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ABSTRACT
This paper focuses on creating video-based human activity
recognition methods towards an automated cognitive assess-
ment system for children. We present the Activate Test for
Embodied Cognition (ATEC), which assesses executive func-
tioning in children through physical/cognitive tasks. Detecting
activities for children is challenging due to high amount of
random motion and variability. This paper focuses on creating
a ubiquitous and non-intrusive activity recognition system for
upper-body movements. Our proposed methods are evaluated
on real-world data from children performing the Cross-your-
Body task. The dataset includes 15 children performing 8
types of activities, resulting to 1900 annotated video samples.

CCS Concepts
•Computing methodologies → Supervised learning by
classification;

Author Keywords
Human Activity Recognition, Body Pose Features, Cognitive
Assessment

INTRODUCTION
Self-regulation, which generally refers to a complex of ac-
quired, intentional skills involved in controlling, directing, and
planning one’s cognition, emotions and behaviors [20], is an
important mechanism associated with variety of outcomes,
including school readiness and performance [16]. Executive
function refers to the mental processes that enable humans
to plan, organize, problem-solve as well as manage their im-
pulses, including cognitive flexibility, working memory, and
inhibitory control [3]. Children who face deficits in execu-
tive functions are highly likely to present attention disorders
[2]. ADHD or attention deficit hyperactivity disorder is a
psychiatric neurodevelopmental disorder found in children
and young adolescents and it can start as early as age 6 [6,
8]. Cognitive impairments in executive functions can not only
cause bad performance in school settings, but can also show
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repercussions in family, employment and community settings
which can result to several socioeconomic problems, resulting
to low self-esteem and self-acceptance [7]. In order to quan-
tify executive function in children, traditional assessments in-
clude either paper or computer-based activities, e.g., the NIH
toolbox. However, recent studies suggest assessments which
include physical activities, for example the Head-Toes-Knees-
Shoulders (HTKS) task, which has been extensively tested
on 208 children and elicits psychometric measures through
physical performance [15].

Our research includes the development of ATEC; the ACTI-
VATE Test for Embodied Cognition, which includes a set of
physical tasks with cognitive demands to assess executive func-
tion in motion. A core ATEC task is Cross-your-Body, which
follows and extends the basic HTKS rules, and is designed
to assess working memory and attention, bilateral coordina-
tion, rhythm and self-regulation. The HTKS rules include
four behavioral activities: "touch your {head, toes, knees,
shoulders}". The subject is initially instructed to touch the
announced body part. Then, the task introduces task switching
and requires the child to touch the body part in an "opposite"
fashion (e.g. touch knees when told to touch shoulders).

Cross-your-Body requires the subject to touch the correct body
part with the hand from the opposite side. Crossing the midline
is an integral skill related to bilateral coordination that children
learn from infancy. Poor midline crossing can affect reading
(tracking with the eye from left to right) and writing (using
their dominant hand across the writing page) skills. Moreover,
Cross-your-Body is designed to assess rhythm; the child is
asked to repeat each movement three times, alternating sides
in a timely manner. Task performance is determined both in
terms of accuracy (touch the correct part) and rhythm (perform
movements in a rhythmic manner). Manual scoring requires a
human rater to watch the videos and score the child based on
the task rules (accuracy, rhythm) and can be time-expensive
and often ambiguous.

The main purpose of our research is to build an automated
scoring system for Cross-your-body, which detects and ana-
lyzes the performed activities to assess accuracy and rhythm.
Current systems like Cognilearn [9] utilize state-of-the-art
computer vision algorithms by capturing color frames from
the Kinect V2 camera and provide an interface for motion cap-
ture and analysis. Deep Learning architectures were proposed
as the backbone model [12] and tested on synthetic data with
adults performing the task. For this paper, our dataset includes



collected data during the ATEC assessments with children
between 5-10 years old in classroom environments.

The main contribution of our paper is a video-based activity
recognition system for the Cross-your-Body task, which recog-
nizes the active hand that performs the movement, estimates
specific spatial hand positions for efficient feature extraction,
while including low-confidence prediction class. Our experi-
ments on real-world data indicate the efficiency of our method
for reliable and user-independent activity prediction effective
on scaling number of users. The structure of the paper is as fol-
lows: Firstly, we present related work on similar applications,
highlighting the motivation of our work. Then, we present
the system architecture and our experimental approach using
machine learning techniques. We discuss our experimental
protocol and results, describing the data collection and anno-
tation process. Finally, we conclude with some final remarks
and our future work.

RELATED WORK
Emerging technologies have influenced many medical re-
lated processes such as diagnosis, rehabilitation and treatment.
Computer and data science have opened up another realm of
capturing and analyzing data in an automated fashion. These
implementations not only demand higher prediction accuracy
but also focus on user engagement. Active video game play
using consoles like Microsoft Kinect can help rehabilitation of
children suffering from Cerebral Palsy [11]. Systems can also
monitor the attention state of the child using eye-trackers to-
wards user-friendly and personalized interfaces [4]. Moreover,
virtual reality games have been developed for assessment and
rehabilitation of children with attention deficit [19].

Inattention and/or hyperactivity or impulsivity symptoms can
cause alterations in a person’s human movements and reactions
[1]. This is the main reason for exploring several sensor-based
human activity recognition systems. Such sensors can be em-
ployed on the human body or can be placed in the surrounding
environment. Hypothesis testing by studying the readings
given by wearables showed significant differences for ADHD
patients compared to non-ADHD controls [10, 13]. Recent ad-
vancements in deep learning have led to the use of convolution
neural networks (CNN) to extract embedded acceleration pat-
terns and provide objective measures to help diagnose ADHD
[17], but such approaches can be obtrusive since the subject
has to wear different types of wearable sensors.

Camera-based settings can provide an unobtrusive environ-
ment for data collection and computer vision and deep learning
methods can be used to extract important spatio-temporal fea-
tures and recognize patterns of interest. In a previous work, a
camera-based system was proposed for the HTKS task [9] and
evaluated on adults, which used deep learning techniques to
extract body pose information for human activity recognition
following a frame-based approach. In this work, we follow
a segment-based approach, since the nature of activities in-
volved in Cross-your-Body (CYB) is more complex compared
to HTKS, i.e., crossing the midline and performing the task
in rhythm. Moreover, our proposed methods are evaluated on
real-world data from children performing the task.

CYB SYSTEM
The primary goal of the system is to reliably recognize the
type of performed activity given a video segment. The system
initially detects the subject and then tracks its hands over
time to recognize the performed activity, as well as when the
activity was performed. The overall system is illustrated in
Figure [1]. The system receives body-motion data from Kinect
and then it produces a set of spatio-temporal features used to
predict the activity performed by the child. The system include
two modules: the Acquire and the Track module. The Acquire
module takes care of capturing and analyzing each frame to
create an accurate skeleton vector for the entire video, which
after preprocessing it is passed to the Track module for gesture
recognition.

Figure 1: System Architecture

Acquire Module
The Acquire module initially fetches the RGB frames from
the Kinect and detects the subject of interest, in order to detect
and filter its 2d pose, divide the body into regions based on
height in order to produce a filtered skeleton joint vector for
activity recognition.

Human Detection
The first step of the process is to reliably detect the subject
of interest. Due to the naturalistic environment, there are
often multiple people in the background during the ATEC
assessment was essential to first isolate the subject of interest
in order to reduce computation complexity. YOLO v3 [18]
was used to detect the humans in the scene because of his
fast and accurate inference and then based on an empirically
decided spatial threshold, the bounding box which fell in that
criteria was chosen as the subject of interest which was then
was passed to the pose estimation.

2D Body Pose Estimation
Microsoft Kinect V2 has an RGB capture resolution of
1920x1080 pixels with a Time-of-Flight depth data as an
512x424 resolution image [21]. The field of view for depth
is 70 degrees horizontally and 60 degrees vertically [14]. In
this paper, a Kinect V2 is used for acquisition since it tracks
more joints and has a higher motion tracking accuracy, with
greater stability. Kinect’s SDK provides it’s own stock SDK
that can be used to get the 3D body pose of the skeleton, but
the problem is that Kinect’s skeletal tracking doesn’t perform



well under occlusions [22]. In our work we are still using
kinect, since it gives us the color and the depth channels of
the environment. Currently we are considering only the color
modality of the acquisition for our analysis as it is much more
consistent and less noisy than kinect’s skeletal tracker.

For locating the joints in the RGB images, we leverage the
recent advancements in deep learning where data has been
trained on millions of images encompassing scenarios like
self-occlusions and networks like OpenPose [5] can be very
useful to provide accurate estimation of body pose. We have
employed the skeleton map result based on the 2016 COCO
keypoints dataset challenge and the skeleton structure pro-
vided by openpose is as shown in the figure 2. Each joint is
represented by a 2D vector in the cartesian co-ordinate space.
The extracted tensor for a video can be expressed as follows:

Pi = [B1,B2, ....,B18], i = [1,2, ...,n] (1)

Where Pi is a set of 18 2D keypoints location representing
respective body joints for a given frame i in a video sample.

Figure 2: Openpose Skeleton Map

Filter Keypoints
These points in a video sample are further filtered, where
intermediate body points are interpolated in case of misclassi-
fications.

Body Bounding Box
After filtering the keypoints, the first frame of the video sample
is used to divide the body into 4 areas. This area is based on
the required class labels of ears, shoulders, hip and knees. The
height of the person is computed using the distance between
ear and ankle with a padding of 50 pixels. Using a fixed width
consistent with all the subjects the body is spatially divided
into 4 parts using a fixed percentage of height per body part.
The divided region helped the classifier understand which part
the subject was trying to touch and the use of these regions
will be explained in the active body part prediction section.

Track
Tracking modules involves classifying the activity by using
the 2d keypoints. This involves finding which hand was active
in other words which hand was performing the gesture/activity
and which body part it was touching/interacting with. This
involves finding the relevant frames in the video which gives

the maximum information for correct classification as well
as extracting those spatio-temporal features. The tracking
module first finds which hand was active, then tracking the
spatial positions of the palm decides where the touching of
body happened based on the velocity and curvature of the
palm trajectory and eventually classifies the active body part.
These steps will be elaborated in the following sections.

Detect Active Hand
Before tracking the hand it was important to compute the
palm position and not the wrist position and since the body
pose estimator of OpenPose didn’t give the palm position, an
approximate estimation of palm was done by extending the
vector passing from the elbow through wrist by a magnitude
of 1.25 times the magnitude of the vector between elbow and
palm, where the elbow vector is added by the scalar element-
wise (Eq. 2).

~BPalm = ~Belbow +‖~Bwrist −~Belbow‖∗1.25 (2)

The experimental protocol dictated that a valid touch of body
part is supposed to be done by the opposite hand-body pair
(midline crossing). So to check whether a palm is on the
other side of the body a reliable anchor point was needed to
decide the horizontal center of the body. Based on the data
visualizations and the experimental protocol, subjects were
instructed to stand at a fixed location in the scene, hence their
feet position is fixed in the whole video and can act as anchor
points. The vector passing from midpoint of the 2 ankle and
parallel to the y-axis was considered as a border dividing the
body into left and right side.

~Bmidankle =
~Ble f tankle +

~Brightankle

2
(3)

For a video sample, let Cle f t and Cright be the set of frame
indices in a video sample where the system predicted that the
hands are in opposite sides of the body. These 2 sets are then
passed to a filter where:

Cle f t [n] =
{

n, if ~Bmidanklex −~Ble f t palmx > 0
0, otherwise

(4)

Cright [n] =
{

n, if ~Bmidanklex −~Bright palmx < 0
0, otherwise

(5)

After getting the frame indices where the left and right palms
cross the midline, these indices were further analyzed to get
the active hand which is computed by analyzing the velocities
of the palms. The protocol for a correct body movement
indicates that subjects moves their hands from a rest position,
cross the midline, touch the body part of the opposite side and
then bring the hand back to rest by crossing the midline again.
More formally, this means that the subject’s hand will cross
the midline twice (once while approaching and once while
leaving) and the hand’s velocity vector in the x direction will
have opposite direction as it cross the midline. Note that there
might be cases when the subject’s hand may be in the cross
state and still they did touch the body part. If both hands were
in cross state, then the hand which crosses the midline later



Task ID Task Nature Video Instructed - "Cross your body touch your.." Actual Movement Intended
1 Cross Body - Trial 1 E,S,H,K E,S,H,K
2 Cross Body - Trial 2 E,S,H,K E,S,H,K
3 Cross Body Ears - Knees E,K,K,E,K,E,E,K K,E,E,K,E,K,K,E
4 Cross Body Hips - Shoulders S,H,H,S,H,S,S,H H,S,S,H,S,H,H,S
5 Cross Body Hips - Combined E,H,K,S,K,H,E,K,H,S,E,S K,S,E,H,H,E,H,K,E,S,H,K,H

Table 1: Cross-your-Body versions and rules. Trials 1, 2 do not have cognitive demands; the rest of them introduce task switching

was assumed as the active hand. If none of the hands were
in a state of cross, then the classifier is not confident of the
prediction and not undergo further steps.

Get Active Body Part
Once the system detects the active hand, the next step of the
algorithm is to identify which body part is touched. This is
the crux of the system as based on the data analysis for the
kids, there is a very high intra-class variability on the style of
how a subject performs an activity in terms of distance from
the palm and the intended body part touch and velocities the
palm approaches and leaves a body part after touching. The
trajectory of an active hand’s palm can be considered as a
curve defined in a parametric form by equations x = x(t) and
y = y(t), where t is time and x and y are the co-ordinates of
the palm. So, a curvature at any point on the trajectory can be
given as:

K =
|x′y′′− y′x′′|

[(x′)2 +(y′)2]2
(6)

Here x′ and x′′ are the first and second derivative of the x co-
ordinates and similarly for y-co-ordinates. Before getting the
points of curvature, the trajectory is smoothed by using a 1
dimensional smoothing filter. Using the spatial positions of
the trajectory, further they were filtered based on the velocity
of the hand. An empirical threshold of 2 was chosen to filter
the positions. Once the spatial positions of the hands are
known where the palm trajectory showed highest curvature
and the palm was moving slowly, then the mean of these
spatial positions is taken and using the bounding boxes of the
relevant body parts as shown in figure 2, the final prediction
is done. If the prediction is ear or shoulder it goes through
further processing of ear and shoulder classification module
which computes more spatio-temporal features and produces
a final prediction (ear/shoulder) by passing the features to a
decision tree algorithm.

Figure 3: Temporal Analysis of activities and rules

The spatio-temporal features into consideration are:

• Hand Shoulder and Hand Ear Distance: To compare that the
hand was much closer to ear or shoulder, euclidean distances
between the active hand’s palm and the opposite side’s ear
and shoulder were computed taking for the spatial positions
where the curvature of the trajectory was maximum and
velocity was low. Note, there can be a multiple points
where this criteria of curvature and velocity may be true
over time in a video so a mean of these euclidean distances
was taken to compare if it was close to ear or shoulders.

• Shoulder-Palm-Ear Angle: This is a very important feature
that can be used to differentiate the touching of ear or shoul-
der. For example the angle made by the left shoulder, left
elbow and left palm will be much closer to the angle made
by the left shoulder, left elbow and right ear compared to
left shoulder, left elbow and right shoulder when the actual
activity performed was left hand touching right ear. Using
the formula 7, we can compute an angle between 3 joints
and the above logic will yield into 3 angles namely Θpalm,
Θshoulder and Θear resulting into addition of information for
better prediction between ears and shoulder.

−→
AB = A−B
−→
BC = B−C

Θ =
∑

n
i=1 cos−1

(
−−→
ABi ·
−−→
BCi

|−−→ABi|·|−−→BCi|

)
n

(7)

System Protocol
In the context of our research study, children were participated
to perform the ATEC activities, including the Cross-your-Body
task. For our experiments, we created our dataset including
data from 15 participants performing five versions of the task
in 2 sessions with a gap of 2 months. In order to ensure
a high-fidelity assessment system, all instructions are pre-
recorded and same for all children. A large screen is used
to display a theme-based music video, where the on-screen
host, Aliza, instructs the child to perform the task following
her "Cross-your-Body" song. Two Kinects (front and side)
are used to capture the movements. The distance between the
subject and both of the Kinects is 2m. Table 1 illustrates the
task versions. Before each task, the subject is shown a task
instruction, as well as a demonstration video clip , explaining
the task rules. For example, for Trials 1 and 2, the child is
told to perform three touches, touching the announced body
part, using the hand from the opposite side and alternating
sides. For the rest of the tasks, the child is instructed to follow
the "opposite" rules; task 3 switches ears and knees, task 4



switches shoulders and hips, while task 5 includes both rules.
Every subject undergoes through the same process and there
is no prior instructions given other than the video instructions.

(a) Left Hand Right Ear (b) Left Hand Right Knee

(c) Right Hand Left Hip (d) Left Hand Left Shoulder

Figure 4: Sample predictions for a subject. Body joint posi-
tions are highlighted in yellow (ear), cyan (shoulders and hips)
and yellow (knee). Active hand positions for a hand are in
thick red, while unfilled red circles indicate an inactive hand.
Points with high curvature and low speed are in green.

A temporal analysis of the activities performed vs instructed
can be seen in fig 3 which indicates the progression of a task
and is divided in 2 parts: video segments and activity per-
formed. Referring to the row of video segments, the main task
is made of several sub-tasks and is highlighted in yellow and
green respectively. A sub-task begins when the instruction
video starts saying "Cross your body.." while a task segment
begins when the actual body part to touch was said. The in-
struction time gap between every task segment is 1 second and
there are 3 segments in every sub-task. Each task segment is
an activity of touching a body part and there were overlapping
of activities, in other words if A1 and A2 are 2 task segments
of touching ear, the subject might be partially touching the ear
or moving hand away from that ear while lifting the other hand
and approaching the other ear intended for A2. Also since
there involves processing of working memory a subject would
perform the activity with varying delay after the instruction
and since there also involves switching of rules, the activity
performed may or may not be correctly done as instructed.

EXPERIMENTS AND RESULTS
Based on the problem definition 8 activity classes were cho-
sen as LHRE, RHLE, LHRS, RHLS, LHRH, RHLH, LHRK,

RHLK, where LH stands for left hand and RH stands for right
hand. Also there was a ninth class as nooo indicating system
low-confidence. The recorded videos were segmented based
on the timestamps of the presented stimuli and a frame level
activity annotation was performed resulting into 1900 video
samples, where the average frame length of the video was
28. Each annotated segment refers to one (out of three) move-
ments. First 5 subjects were used to set the thresholds required
by the algorithm (e.g., bounding box) and the next 10 subjects
were used for testing.

Figure 5: Confusion matrix for the test split

As illustrated in figure 4, these are some sample predictions of
the system and it can be clear that system could focus more
on the spatial locations in the trajectory of the hand where
it could extract maximum information. The accuracy of the
system was measured for these 10 test subjects by comparing
with the ground truths and the system could achieve an overall
89.95%. The confusion matrix for the predictions can be seen
as in figure 5. Based on the confusion matrix, the prediction
of ear or shoulder needs further fine-tuning as the system still
gets confused since the distance between ear and shoulder is
small and the palm position prediction is not able to capture
the fine motion of palm. One way to improve this is to use
the depth modality or skin detection for better segmentation
of hand and in-turn help to compute the distance and angles
between palm, ear and shoulder much more accurately.

CONCLUSION AND FUTURE WORK
A video-based activity recognition system for cognitive as-
sessment in children was presented. Data were collected from
the Cross-your-Body task during the ATEC administration
with children between ages 5-10. Overall 1900 video samples
were segmented and annotated and the system gave an overall
accuracy of 89.95%. The automated system was also tested
with manual scoring and gave accurate results as compara-
tively. The system successfully applied temporal modelling
dependencies to capture the aforementioned activities. Mov-
ing forward, the system will be extended to perform automated
scoring given the task rules. Our ongoing work on temporal
localization of the activity will provide us with insights on



how to automatically score both for accuracy (which part is
touches) and rhythm (when the touch occurs). Intelligent in-
terfaces will be used to provide the experts with intuitive data
visualization to enhance their decision making.
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