynamic programming. For each (i, j) such that 1 ≤ i ≤ |X|

and 1 ≤ j ≤ |Y |, Costi,j is defined to be the MSM distance between the first

i elements of X and the first j elements of Y . Given a nonnegative constant

parameter c, function C is used in computing values for the Cost array, where
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C(xi, xi−1, yj) is:

C(xi, xi−1, yj) =

 c, if xi−1 ≤ xi ≤ yj or xi−1 ≥ xi ≥ yj

c+ min(|xi − xi−1|, |xi − yj |), otherwise

The distance dMSM(X,Y ) is now defined as follows:

Initialization:

Cost1,1(X,Y ) = |x1 − y1| .

Costi,1(X,Y ) = Costi−1,1(X,Y ) + C(xi, xi−1, y1) .

Cost1,j(X,Y ) = Cost1,j−1(X,Y ) + C(yj , x1, yj−1) .

∀(i = 2, . . . , |X|; j = 2, . . . , |Y |) .

Main Loop:

Costi,j(X,Y ) = min


Costi−1,j−1(X,Y ) + |xi − yj |,

Costi−1,j(X,Y ) + C(xi, xi−1, yj),

Costi,j−1(X,Y ) + C(yj , xi, yj−1)


∀(i = 2, . . . , |X|; j = 2, . . . , |Y |) .

Output:

dMSM(X,Y ) = Cost|X|,|Y |(X,Y ) .
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4 Query-sensitive Measure Selection

In this section we propose a framework for solving the problem studied in this

paper, as defined in Section 3, and also three methods that are based on this

framework.

4.1 Measure-selection Framework

The proposed framework consists of two steps: the offline and the online step.

4.1.1 Offline step

This is a preprocessing step and is performed only once per dataset and per

distance measure. Given a set of N training time series T = {X1, . . . , XN}

(also referred to as training objects) and a distance measure distx, we first

compute the distance of each time series Xi ∈ T to all other time series

Xj ∈ T , resulting in the following set of distances:

Ddistx
Xi,T = {ddistx(Xi, Xj)|∀Xj ∈ T , i 6= j} . (1)

Next, for each Xi ∈ T we determine its closest time series oi based on distx,

i.e.,

oi = argmin
{
Ddistx

Xi,T

}
. (2)

Then, we treat each Xi as a query and determine whether it was correctly

classified by distx using the 1-NN classifier, i.e., by comparing the class la-

bel of training object oi with the actual class label of Xi. The result of this

comparison is stored in cri:

cri =

0, if Xi is correctly classified,

1, otherwise.
(3)
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The last step of off-line preprocessing has to do with defining a property of

each training object, that can be used at the online stage to identify, given a

query object, the “most similar” training objects. This way, we can use for the

query object the distance measure that gives the best classification accuracy

in those “most similar” training objects. As explained in Section 4.2, we have

used three different schemes for defining such a property. For the purposes of

the description of the off-line preprocessing step, in this subsection, we will

consider the scheme for defining such a property as a black box.

In particular, we use the term “scheme function”, and notation fscheme, as

a black box for a function that, given a time series X and the pairwise distances

of X to all objects in the training set T using distx, produces a score s based

on these distances. Note that, if Xi is already part of the training set, we only

consider the remaining N − 1 objects in T . The score si of training object Xi

is computed as follows:

si = fscheme(Xi,Ddistx
Xi,T ) . (4)

Further details about schemes and their functions are discussed in Section

4.2.

As a result, given distx, for each Xi ∈ T we store three values: oi, si, and

cri. Effectively, this produces three arrays of size N :

– o = [o1 . . . oN ]: for each Xi the index of its closest training time series oi

using distx,

– cr = [cr1 . . . crN ]: for each Xi the classification result cri determined by

the 1-NN classifier using distx, and

– s = [s1 . . . sN ]: for each Xi the score si given by the scheme function

fscheme using distx.
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In addition, for ease of the online step, array s is sorted in ascending order,

while the indices of arrays o and cr are rearranged accordingly. This sorting

procedure results in the rearranged arrays o′ = [o′1 . . . o
′
N ], s′ = [s′1 . . . s

′
N ], and

cr′ = [cr′1 . . . cr
′
N ] for a given distx.

Since the offline step is performed for each distance measure distx ∈ L,

the corresponding rearranged arrays are denoted as o′distx , s′distx , and cr′distx ,

respectively.

4.1.2 Online step

Given a query object Q, the online step consists of measuring, for each distance

measure distx, the likelihood that distx will correctly classify Q, based on how

accurately distx classifies training objects similar to Q. Similarity between the

query and training objects is measured based on scheme function fscheme,

which was used in the off-line preprocessing step to compute a score si for

each training object Xi.

Distance computation. First, for each distance measure distx ∈ L, the

distances of Q to all training objects Xj ∈ T are computed, resulting in the

following set:

Ddistx
Q,T = {ddistx(Q,Xj)|∀Xj ∈ T } . (5)

Similarly to the offline step, the closest training time series is identified, i.e.,

Qo = argmin
{
Ddistx

Q,T

}
, (6)

and the score of the scheme function is recorded, i.e.,

Qs = fscheme(Q,Ddistx
Q,T ) . (7)
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The challenge now is to determine the class of Q by deciding which distance

measure to “trust” for our NN classifier.

Query classification. To identify the training objects most similar to the

query Q, we identify the position of Qs in each s′distx (computed in the offline

step) as follows:

pos(Qs, s
′distx) =



p, if s′distxp = Qs and 1 ≤ p ≤ N ,

p, if s′distxp < Qs < s′distxp+1 and 1 ≤ p < N ,

N, if s′distxN < Qs ,

1, if s′distx1 > Qs .

(8)

In other words, we identify the position p in s′distx with value equal to Qs.

If Qs does not appear exactly in s′distx , then p corresponds to the position of

the last value that is smaller than Qs (except for the last case).

The proposed framework is based on the premise that objects given similar

scores by the scheme function should have similar classification results for a

given distance measure. Given a distance measure distx, the position of Qs

in array s′distx is used to identify the most similar training objects, which

constitute the neighborhood of Q according to the scheme that is being used.

We note that, since scores si and Qs depend on the distance measure distx,

the neighborhood of Q is different for each distance measure.

In order to properly define this neighborhood, we must decide how large

the neighborhood needs to be. To decide the size of the neighborhood, we

define a parameter T . This parameter T depends on the query, and thus can

be different for different queries. However, given a query Q, T is the same

for all distance measures. This way, the neighborhoods of Q defined for all

distance measures have the same size. From now on we will use the term “T -
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neighborhood” to denote this neighborhood of Q, that is defined based on the

scheme function and the choice of parameter T .

We will postpone the discussion of how to choose T for a few paragraphs.

Once T has been defined, we select T − 1 training time series from the left

and T from the right side of pos(Qs, s
′distx) in s′distx , including pos(Qs, s

′distx)

itself. This results in 2 ∗ T time series in total (for each distx ∈ L). In case

that there are less than T −1 or T training time series on the left or right side

of pos(Qs, s
′distx), respectively, we fill out the remaining time series from its

other side, so that there are always 2 ∗ T time series. The classification result

for each of the 2 ∗ T time series can be directly retrieved from cr′distx .

At this point, for each distance measure distx ∈ L we can extract the

following vector of classification result values:

vdistx
= (cr′distx

pos(Qs,s′distx )−T+1
, . . . , cr′distx

pos(Qs,s′distx )+T
) (9)

Using vectors vdistx
for all distx ∈ L, we compute the classification error

probability for each distance measure as follows:

P distx

E =
‖vdistx‖1

2 ∗ T
(10)

Next, we select the distance measure distmin with the lowest such proba-

bility and use that measure for the NN classification task for the given query:

distmin = argmin
distx∈L

{P distx

E } . (11)

Finally, Q is assigned the class of the closest training time series, as defined

by distmin.

The intuition for creating vectors vdistx and computing the error probabil-

ities P distx

E for each measure distx ∈ L for a given T is the following: given
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two measures disti and distj , if there are more misclassified training time

series in the T -neighborhood of Q using disti than in the T -neighborhood

of Q using distj , then this leads in a higher value of P
disti

E . More precisely,

the T -neighborhood for disti does not provide a good guarantee for correct

classification of Q, in contrast to distj that classifies more training objects

around Q correctly according to the selected scheme. Consequently, distj is

more suitable for Q, since it is less likely to produce wrong classification.

Defining the T -neighborhood. An appropriate value for T is chosen for all

distance measures distx ∈ L based on statistical significance testing. Specifi-

cally, we use the ANalysis Of VAriance (ANOVA) test [10], which is a gener-

alization of the t-test when more than two groups are analyzed.

First, for each T ∈ [1, dN/2e], we construct the corresponding set of vec-

tors VT = {vdist1
, . . . , vdistn} for all distance measures in L. Note that the

vectors are constructed around pos(Qs, s
′distx) as described in the previous

section. Next, we perform ANOVA with statistical significance threshold α,

which produces a p-value:

pval(VT , α) = ANOV A(VT , α) , ∀T ∈ [1, dN/2e] . (12)

Using Equation 12, we assign our final threshold T with the value that corre-

sponds to the smallest p-value:

T = argmin
T∈[1,dN/2e]

{
pval(VT , α)

}
. (13)

The rationale here is that this way of determining the T -neighborhood gives

the most statistically significant NN classification accuracy results when using

the set of measures in L and the training time series for all possible neigh-

borhoods of Q. T is then used for the computation of the classification error
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probabilities (Eq. 10), and will hence determine the most appropriate measure

(Eq. 11) for the given query Q.

It has to be mentioned that if more than one T values provide the same

lowest probability, the smallest one is chosen to define the query neighborhood.

Furthermore, in cases where the number of training time series to the left or

right of pos(Qs, s
′distx) in some s′distx array is less than T−1 or T , respectively,

then the remaining number of objects is filled in from the opposite side, so

that there are always 2 ∗ T objects in each vdistx vector. This is required in

order to perform ANOVA on vectors of equal size, and for all values of T .

In Figure 4 we illustrate the main steps of the proposed framework.

T: collection of 
training time 

series 

for each distx in L compute the 
pairwise distances between all time 

series in T  

offline step 

o’ = {o’1, … ,o’N} 

s’ = {s’1, … ,s’N} 

cr’ = {cr’1, … ,cr’N} 

for each distx and fscheme compute sets o, s, 
and cr, sort s and rearrange o and cr 

for each distx in L compute pairwise distances 
between Q and each time series in T 

for each distx and fscheme compute Qo and Qs 

Query Q 

identify the position of Qs in s’ for 
each distx and fscheme 

for each distx define the  
T-neighborhood of Qs and vector 
udistx, for each T in [1, ceil(N/2)] 

perform ANOVA among udistx for each T in [1, 
ceil(N/2)], select T-neighborhood with min. p-value  

output 

online step 

fscheme: a scheme 
function 

L = {dist1, … , distn} 

compute the classification error probability 
PE

distx for each distx 
 

Fig. 4 Illustration of the offline and online steps of the proposed query-sensitive measure
selection framework.
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4.2 Methods

We present three methods that can be used within our framework for con-

structing the neighborhood of training objects for a given query. Each method

is characterized by a scheme, which is a technique for computing the values

in the array s and the value of Qs used in the framework. Each scheme uses a

function fscheme to compute these values. Note that we first describe a basic

scheme that is used as a building block by the two main schemes.

4.2.1 Scheme 0: Basic

This basic scheme constructs s and Qs based exclusively on distances. The

intuition here is the following: if a query Q is very close to its NN, then we

can be more confident that Q indeed belongs to the class of its NN. If we find

that Q is very close to its NN for one distance measure distx and not for the

others, then we have a reason to trust distx more than the other measures, for

the specific query. The neighborhood of a query is thus created by the training

objects for which the distance from their closest object is close to the distance

of the query to its closest training object.

More specifically, in the offline step, after the computation of the set of

distances Ddistx
Xi,T of the training objects Xi ∈ T for all distance measures

distx ∈ L, we apply the scheme function f0 as follows:

si = f0(Xi,Ddistx
Xi,T ) = min(Ddistx

Xi,T ) . (14)

In other words, the value si returned by the scheme function is the distance

of Xi to its closest time series oi. In a similar manner, during the online step,

Qs is computed for each distx using the scheme function as follows:

Qs = f0(Q,Ddistx
Q,T ) = min(Ddistx

Q,T ) . (15)
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As it can be seen from the above equation, Qs corresponds to the distance of

Q to its closest training object. The remaining steps of the online step proceed

as described in the previous section.

4.2.2 Scheme I: Distance ratio-based

This technique for constructing s is an extension of the basic scheme. It is

computed by using the ratio of distance from the closest object to the distance

from the next closest object with a different class. The intuition behind this

scheme is this: if a query Q is much closer to its nearest neighbor, which has a

certain class, than to the closest object of a different class, then we are more

confident that Q indeed belongs to the class of the nearest neighbor. If this

happens for one distance measure distx and not for the others, then we have a

reason to trust distx more than the other measures, for the specific query Q.

In particular, for each Xi the scheme identifies its closest object oi by

Equation 2. Furthermore, Ddistx
Xi,T is sorted, resulting in D′distxXi,T , and the corre-

sponding objects are scanned until an object of a different class than that of

oi is found; let us call this object Xl and let l be the index of this object in

D′distxXi,T .

The value produced by the corresponding scheme function f I is given be-

low:

si = f I(Xi,Ddistx
Xi,T ) = f0(Xi,Ddistx

Xi,T )/ddistx(Xi, Xl)

= ddistx(Xi, oi)/ddistx(Xi, Xl) . (16)

Finding this ratio for all training objects and then sorting these ratios in

ascending order ends up in array s′distx .

During the online step, Ddistx
Q,T is sorted resulting in D′distxQ,T . Then, the value

of Qs is computed as the ratio of its distance from the closest training object
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Qo to its distance from the first object that has a different class than that of

Qo, say Ql′ with l′ being the index of Ql′ in D′distxQ,T :

Qs = f I(Q,Ddistx
Q,T ) = f0(Q,Ddistx

Q,T )/ddistx(Q,Ql′)

= ddistx(Q,Qo)/ddistx(Q,Ql′) . (17)

Based on the intuition for this method, ideally, if Qs is small then its T -

neighborhood will comprise objects with low ratios, and these objects (or most

of them) are not misclassified. Consequently, in such a case there is higher

probability of classifying the query correctly.

4.2.3 Scheme II: Homogeneity-based

Using the same notation as in the previous method, another approach is to

count the number of objects from oi to Xl and from Qo to Ql′ , respectively.

We note that objects oi and Qo are included in the counting, while objects Xl

and Ql′ are not. Hence, the scheme function f II for a training object Xi is

defined as follows:

si = f II(Xi,Ddistx
Xi,T ) = l − 1 . (18)

And similarly, for the query Q:

Qs = f II(Q,Ddistx
Q,T ) = l′ − 1 . (19)

So, essentially, we count the number of objects that belong to the same class as

that of the NN. By doing so, we are in practice measuring the homogeneity of

an object’s neighborhood. Each s′distx thus consists of the sorted (in ascending

order) homogeneity values of all training objects under measure distx.

An ideal situation would be to obtain a high value for Qs making it lie

within several objects with high homogeneity values in s′distx . This would
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imply that all of these objects have many neighbors of the same class, and

if this class is the correct one for all objects (or for most of them) then the

probability of the query being classified correctly would increase.

Since our framework follows a statistical analysis based on the significance

produced by ANOVA, there may be scenarios where, although Qs may be

small for the Distance ratio-based or high for the Homogeneity-based scheme

in the ideal situations described above, the T -neighborhood with the highest

statistical significance may be large. This means that the neighborhood of the

query may even include objects that are misclassified. This fact shows that

there is a tradeoff between getting a “good” value for the selected scheme and

a “proper” relatively small value for T .

It has to be noted that all of the aforementioned scheme-based measure se-

lection methods are based on the following concept: objects of the same class

create regions well separated from objects of other classes. This inter-class dis-

similarity, however, is not always the case, since there may be outlier objects

making the classification task harder whatever the classifier may be.

5 Experiments

5.1 Experimental Setup

Datasets. We experimented on the 45 time series datasets available on the

UCR time series archive [15]. The number of training and test time series

(“train size”, “test size”), the length of each time series (“seq. length”), and

the number of classes (“class num.”) for each dataset are shown in Table 2.

We should note that these datasets do not include objects with missing values.

Methods. We have applied the three proposed methods, i.e., Basic, Distance

ratio-based, Homogeneity-based, on a pool of measures L consisting of
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DTW, ERP, and MSM (described in Sections 3.1, 3.2, and 3.3). For com-

parison, we also evaluate the performance of the following competitors:

– MSM: Using MSM as the distance measure in all datasets.

– DTW: Using DTW as the distance measure in all datasets.

– ERP: Using ERP as the distance measure in all datasets.

– Cross Validation: Using cross-validation to choose, separately for each

dataset, which distance measure to use (among MSM, DTW, and ERP)

for that dataset.

We designed the Cross Validation method as follows: (1) for each dataset

we first computed the classification accuracy (percentage of time series cor-

rectly classified) for DTW, ERP, and MSM on the training set using leave-one-

out cross validation, and (2) the method outputs the classification accuracy on

the test set of the measure with the best accuracy on the training set. If more

than one measures provide the same highest (best) classification accuracy on

the training set, then the accuracy of Cross Validation is the average of the

accuracies of these measures on the test set.

Regarding the parameters of the measures, MSM has one free parameter,

namely c, which is the cost of every Split and Merge operation. For each of the

datasets, the value for c was chosen from the set {0.01, 0.1, 1}, using leave-one-

out cross-validation on the training set and comparing the three classification

accuracies. In addition, it has been shown that no greater value of c may

achieve good classification results, while these values are sufficient to produce

very competitive classification accuracies compared to DTW and ERP [25]. For

DTW the Lp used was the Euclidean distance, and the penalty g of ERP was

set to 0 [7,25]. Finally, for the statistical significance testing, the significance

threshold α of ANOVA was set to 0.05.
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Evaluation Measures. Since the task at hand is NN classification, for each

dataset, we evaluate all of the aforementioned methods in terms of classifica-

tion error rate, which is defined as the percentage of the test time series that

are misclassified using the NN classifier.

At this point we note that if in our framework there are ties among the

measures in the minimum error probability (computed by Eq. 10) for a query,

we select the measure with the smallest classification error rate on the training

set. In case of further tie we use all measures involved in the tie, by taking

the average classification result of these measures (recall that 0 corresponds

to correct classification, whereas 1 to misclassification). For example, if for a

query the minimum error probability is the same for both MSM and ERP, the

respective error rates on the training set are the same, and MSM misclassifies

the given query while ERP correctly classifies it, then the classification result

for this query is considered to be 0.5.

Apart from the classification error rate, we evaluated the efficiency of the

Homogeneity-based method, which is the one that yields at least as good or

better classification accuracies as the baseline method on the largest number of

datasets compared to the other proposed methods. In particular, we analyzed

the runtimes for all of its parts, which are reported in Figure 6.

The framework and the proposed methods were implemented in Matlab,

while DTW, MSM, and ERP were implemented in Java. The experiments were

performed on a PC 64-bit running Linux, a Dual-Core AMD Opteron(tm)

Processor 8220 SE at 2.8GHz using a single threaded implementation.

Training and Test Sets. For several datasets given in [15] we observed that

the error rates on the training and test sets were very different for each of

the distance measures, showing that the training set was not representative

of the test set. For example, for the training set of the FaceAll dataset the



Distance Measure Selection for Time Series NN Classification 29

error rate for DTW was 6.79%, for MSM 1.07%, and for ERP 2.5%, while

for the test set the error rates were much different, i.e., 19.23%, 18.88%, and

20.2%, respectively. For the training set of OSU the error rates for DTW and

ERP were 33% and 30.5%, while for the test set they were 40.91% and 39.7%,

respectively. Another example is the GunPoint dataset, for which the error

rate of DTW on the training set was 18% and of ERP it was 8%, whereas

for the test set it was just 9.33% for DTW and 4% for ERP. The differences

are also apparent in the Fish dataset, where DTW had error rates 26.29%

and 16.57% for the training and test set, MSM had 13.71% and 8%, and ERP

achieved 17.14% and 12%.

Since measure selection is about learning statistics for each dataset, we had

to be fair on selecting the train and test time series. Thus, based on the iid

(independent identically distributed) criterion, for each dataset, all time series

originally provided as training and test sets in [15] were merged, and then for

each class half of them were randomly picked and included in the training set

while the remaining ones were put in the test set. More formally, assuming

that the number of time series of a class is M , bM/2c randomly selected time

series comprise the training set, while the rest M − bM/2c objects form the

test set. Following this procedure, and, for example, for the aforementioned

datasets, the error rates achieved on the training and test sets for all measures

were much closer to one another, implying that the training sets are much

more representative of the test sets compared to the original split. For the

FaceAll dataset DTW achieved 3.30% and 3.90% error rates, MSM 1.16% and

1.06%, and ERP 1.52% and 1.86%, and for the OSU dataset DTW had error

rates 33.18% and 35.14%, and ERP 30% and 31.98% for the training and test

set, respectively. With regard to the GunPoint dataset, the error rates for

DTW were 8% for both training and test sets, and for ERP they were 2% and

3%. Finally, referring to the Fish dataset MSM achieved 11.43% and 10.29%
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error rates for the training and test sets, DTW 25.71% and 23.43%, and ERP

17.71% and 14.29%. The sizes of the two sets for each dataset are shown in

columns “train size” and “test size” of Table 2, respectively.

The datasets we used for our experiments are available here:

http://vlm1.uta.edu/~akotsif/query_sensitive_measure_selection.

Table 2 Description of the 45 datasets from the UCR repository that were used in our
experiments. The table shows for each dataset: the number of training and test objects, the
length of each sequence in the dataset, and the number of classes.

ID Dataset train test seq. class
size size length num.

1 Synthetic 300 300 60 6
2 GunPoint 100 100 150 2
3 CBF 465 465 128 3
4 FaceAll 1122 1128 131 14
5 OSU 220 222 427 6
6 SwedishLeaf 555 570 128 15
7 50Words 442 463 270 50
8 Trace 100 100 275 4
9 TwoPatterns 2499 2501 128 4

10 Wafer 3582 3582 152 2
11 FaceFour 55 57 350 2
12 Lightning-2 60 61 637 2
13 Lightning-7 70 73 319 7
14 ECG 99 101 96 2
15 Adiac 387 394 176 37
16 Yoga 1650 1650 426 2
17 Fish 175 175 463 7
18 Beef 30 30 470 5
19 Coffee 27 29 286 2
20 OliveOil 29 31 570 4
21 ChlorineConc. 2153 2154 166 3
22 ECG torso 708 712 1639 4
23 Cricket X 384 396 300 12
24 Cricket Y 384 396 300 12
25 Cricket Z 384 396 300 12
26 Diatom Red. 160 162 345 4
27 ECG5Days 442 442 136 2
28 FacesUCR 1122 1128 131 14
29 Haptics 231 232 1092 5
30 InlineSkate 324 326 1882 7
31 ItalyPower 547 549 24 2
32 MALLAT 1200 1200 1024 8
33 MedicalImages 568 573 99 10
34 MoteStrain 635 637 84 2
35 SonySurface 310 311 70 2
36 SonySurfaceII 490 490 65 2
37 StarLightC. 4617 4619 1024 3
38 Symbols 508 512 398 6
39 TwoLeadECG 580 582 82 2
40 uWaveGest X 2238 2240 315 8
41 uWaveGest Y 2238 2240 315 8
42 uWaveGest Z 2238 2240 315 8
43 WordsSynon. 450 455 270 25
44 ECGThorax1 1871 1894 750 42
45 ECGThorax2 1871 1894 750 42

http://vlm1.uta.edu/~akotsif/query_sensitive_measure_selection
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5.2 Experimental Results

Classification Accuracy. The performance of the proposed methods in terms

of classification accuracy is shown in Tables 3 and 4, and Figure 5.

The classification error rates of all proposed methods and competitors are

shown in Table 3. For each dataset, the classification error rates for MSM,

DTW, and ERP for both the training and test sets are shown, along with the

c value used for MSM on that dataset. As mentioned in Section 5.1, the value

of c that was chosen is the one providing the smallest classification error rate

for the training set. In cases where more than one values of c provided the same

error rate, in Table 3 we present all of these values, and we randomly picked the

one shown in italics. All rates shown are in percent and the numbers in bold

indicate the smallest error rates for each dataset when comparing the proposed

methods and Cross Validation. The last column of Table 3 (“All Miscl.”)

presents the number of test time series per dataset that are not classified

correctly by any distance measure. This is important, because these objects

cannot be classified correctly by any distance measure selection scheme.

Table 4 summarizes the experimental results. One key conclusion is that,

out of the three proposed methods, the Homogeneity-based method performs

the best. A second key conclusion is that the Homogeneity-based also per-

forms better than all four competitors.

Looking at the results of Table 4 in more detail, we first note that the DTW

and ERP methods performed the weakest. All three of our proposed methods

outperform DTW and ERP in at least 35 out of the 45 datasets, and these

results are statistically significant with a p value less than 0.001. However, the

Basic method performs somewhat worse than Cross Validation and MSM.

There are actually somewhat more datasets where these competitors are more

accurate than the Basic method, than datasets were the Basic method is
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more accurate than these competitors. The Distance ratio-based method

performs slightly better than Cross Validation and MSM. Still, the differ-

ences in accuracy between the proposed Basic and Distance ratio-based

method on the one hand, and the competitors Cross Validation and MSM

on the other hand are not statistically significant, having p values between

0.390 and 0.736.

On the other hand, the proposed Homogeneity-based method emerges as

a clear winner. With respect to Cross Validation, the Homogeneity-based

method attains lower error rates for 23 out of the 45 datasets, and higher

error rates in only 10 out of the 45 datasets. With respect to MSM, the

Homogeneity-based method achieves lower error rates for 24 out of the 45

datasets, and higher error rates in 10 out of the 45 datasets. With respect to

DTW and ERP, the Homogeneity-based method gives lower error rates for 37

and 39 out of the 45 datasets respectively, and higher error rates in only 2 and

1 out of the 45 datasets respectively. The difference in accuracy between the

Homogeneity-based method and each of the four competitors is statistically

significant, with p values of 0.022 with respect to Cross Validation, 0.015

with respect to MSM, and less than 0.001 with respect to DTW and ERP.

These experimental results also emphasize the importance of choosing

the scheme function for our framework. There is a significant difference in

performance between the best performing scheme (Homogeneity-based) and

the other two schemes (Basic and Distance ratio-based). This result also

points to a direction for future work, namely to design schemes performing

even better than the Homogeneity-based scheme.

In Table 5 we present the probabilities that are the outcome of ANOVA

when the input vectors are the classification results of each of the proposed

methods against Cross Validation (denoted as “C.V.”) for all test time se-

ries. For completeness, we also present the probabilities when comparing the



Distance Measure Selection for Time Series NN Classification 33

classification results of Basic, Distance ratio-based, and Homogeneity-based

with each of the distance measures (MSM, DTW, ERP). It has to be men-

tioned that, the lower the probabilities are, the more different the vectors

of classification results are. When the probabilities are high the vectors are

very similar, and when the probabilities are 1 we can conclude that the vec-

tors are identical, as it happens, for example, between each of the proposed

methods and Cross Validation for datasets with IDs 8, 9, and 10, as the

corresponding error rates are 0.00%, 0.00%, and 0.28%, respectively. In other

words, the same distance measure may be selected (for all test time series)

by each of the proposed methods and Cross Validation, e.g., for datasets 8

and 10 DTW and MSM is selected, respectively, by the proposed methods and

Cross Validation. Note that for dataset 9 all measures provide 0.00% error

rate in the training and test sets, hence all methods yield the same vectors of

classification results.

Runtime. In Figure 6, for each dataset, we present the average runtimes

of a query for all parts of the Homogeneity-based method: MSM, DTW,

ERP Computation, selecting the “best” T (“Homogeneity-based scheme”),

and determining the most suitable distance measure (“Remaining Time”).

Adding up the runtimes of all parts gives the total time, which is also shown.

It can be clearly seen that, for any dataset, the bottleneck of total runtime

is the computation of distances for the three measures. DTW takes more time

than MSM and ERP for all datasets, which is obvious, e.g., for datasets 22,

30, 32, 37, 44, and 45. The reason for the higher total runtime per query

for datasets 16, 22, 29, 30, 32, 37, 40-42, and 44, 45 is the number of their

training time series to which the MSM, DTW, and ERP distances have to be

evaluated for the query, and also the large length of their time series (as Table

2 indicates).
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Table 3 Nearest Neighbor classification error rates attained by the three proposed methods
(denoted as Dist-Ratio, Hom., and Basic), and Cross Validation on each of the 45 datasets
in the UCR repository of time series datasets. In addition, the table shows for each dataset:
the classification error rate of MSM, DTW, and ERP for the training and test sets and
the value of c used by MSM on that dataset, which yielded the lowest error rate on the
training set (when more than one values are given, the one in italics was randomly chosen).
All rates are in percent and the numbers in bold indicate the smallest classification error
rates for each dataset when comparing the three proposed methods and Cross Validation.
The number of test time series per dataset that are misclassified by all distance measures is
also provided in the last column.

ID Basic Dist. Hom. Cross train test MSM All

Ratio Valid. MSM DTW ERP MSM DTW ERP c Miscl.

1 1.67 1.00 1.00 2.00 1.67 1.33 1.00 1.33 1.00 2.00 0.1,1 0

2 3.00 3.00 2.00 3.00 3.00 8.00 2.00 0.00 8.00 3.00 0.1 0

3 0.00 0.00 0.00 0.00 0.43 0.00 0.00 0.22 0.00 0.00 0.1 0

4 1.15 1.15 1.06 1.06 1.16 3.30 1.52 1.06 3.90 1.86 1 10

5 19.37 20.72 19.37 19.37 15.91 33.18 30.00 19.37 35.14 31.98 0.1 26

6 11.58 11.93 11.05 11.58 12.25 21.44 12.97 11.58 20.70 12.63 1 36

7 19.44 18.36 20.73 19.22 20.36 35.29 29.86 19.22 33.05 28.51 1 59

8 0.00 0.00 0.00 0.00 4.00 0.00 17.00 5.00 0.00 11.00 0.1 0

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1 0

10 0.28 0.28 0.28 0.28 0.11 0.50 0.20 0.28 0.78 0.36 1 8

11 11.98 9.65 7.89 7.60 1.82 1.82 1.82 3.51 14.04 5.26 0.01,0.1,1 2

12 11.48 8.20 13.11 14.75 16.67 15.00 13.33 18.03 14.75 14.75 0.01,1 2

13 28.08 19.18 20.55 27.40 32.86 25.71 32.86 26.03 27.40 34.25 0.01,1 10

14 19.80 16.83 17.33 16.83 9.09 14.14 9.09 13.86 21.78 19.80 1 9

15 38.32 36.80 36.80 39.34 35.66 39.28 37.73 39.34 38.83 40.86 1 116

16 4.85 5.15 4.97 4.79 4.42 8.67 5.58 4.79 8.67 5.88 0.1 49

17 10.86 10.86 9.71 10.29 11.43 25.71 17.71 10.29 23.43 14.29 1 13

18 56.67 53.33 53.33 53.33 60.00 63.33 60.00 53.33 60.00 53.33 1 16

19 17.24 20.69 13.79 17.24 22.22 22.22 25.93 20.69 13.79 20.69 0.01 2

20 6.45 9.68 12.90 12.90 20.69 24.14 24.14 12.90 9.68 12.90 0.01 2

21 7.06 7.15 7.29 7.01 7.71 5.67 7.85 7.71 7.01 7.85 0.1,1 130

22 0.14 0.14 0.14 0.14 0.00 2.54 0.14 0.14 2.67 1.12 1 0

23 23.99 21.21 23.74 23.99 22.14 17.97 23.70 24.75 23.99 25.51 1 60

24 21.46 17.17 18.94 21.97 22.92 17.45 23.70 19.19 21.97 19.70 1 41

25 18.69 17.68 15.15 18.69 27.60 20.57 28.91 22.98 18.69 23.23 1 44

26 0.62 0.62 0.62 0.62 0.00 0.63 0.63 0.62 1.23 1.23 1 1

27 0.68 0.90 1.02 0.68 0.45 1.13 1.13 0.68 1.58 2.26 0.01,1 2

28 0.89 0.98 0.80 0.89 1.16 3.48 1.87 0.89 3.19 1.24 1 7

29 52.16 55.60 52.16 52.16 55.41 57.14 58.01 52.16 62.50 55.17 1 84

30 43.87 45.09 42.64 42.94 45.06 50.93 45.99 42.94 53.99 44.17 1 104

31 3.64 3.73 3.46 3.74 4.94 5.67 4.94 3.28 4.92 4.19 1 13

32 1.17 1.17 1.17 1.42 0.10 2.25 0.75 1.42 1.50 1.17 1 4

33 19.37 18.15 19.02 19.02 20.60 26.06 24.47 19.02 21.12 21.47 0.1 60

34 3.30 2.98 3.14 3.30 2.52 5.51 3.31 3.30 5.49 4.08 0.1 7

35 0.96 0.64 0.96 0.32 2.26 4.52 2.90 0.32 1.61 1.61 1 1

36 0.41 0.41 0.61 0.41 1.63 4.29 3.67 0.41 2.45 1.63 1 1

37 6.47 5.93 6.49 6.56 8.43 7.06 10.48 8.34 6.56 10.11 0.1 109

38 1.56 1.56 1.17 1.37 1.18 1.97 1.77 1.37 1.95 2.34 0.01,0.1 4

39 0.17 0.17 0.17 0.17 0.00 0.00 0.34 0.17 0.17 0.34 0.01 1

40 21.88 20.40 20.67 21.03 21.27 24.66 23.06 21.03 26.52 22.05 1 291

41 28.13 27.90 26.74 27.86 28.06 35.17 31.95 27.86 35.18 30.71 1 242

42 27.05 25.85 25.71 26.43 27.97 32.98 28.55 26.43 31.03 29.55 1 331

43 18.46 19.78 19.78 19.12 19.33 32.67 28.00 19.12 31.43 25.05 1 55

44 16.26 15.73 15.10 17.16 19.08 20.36 18.12 18.06 20.91 17.16 1 145

45 10.61 9.87 9.82 10.72 10.69 14.27 12.03 10.72 13.73 10.82 1 96

Comparing the proposed methods, since the framework is the same for all

of them, the average DTW, MSM, and ERP distance computation times for

all queries of each dataset are essentially the same for all methods. In addition,
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Table 4 Number of datasets for which each method yields lower (Better), equal (Tie), or
higher (Worse) classification error rate compared to always choosing one distance measure,
i.e., MSM, DTW, or ERP, and compared to Cross Validation (denoted as “C.V.”). For
completeness, the p-value of the ANOVA test is also presented.

Basic Distance ratio-based Homogeneity-based

MSM DTW ERP C.V. MSM DTW ERP C.V. MSM DTW ERP C.V.

Better 14 35 37 11 20 37 36 18 24 37 39 23

Tie 12 6 5 18 8 6 3 11 11 6 5 12

Worse 19 4 3 16 17 2 6 16 10 2 1 10

p-value .390 < .001 < .001 .341 .627 < .001 < .001 .736 .015 <.001 < .001 .022

Fig. 5 Nearest Neighbor classification error rates attained by Distance ratio-based and
Homogeneity-based), and Cross Validation on each of the 45 datasets in the UCR reposi-
tory of time series datasets.

the “Remaining Time” part is negligible for all of them. As a result, the only

part that basically differentiates the Homogeneity-based method and the rest

is the procedure for finding the “best” value for T . However, since the total

runtime is dominated by the distance computations, all proposed methods

have approximately the same total runtime per query.

Finally, regarding the baseline Cross Validation method, the total run-

time for a query depends on whether there is a clear distance measure winner



36 Alexios Kotsifakos et al.

Table 5 The probabilities that are the outcome of the ANOVA statistical test when the
input vectors are the classification results (for all test time series) of each of the proposed
methods against MSM, DTW, ERP, and Cross Validation (denoted as “C.V.”) are presented
for each of the 45 datasets.

ID Basic Dist. Ratio Hom.

MSM DTW ERP C.V. MSM DTW ERP C.V. MSM DTW ERP C.V.

1 0.656 1 0.083 0.083 0.656 1 0.083 0.083 0.706 0.480 0.318 0.318

2 0.083 0.058 1 1 0.158 0.033 0.320 0.320 0.083 0.058 1 1

3 0.318 1 1 1 0.318 1 1 1 0.318 1 1 1

4 0.318 0.000 0.021 0.318 1 0.000 0.013 1 0.318 0.000 0.021 0.318

5 0.180 0.000 0.000 0.180 1 0.000 0.000 1 1 0.000 0.000 1

6 0.564 0.000 0.528 0.564 0.257 0.000 0.160 0.257 0.000 0.000 0.377 0.000

7 0.318 0.000 0.000 0.318 0.090 0.000 0.000 0.090 0.318 0.000 0.000 0.318

8 0.025 1 0.001 1 0.025 1 0.001 1 0.025 1 0.001 1

9 1 1 1 1 1 1 1 1 1 1 1 1

10 1 0.000 0.083 1 1 0.000 0.083 1 1 0.000 0.083 1

11 0.018 0.024 0.024 0.022 0.058 0.034 0.083 0.058 0.019 0.164 0.035 0.073

12 0.033 0.159 0.103 0.103 0.321 0.742 0.709 0.709 0.209 0.419 0.419 0.419

13 0.167 0.013 0.004 0.013 0.288 0.024 0.017 0.024 0.683 0.863 0.236 0.863

14 0.158 0.158 0.057 0.108 0.127 0.251 0.227 0.177 0.033 0.508 1 0.517

15 0.025 0.268 0.005 0.025 0.018 0.277 0.003 0.018 0.415 0.778 0.086 0.415

16 0.157 0.000 0.109 0.157 0.318 0.000 0.047 0.318 0.564 0.000 0.027 0.564

17 0.319 0.000 0.083 0.319 0.319 0.000 0.011 0.319 0.319 0.000 0.083 0.319

18 0.000 0.161 0.000 0.000 0.000 0.161 0.000 0.000 0.326 0.326 0.326 0.326

19 1 0.326 1 0.663 0.326 1 0.326 0.663 0.326 0.663 0.573 0.494

20 0.325 1 0.325 0.325 1 0.572 1 1 0.161 0.325 0.161 0.161

21 0.103 0.083 0.047 0.083 0.199 0.034 0.096 0.034 0.039 0.763 0.015 0.763

22 1 0.000 0.008 1 1 0.000 0.008 1 1 0.000 0.008 1

23 0.019 0.041 0.006 0.041 0.528 0.835 0.275 0.835 0.681 1 0.415 1

24 0.249 0.001 0.086 0.001 0.882 0.028 0.640 0.028 0.250 0.564 0.371 0.564

25 0.003 0.372 0.001 0.372 0.000 0.003 0.000 0.003 0.038 1 0.022 1

26 0.000 0.319 0.319 0.000 0.000 0.319 0.319 0.000 0.000 0.319 0.319 0.000

27 0.318 0.180 0.014 0.318 0.180 0.276 0.016 0.180 1 0.045 0.008 1

28 0.318 0.000 0.318 0.318 0.318 0.000 0.096 0.318 1 0.000 0.206 1

29 0.183 0.021 0.862 0.183 1 0.001 0.179 1 1 0.001 0.287 1

30 0.209 0.000 0.675 0.209 0.848 0.000 0.476 0.848 0.565 0.000 0.876 0.565

31 0.318 0.042 0.318 0.318 0.655 0.021 0.158 0.406 0.415 0.071 0.083 0.249

32 0.083 0.414 1.000 0.083 0.083 0.414 1 0.083 0.083 0.414 1 0.083

33 0.370 0.044 0.010 0.370 1.000 0.163 0.052 1 0.528 0.292 0.128 0.528

34 0.480 0.002 0.162 0.480 0.763 0.005 0.201 0.763 1 0.008 0.336 1

35 0.318 0.083 0.180 0.318 0.158 0.158 0.415 0.158 0.158 0.318 0.158 0.158

36 0.000 0.004 0.034 0.000 0.318 0.007 0.096 0.318 0.000 0.004 0.034 0.000

37 0.000 0.013 0.000 0.013 0.000 0.799 0.000 0.799 0.000 0.317 0.000 0.317

38 0.318 0.318 0.249 0.318 0.564 0.045 0.058 0.564 0.318 0.415 0.206 0.318

39 0.000 0.000 0.318 0.000 0.000 0.000 0.318 0.000 0.000 0.000 0.318 0.000

40 0.201 0.000 0.008 0.201 0.530 0.000 0.005 0.530 0.059 0.000 0.775 0.059

41 0.938 0.000 0.000 0.938 0.093 0.000 0.000 0.093 0.109 0.000 0.003 0.109

42 0.339 0.000 0.000 0.339 0.206 0.000 0.000 0.206 0.253 0.000 0.000 0.253

43 0.366 0.000 0.001 0.366 0.318 0.000 0.001 0.318 0.180 0.000 0.000 0.180

44 0.002 0.000 0.028 0.028 0.000 0.000 0.003 0.003 0.016 0.000 0.116 0.116

45 0.046 0.000 0.080 0.046 0.041 0.000 0.056 0.041 0.527 0.000 0.717 0.527

in the error rate on the training set or not. In case that one of the three mea-

sures provides the smallest classification error rate on the training set, then

this measure is evaluated. Thus, given a query of e.g., dataset with ID x, the

total runtime is practically given by the point of the curve corresponding to

this measure at position x (of the horizontal axis) in Figure 6. Similarly, if

more than one measures attain the lowest classification error rate, then all
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Fig. 6 Average runtimes per query, for each dataset, for all parts of the Homogeneity-
based measure selection method: the computations of MSM, DTW, ERP, Homogeneity-
based scheme, and the final measure selection part. The total average runtime per query for
each dataset (summing up all of the above parts) is also shown.

these measures contribute to the total runtime for a query, which is the sum

of the distance computation times of the query to all training time series for

the tied measures. Hence, if, in the worst case, all measures in the pool need

to be evaluated for the query, then the total runtime of Cross Validation is

approximately the same as that of our methods.

An astute reader may argue that the runtime comparison of Homogeneity-

based against Cross Validation is unfair since we could alternatively have

used existing speedup methods for DTW [3], or even powerful pruning tech-

niques such as cDTW with the LB Keogh lower bound [14]. Nonetheless, we

argue that any speedup achieved by each method used by Cross Validation

is also equally beneficial for the methods that are based on our framework.

This is due to the fact that our framework is using the exact same set of dis-
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tance measures, and thus any speedup obtained by Cross Validation can

essentially be exploited by our framework as well.

6 Conclusions and Future Work

In this paper we studied the problem of selecting, given a query, the most

appropriate time series distance measure out of a pool of such measures, so as

to perform time series NN classification. We demonstrated that the problem is

important and challenging, and proposed a novel framework to solve it, based

on the behavior of each distance measure on what we call the T -neighborhood

of the query, i.e., a set of training objects similar to the query according to

some property. Based on this framework, we proposed three specific schemes

for identifying the T -neighborhood of the query, namely the Distance-based,

Distance ratio-based, and Homogeneity-based schemes.

In our experiments, the proposed Homogeneity-based method produced

state-of-the-art performance. Based on classification error rates on 45 datasets,

the Homogeneity-based method outperformed all competitors (namely, the

individual distance measures DTW, MSM, and ERP, as well as the standard

measure-selection method of Cross Validation) in a statistically significant

manner.

For future work, we plan to investigate adding additional measures to the

set of measures used in our pool. We believe that including additional mea-

sures will make our methods achieve even smaller classification error rates.

Finally, we shall explore new schemes for defining the T -neighborhood, as well

as alternative statistical tests.
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8. Chen, L., Özsu, M.T.: Robust and fast similarity search for moving object trajectories.

In: SIGMOD, pp. 491–502 (2005)

9. Chen, Y., Nascimento, M.A., Chin, B., Anthony, O., Tung, K.H.: Spade: On shape-based

pattern detection in streaming time series. In: Proceedings of the IEEE International

Conference of Data Engineering (ICDE), pp. 786–795 (2007)

10. Cox, D.: Principles of Statistical Inference. Cambridge University Press (2006)

11. Domeniconi, C., Peng, J., Gunopulos, D.: Locally adaptive metric nearest-neighbor clas-

sification. Pattern Analysis and Machine Intelligence, IEEE Transactions on 24(9),

1281–1285 (2002)

12. Hastie, T., Tibshirani, R.: Discriminant adaptive nearest neighbor classification. Pattern

Analysis and Machine Intelligence, IEEE Transactions on 18(6), 607–616 (1996)

13. Hu, B., Chen, Y., Keogh, E.: Time series classification under more realistic assumptions.

In: SDM, pp. 578–586 (2012)

14. Keogh, E.: Exact indexing of dynamic time warping. In: VLDB, pp. 406–417 (2002)

15. Keogh, E., Zhu, Q., Hu, B., Hao, Y., Xi, X., Wei, L., Ratanama-

hatana, C.: The UCR time series classification/clustering homepage:

www.cs.ucr.edu/~eamonn/time series data/ (2011)

~e


40 Alexios Kotsifakos et al.

16. Kotsifakos, A., Papapetrou, P., Hollmén, J., Gunopulos, D.: A subsequence match-

ing with gaps-range-tolerances framework: A query-by-humming application. PVLDB

4(11), 761–771 (2011)

17. Kruskall, J.B., Liberman, M.: The symmetric time warping algorithm: From continuous

to discrete. In: Time Warps. Addison-Wesley (1983)

18. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals.

Soviet Physics 10(8), 707–710 (1966)

19. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series,

with implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD

workshop on Research issues in data mining and knowledge discovery, DMKD ’03, pp.

2–11 (2003)

20. Lin, J., Khade, R., Li, Y.: Rotation-invariant similarity in time series using bag-of-

patterns representation. J. Intell. Inf. Syst. 39(2), 287–315 (2012)

21. Lines, J., Davis, L.M., Hills, J., Bagnall, A.: A shapelet transform for time series classi-

fication. In: Proceedings of the ACM SIGKDD international conference on Knowledge

discovery and data mining, KDD ’12, pp. 289–297 (2012)

22. Marteau, P.F.: Time warp edit distance with stiffness adjustment for time series match-

ing. Pattern Analysis and Machine Intelligence, IEEE Transactions on 31(2), 306–318

(2009)

23. Mueen, A., Keogh, E., Young, N.: Logical-shapelets: an expressive primitive for time

series classification. In: Proceedings of the 17th ACM SIGKDD international conference

on Knowledge discovery and data mining, KDD ’11, pp. 1154–1162 (2011)

24. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word

recognition. Transactions on ASSP 26, 43–49 (1978)

25. Stefan, A., Athitsos, V., Das, G.: The move-split-merge metric for time series. Trans-

actions on Knowledge and Data Engineering (2012)

26. Unal, E., Chew, E., Georgiou, P., Narayanan, S.: Challenging uncertainty in query

by humming systems: a fingerprinting approach. Transactions on Audio Speech and

Language Processing 16(2), 359–371 (2008)

27. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.J.: Exper-

imental comparison of representation methods and distance measures for time series

data. Data Minining and Knowledge Discovery 26(2), 275–309 (2013)

28. Xing, Z., Pei, J., Yu, P.S., Wang, K.: Extracting interpretable features for early classi-

fication on time series. In: SDM, pp. 247–258 (2011)

29. Ye, L., Keogh, E.: Time series shapelets: a novel technique that allows accurate, inter-

pretable and fast classification. Data Min. Knowl. Discov. 22(1-2), 149–182 (2011)


	Introduction
	Related Work
	Background
	Dynamic Time Warping
	Edit distance with Real Penalty
	Move-Split-Merge

	Query-sensitive Measure Selection
	Measure-selection Framework
	Offline step
	Online step

	Methods
	Scheme 0: Basic
	Scheme I: Distance ratio-based
	Scheme II: Homogeneity-based


	Experiments
	Experimental Setup
	Experimental Results

	Conclusions and Future Work

