
BU CS TR99-015.v2, Dec. 1999 (revised in March 2000).
To appear in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2000).

Estimation and Prediction of Evolving Color Distributions for Skin
Segmentation Under Varying Illumination

Leonid Sigal, Stan Sclaroff, and Vassilis Athitsos
Image and Video Computing Group - Computer Science Dept.

Boston University - Boston, MA 02215

Abstract
A novel approach for real-time skin segmentation in video
sequences is described. The approach enables reliable skin
segmentation despite wide variation in illumination during
tracking. An explicit second order Markov model is used
to predict evolution of the skin color (HSV) histogram over
time. Histograms are dynamically updated based on feed-
back from the current segmentation and based on predic-
tions of the Markov model. The evolution of the skin color
distribution at each frame is parameterized by translation,
scaling and rotation in color space. Consequent changes
in geometric parameterization of the distribution are prop-
agated by warping and re-sampling the histogram. The
parameters of the discrete-time dynamic Markov model are
estimated using Maximum Likelihood Estimation, and also
evolve over time. Quantitative evaluation of the method
was conducted on labeled ground-truth video sequences
taken from popular movies.

1 Introduction
Locating and tracking patches of skin-colored pixels
through an image sequence is a tool used in many face
recognition and gesture tracking systems [1, 4, 5, 7, 8,
9, 12, 13, 14]. An important challenge of any skin-color
tracking system is to accommodate varying illumination
conditions that may occur within an image sequence. Some
robustness may be achieved via the use of luminance in-
variant color-spaces [13, 7]; however, this method can
withstand only changes that skin-color distributions un-
dergo within a narrow set of conditions.

The conditions that we are concerned with in this paper
are broader than those assumed in many previous systems.
In particular, we are concerned with three conditions: 1.)
time-varying illumination, 2.) multiple sources, with time-
varying illumination, and 3.) single or multiple colored
sources. Most previous skin segmentation and tracking
systems address only condition 1, defined over a narrow
range (white light). Nevertheless, conditions 2 and 3 are
also important, and have to be addressed in order to build a
general purpose skin-color tracker. We will now list a few
common scenarios that may lead to consideration of some,
all, or a combination of the conditions cited above.

Consider a person driving a car at night. Illumination
from street lights and traffic lights will be at least in part
responsible for the color appearance of his/her skin. Hence

if we want to build a skin color tracking system that would
be used in surveiling the driver [10], we need to account
for varying illuminant intensity and color.

Skin-color person tracking is also useful in indexing
multimedia content such as movies. In this case, multi-
ple colored lights with varying intensity play a direct role,
since many movies are filmed with theatrical lighting to
dramatize the effects of the screenplay.

Still another example of time-varying color illuminant
is apparent in observing a person walking down a corridor
with windows or lights that are significantly spaced apart.
The color appearance of the person's skin will smoothly
change as they move towards and then away from various
light sources along the corridor.

Finally, it should be noted that it is not necessary to have
colored lights to achieve effects equivalent to those that oc-
cur with colored lighting. Equivalent effects commonly
arise due to surface inter-reflectance. For instance, con-
sider a person walking down a corridor that has colored
walls and/or carpet, or a person wearing colorful clothing.
These surfaces reflect a color tinge onto the person's skin.

These are a few examples of applications that motivate
our approach. Even though we agree that the majority of
everyday lighting effects are due to white light attenuation,
we hold that it is important to consider alternatives as well,
in order to have a robust skin-color tracker that can handle
a wider variety of environmental conditions.

In this paper we propose a new technique that allows
for a more general representation of skin-color. An ex-
plicit second order Markov model is used to predict evo-
lution of the skin color distribution over time. Histograms
are dynamically updated based on feedback from the cur-
rent segmentation and based on predictions of the Markov
model. The parameters of the discrete-time dynamic
Markov model are estimated using Maximum Likelihood
Estimation, and also evolve over time. Quantitative evalu-
ation of the method was conducted on labeled ground-truth
video sequences taken from popular movies, and the results
are encouraging.

2 Related Work
In a study of skin-color distributions conducted by Yang
and Waibel [13], three major conclusions were found.
First, human skin-color distributions are clustered in the
chromatic color space; the skin color distribution for a per-
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son, regardless of identity or ethnicity, occupies a relatively
small area within the color space. Second, skin-color dif-
ferences among people can be reduced by intensity normal-
ization. Third, under certain lighting conditions, a skin-
color distribution can be characterized by a multivariate
normal distribution in the normalized color space.

Therefore, under certain conditions the skin-color distri-
bution of each individual can be expressed as a multivariate
normal distribution; however, parameters of the distribu-
tion can vary significantly with people and lighting condi-
tions. This means that in order to build a system that is
general enough to model and track different people, or ro-
bust enough to handle even modest variations in illumina-
tion conditions, we have to employ an algorithm that would
adjust the parameters of the distribution accordingly.

This insight aided Yang and Waibel [13] in the design
of their system. Their adaptation technique used a linear
combination of previous parameters to estimate the new
parameters for the mean and covariance of the multivariate
Gaussian distribution. The algorithm was implemented in
normalized (r; g) color space, using the Expectation Max-
imization algorithm (EM).

In a similar real-time human tracking system proposed
by Hafner and Munkelt [5], skin color was modeled by a
2D normal distribution in u and v components of Huv color
space. Unlike Yang and Waibel, exponential (instead of
linear) functions were used in the weighted estimation of
the evolving distribution's parameters.

Oliver and Pentland [7] built a real-time system for
tracking and classification of human face and lip motion.
Spatial coordinates (x; y) were combined with (r; g) nor-
malized color components in a 4D feature vector for each
pixel. These features were used as input to an incremen-
tal EM algorithm that dynamically estimated the Gaussian
mixture models for background and foreground. Pixels
were grouped into skin-color blobs. Kalman filters were
used to filter spatial parameters for each blob.

Raja, et al., [8] developed a tracking system that em-
ployed Gaussian mixtures to model skin, clothes and back-
ground. It was assumed that a skin-color distribution can
be modeled by a low order Gaussian mixture, where the
number of components does not change over time or over a
range of conditions. The system's use of the hue-saturation
color space made it robust to minor illuminant changes.

In Birchfield's real-time head tracking system [1], the
projection of a head in the image plane was modeled by an
ellipse. The intensity gradient near the edge of the ellipse
and a color histogram representing the interior were used to
update the ellipse parameters over time. Use of (B-G, G-R,
B+G+R) color space provided robustness to specular high-
lights, and uniform shifts in white illumination. Use of his-
tograms made it more versatile; however, these histograms
were static and did not model varying illumination.

Darrell, et al. proposed an integrated approach to real-
time person tracking that combined a number of stereo,

color, and neural net based approaches for face detection
[4]. Unlike other systems described thus far, this system
employed stereo views, and hence tended to be more stable
and robust to occlusions. The authors empirically found
that skin-color can be modeled as a single Gaussian in
RGB “log color opponent” space, and employed this rep-
resentation in their approach.

Name-It, a system for finding faces in newscast video,
employed a normalized (r; g) space for skin color tracking
[9]. A single Gaussian model with standard Bayesian clas-
sifier was used for skin/non-skin pixel classification. An
eigenvector based technique was used to detect faces.

In summary, techniques that adapt the color distribution
over time perform much better. All systems employ a color
space representation that provides robustness to illumina-
tion variation. Some systems add shape or blob constraints
to further improve tracking. We propose a system that goes
even further, by employing predictive adaptation in mod-
eling the color distribution over time. As will be seen, ac-
curate predictions can lead to a better segmentation under
varying illumination conditions.

3 Overview of Approach
The goal is to track a moving skin-color distribution as de-
fined by an adaptive color histogram in color space. Track-
ing is done by predicting the future parameters of the distri-
bution and applying a warping on the distribution based on
those predictions. The algorithm has three stages: initial-
ization, learning, and then steady-state prediction/tracking.

The initialization stage segments the first frame of the
image sequence to give an initial estimate for the skin-
color distribution to be tracked. This is done by using a
two-class Bayes' classifier. The prior histograms used for
classification are precomputed off-line using the database
provided by Jones and Rehg [6]. The resulting crude es-
timate is then refined with binary image processing. The
final result of the initialization phase is the binary mask for
the skin color regions to be tracked.

The learning stage uses an EM process over the first few
frames in the video sequence. At each frame, the estima-
tion step is histogram-based segmentation and the maxi-
mization step is histogram adaptation. This process defines
the evolution of the distribution in discrete time. The evo-
lution of the distribution is implicitly defined in terms of
translation, rotation, and scaling of the samples in color
space. The transformation parameters are easily estimated
via standard statistical methods. Given the evolution of
parameters, we can estimate the motion model for the dis-
tribution, and hence predict further deformations. The mo-
tion model that we use for the predictions is a second order
discrete-time Markov model. The Markov model parame-
ters are estimated by maximum likelihood estimation.

Once a motion model is learned we proceed to the pre-
diction/tracking stage. At this stage, in addition to segmen-
tation and distribution estimation, changes in translation,
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scaling and rotation of the distribution are predicted given
the Markov model estimated in the learning stage. The
parameters of Markov model are re-estimated over time as
well. By predicting parametric changes, we can get a better
estimate of the true distribution at the next time step. Even
though adaptive histograms are used for segmentation, we
cannot apply the predictions to the histograms directly due
to the problems with resolution and sampling. Instead the
predictions are propagated via a transformation applied on
the samples directly. The newly transformed samples are
used to estimate the histogram at the next frame.

Each of the three basic stages of the algorithm will now
be described in greater detail.

4 Initialization
The first stage of the system is designed to give an initial
estimate for the location of the foreground (skin) and back-
ground (non-skin) regions in the first frame of the image
sequence. This is achieved by segmenting the first frame,
with histogram-based conditional probability distributions
for the two classes that have been obtained off-line.

4.1 Prior Histogram Learning
Histograms for the skin and background distributions are
learned off-line from a database provided by Jones and
Rehg [6]. The database contains 4675 skin images with
corresponding masks and 8965 non-skin images. All im-
ages were collected from the world wide web and skin re-
gions were labeled by hand.

Following [6], histogram-based distributions were com-
puted at a 32� 32� 32 bin resolution in RGB color space.
Results obtained in [6] showed that 32 � 32� 32 bin his-
tograms are not only sufficient but are superior in the seg-
mentation to the fully-ranked 256�256�256 histograms.
Conditional probability densities were obtained by divid-
ing the count of pixels in each histogram bin by the total
number of pixels in the histogram. The conditional densi-
ties will be denoted P (rgbjfg), and P (rgbjbg),where fg
denotes foreground, bg background, and rgb 2 <3.

4.2 Skin Segmentation Using Prior Histograms
Using Bayes' formula, we can compute P (fgjrgb) and
P (bgjrgb). The classification boundary can be drawn
where the the ratio of P (fgjrgb) and P (bgjrgb) exceeds
some threshold K that is based on a relative risk factor as-
sociated with misclassification. For example

K <
P (fgjrgb)

P (bgjrgb)
=

P (rgbjfg)P (fg)

P (rgbjbg)P (bg)
(1)

corresponds to pixel value rgb being labeled as foreground.
Rearranging terms

K �
1� P (fg)

P (fg)
<

P (rgbjfg)

P (rgbjbg)
; (2)

where P (fg) is the probability of an arbitrary pixel in an
image being skin. Clearly this probability will vary from
image to image, but given a large enough data set we can
come up with the aggregate probability that can serve as
our best estimate. In our training database, P (fg) = 0:09.

Given P (fg), we can now empirically establish the
threshold K. One of the standard ways of determining the
threshold is by computing a Receiver Operating Charac-
teristic (ROC) curve. The ROC curves in Fig. 1 show the
trade off between the true positives and false positives for
various possible settings of the decision criterion K.
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Figure 1: Average ROC curves (computed over three random
sets of 100 images excluded from training data) for skin segmen-
tation as a function of threshold K. The x-axis corresponds to the
probability of false detection, and the y-axis to the probability of
correct classification.

A threshold was chosen such that at least 85% correct
classification is achieved while having under 25% chance
of false alarm. This choice was made in light of [6] and the
fact that the optimal value for the threshold should lay near
the bend of the ROC curve. The selected threshold was
K = 0:06. This was consistent across a number of trials.

The result of the pixel classification scheme above is a
binary image mask in which 0's correspond to background
pixels, and 1's to foreground pixels. In order to minimize
noise effects, we employ size and hole filtering before the
binary mask is passed to the learning stage of the system.

5 Learning
Thus far, only aggregate statistics have been employed in
segmentation. However, our ultimate goal is to learn the
statistics that are specific to the image sequence at hand.
The mask for the first frame of the sequence (provided by
the initialization) is a good initial estimate of skin and non-
skin regions. The pixels from those regions can be used
to re-estimate histograms for foreground and background.
The new histograms are sequence-specific, and hence are
better estimates. The new sequence-specific value for the
P (fg) is also re-estimated based on the image mask.

However, using static histograms for the image sequence
in which the distribution constantly changes is inappropri-
ate; hence, we employ an adaptive histogram scheme to
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facilitate the tracking of the distributions. From the fore-
ground and background distributions observed over an ini-
tial sequence of frames, sequence-specific motion patterns
are learned. A second-order Markov process is used to
model evolution of the color distributions over time. The
formulation will now be described in greater detail.

5.1 Color Space for Skin-Color Tracking
An important aspect of any skin-color tracking system is
choosing a color space that is relatively invariant to minor
illuminant changes. The two most popular color spaces
that have proved to be robust to minor illuminant changes
are HSV and normalized RGB. In preliminary experiments
we found that HSV color space is much better suited than
normalized (r; g) for estimation and prediction of skin-
color distribution evolution in image sequences taken from
entertainment videos and movies.

The only disadvantage of the HSV color space is the
costly conversion from standard RGB source. We handled
this problem by quantizing the HSV space into (64x64x64)
RGB to HSV lookup table. To gain a uniform sampling of
the color space, each of the HSV color channels is normal-
ized to floating point values between 0 and 1, given the
expected range of HSV values.

5.2 Histogram Representation of Distributions
Skin color, even though clustered in space, cannot be ad-
equately represented as a single Gaussian in general. The
mixture of Gaussians representation is much more pow-
erful. With a small number of mixtures, evaluation and
updates of the probability density function can be done in
real time. However, as soon as more mixtures are needed
for representation, this approach becomes infeasible.

One major advantage of the histogram representation is
that the probability density function can be evaluated triv-
ially regardless of the complexity of the underlying distri-
bution. Another advantage is histogram generality. The
main disadvantage is that histograms in general are bad
for representing sparse data, where only a fraction of the
necessary samples is available. This can be dealt with via
interpolation or Gaussian filtering of the histogram.

We will assume that there are enough sample pixels to
provide a good sampling for the underlying distribution.
This is a reasonable assumption given that skin-color pix-
els of any particular person are closely clustered in HSV
color space [11]. In addition, the recursive nature of the
adaptive histogram algorithm requires use of samples from
more than one frame; thereby increasing the number of
samples used in estimating the distribution at any time.

5.3 Motion of Distributions
As mentioned earlier, skin-color distributions tend to
evolve over the sequence of observed frames. In order to
model and predict this evolution, we need to make some

assumptions about the types of motions that distributions
can undergo in the color space.

One assumption is that skin-color distribution evolves
as a whole; thus, there cannot be any local deformations or
evolutions in the distribution. Furthermore, global defor-
mations of the distribution are assumed to be affine. These
decisions are based on observations made in goodness of
fit studies [11]. To further simplify our prediction model
we constrain ourselves to the three most significant affine
transformations: translation, rotation and scaling. We em-
ploy an eight-parameter vector defined as follows:

� = T1; T2; T3; S1; S2; S3; �; � (3)

where Ti are differential translation, Si differential scaling,
and � and � are differential angles of spherical rotation ap-
plied about the mean of the skin-color distribution.

5.4 Estimating Distribution Motion Parameters
Translation parameters Tt at time t can be extracted di-
rectly from the difference in means of the HSV skin-color
distribution histogram from frame t� 1 to t.

Scaling can be extracted by considering the eigenval-
ues of the covariance matrix of the skin-color distribution.
Eigenvalues represent the relative scaling of the distribu-
tion along the principal directions defined by the eigenvec-
tors of the covariance matrix. Differential scaling St along
these principal axes is the ratio of the corresponding eigen-
values for the two consecutive frames.

It is assumed that the incremental rotation of the distri-
bution is smooth and relatively small. Given two coordi-
nate frames defined by the eigenvectors of the covariance
matrices of the skin-color distributions in the two consec-
utive frames, our problem is reduced to finding two angles
in the spherical coordinate space centered at the mean that
would align the two coordinate systems. The first angle
can be found as follows:

� = acos(e1;t�1 � e1;t); (4)

where e1;t�1 is the eigenvector corresponding to the largest
eigenvalue at time t � 1, and e1;t is the eigenvector corre-
sponding to the largest eigenvalue at time t. The axis of ro-
tation v� is found via the cross product: v� = e1;t�1�e1;t.

This defines the rotation R(v�; �) that will align the cor-
responding axes of greatest variation. This rotation when
applied to e2;t�1 and e3;t�1 will put them in the plane per-
pendicular to e1;t. In order to align the axes defined by
e2;t�1 and e2;t as well as e3;t�1 and e3;t we need to apply
a rotation about e1;t. The angle of this second rotation is
� = acos((R(v�; �) � e2;t�1) � e2;t).

5.5 Distribution Dynamical Model
In order to estimate and predict the skin-color distribution
over time we need to formalize a dynamic motion model.
It has been shown that affine motion can be fully expressed

4



in terms of an auto-regressive Markov process [2]. A sec-
ond order dynamical process handles both oscillatory and
arbitrary translational motion. We will now formulate the
discrete second-order Markov process that will be used in
our system. The formulation follows [2].

First, we define the N -dimensional state vector X ,
which in our case is an eight-dimensional parameter vector
(Eq. 3). The system's second-order dynamics is defined by
a stochastic differential equation [2]. The stochastic por-
tion of the dynamics is modeled by zero mean, unit vari-
ance N dimensional Brownian motion. For our applica-
tion, we utilize the discrete-time model:�

Xn� �X
Xn+1� �X

�
=

�
0 I

A0 A1

��
Xn�1 � �X
Xn � �X

�
+

�
0

Bwn

�
: (5)

The mean vector �X corresponds to the observed mean
displacement in each of the eight affine parameters. The
N � N submatrices A0 and A1 govern the deterministic
part of the motion model, whereas submatrix B governs
the stochastic part. Rearranging terms yields:

Xn+1 = A0Xn�1+A1Xn+(I�A0�A1) �X+Bwn: (6)

5.6 Learning Parameters for Dynamical Model
An algorithm for learning the parameters of the proposed
second-order Markov dynamical model is needed. The pa-
rameters to be learned are A0, A1, and B. Unfortunately
it is impossible to observe B directly; instead we observe
C = BBT . We can estimate these parameters using a
standard MLE algorithm described in [3]. This algorithm
is used with minor modifications as described in [11].

The eight parameters are treated as independent vari-
ables, allowing us to estimate the motion model parame-
ters with fewer observation frames than would be required
in the fully-coupled eight-dimensional case. In this case,
the minimum number of observation frames required for
learning is four. However, more robust performance can
be achieved by considering more frames. In experiments,
best results were achieved with n = 8 to 30. For a real-
time NTSC video stream, learning takes less than one sec.

5.7 Histogram Adaptation
Adaptive histograms combine predictions and observa-
tions. In our system, color histograms are first normalized
to obtain estimates of the actual probability density func-
tions of the skin and background distributions at hand. Up-
dates to histogram bins are made via the following model:

Hi;j;k(t) = (1� a)Hi;j;k(t� 1) + (a)H
(p)
i;j;k (7)

where i, j, and k designate the bin under consideration and
a is a scalar between 0 and 1 that allows us to adjust the
speed of adaptation. The histogram H (p) is predicted by
the second-order Markov model as described above. Opti-
mal values of the adaptation parameter a can be determined
empirically, as discussed in Sec. 7.

6 Prediction and Tracking
The prediction-tracking phase is an extension of the learn-
ing phase with one additional construct: the prediction
module. This module predicts the future deformations that
the distribution will undergo, and hence makes it possible
to segment the future frame with a more accurate estimate.

The predicted changes in the translation, rotation, and
scaling of the distribution are propagated by warping all
color vectors making up the histogram distribution, and
then re-sampling it. The new re-sampled distribution is
then used to segment the next frame, instead of the pre-
vious observation as was done in the learning phase of the
system. The rest of the system performs same as before.

6.1 Evolution of Dynamical Model
It is reasonable to assume that not only can a distribution
evolve over time, but in addition the process that guides
the evolution may change also. This is especially true for
long sequences where various illumination changes are ex-
pected. In order to handle this, we re-train the motion
model as new data becomes available. We always use the
last n frames to learn the motion model, hence at any given
time t the model will be extracted from (t�n�2 : : : t�2)
frames inclusively. Frames t�1 and t define the parameter
state vector, and are used to predict the future parameters.

7 Finding Optimal Adaptation Coefficients
As described in Eq. 7, each adaptive histogram has a sin-
gle adaptation parameter a = [0; 1] that controls the adap-
tation speed. An adaptation coefficient of a = 0 corre-
sponds to a fully in-adaptive histogram, whereas a = 1
yields a memoryless histogram representation that is fully-
adaptive. Since we have two histograms that we use for
two corresponding classes, there are two adaptation pa-
rameters that have to be estimated, afg and abg , for our
system. These parameters can be determined empirically,
as is demonstrated in the following example.

We proceed with establishing the optimal foreground
adaptation by fixing the background at abg = 0 and vary-
ing afg over its entire effective range while recording the
results of segmentation on each of the three 75 frame learn-
ing sequences. The resulting segmentation is then com-
pared with the hand labeled ground truth data in order to
evaluate the performance. Performance is evaluated using
two criteria: the determinant of the confusion matrix and a
receiver operator characteristic (ROC) curve.

Fig. 2 shows the result of the experiment described. The
adaptation coefficient afg varies between 0 and 1 by a con-
stant delta of 0:05. The first graph shows the determinant
of the confusion matrix as afg varies. As can be seen in the
graph, there is a clear peak that occurs at afg = 0:8. The
second graph shows the effects of changing the foreground
adaptation coefficient on the ROC curve. The choice of
afg = 0:8 is confirmed by the ROC curve.
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Figure 2: Performance as a function of the foreground histogram
adaptation factor afg. The top graph plots the determinant of the
confusion matrix. The bottom graph shows the ROC curve.

In order to find the optimal adaptation for background
we fix the afg = 0:8 and repeat the procedure varying the
values for abg . Fig. 3 shows the two performance curves
that were constructed to evaluate the performance of the
system at each of the tested values for abg . The graphs
are essentially flat. This can be explained in terms of the
training set, which consists of sequences with only very
slowly moving background. In general, however we want
to be able to handle faster varying backgrounds, and hence
we pick a reasonable adaptation value of abg = 0:60.

Two observations arise from this empirical study. First,
adaptation of the foreground is more significant than that
of the background, which agrees with intuition. The per-
son in front of the camera usually moves much faster than
the background; thus, the foreground tends to experience
a much greater variation in its color distribution changes,
and hence requires a more adaptive model. Second, even
though segmentation using adaptive histograms performs
better than the static segmentation (afg = 0), the fully-
adaptive (afg = 1) setup is not ideal. One reason for this
is noise that is present in the segmentation process as well
as in the input. The semi-adaptive system suggested by the
empirical study (afg = 0:8; abg = 0:60) tends to be more
robust.
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Figure 3: Performance as a function of the background his-
togram adaptation factor abg . The top graph plots the determinant
of the confusion matrix. The bottom graph shows the ROC curve.

8 Experiments
To evaluate the performance of our system we collected a
set of 21 video sequences from nine popular DVD movies.1

The sequences were chosen to span a wide range of en-
vironmental conditions. People of different ethnicity and
various skin tones are represented. Some scenes contain
multiple people and/or multiple visible body parts. Col-
lected sequences contain scenes shot both indoors and out-
doors, with static and moving camera. The lighting varies
from natural light to directional stage lighting. Some se-
quences contain shadows and minor occlusions. Collected
sequences vary in length from 50 to 350 frames; most,
however, are in the 70 to 100 frame range. Fig. 4 shows
example frames from the collected sequences.

All experimental sequences were hand-labeled to pro-
vide the ground truth data for algorithm performance ver-
ification. Every fifth frame of the sequences was labeled.
For each labeled frame, the human operator created one
binary image mask for skin regions and one for non-skin
regions (background). Boundaries between skin regions
and background, as well as regions that had no clearly dis-
tinguishable membership in either class were not included
in the masks and are considered don't care regions. The
segmentation of these regions was not counted during the
experimentation or evaluation of the system. Fig. 5 shows
one example frame and its ground-truth labeling.

1Test sequences, results and labeled ground-truth are available from
the web site: http://www.cs.bu.edu/groups/ivc/ColorTracking/.
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Figure 4: Examples frames from sequences used for experimentation.

(a) (b)

(c) (d)

Figure 5: Example of a labeled ground truth frame: (a) origi-
nal image from a sequence in which a hand is shown reaching
to lift a drinking glass, (b) corresponding labeled ground truth
mask image for skin, (c) background, and (d) don't care regions.
Boundaries between skin regions and background, as well as re-
gions that had no clearly distinguishable membership in either
class were not included in the masks and are considered don't
care regions.

8.1 Performance Experiments

The performance of the system was evaluated using the de-
terminant of the confusion matrix criterion. The determi-
nant of the confusion matrix was computed for every hand-
labeled frame of the sequence. To gain an aggregate per-
formance metric for the sequence, the average determinant
of the confusion matrix was computed.

For comparison, we measured the classification perfor-
mance of a standard static histogram segmentation ap-
proach [6] on the same data set. The static histogram ap-
proach implemented used the same prior histograms and
threshold as our adaptive system (see Sec. 4.2). The same
binary image processing operations of connected compo-
nent analysis, size filtering, and hole filtering were per-
formed to achieve a fair comparison.

The performance results are outlined in Table 1. Three
performance measures were computed: correct classi-
fication of skin pixels, correct classification of back-
ground pixels, and the determinant of the confusion ma-
trix Det[C]. With respect to the Det[C] measure, out of
21 sequences considered, 16 performed better using our
dynamical approach. An increase in performance of up to

Classification Performance
Sequence Info Static Dynamic
# # frames skin bg Det[C] skin bg Det[C]

1 71 70.2 97.5 0.67 72.2 96.9 0.69
2 349 64.3 100 0.64 74.8 100 0.75
3 52 92.9 98.5 0.91 96.4 97.8 0.94
4 99 46.2 100 0.46 56.7 99.9 0.57
5 71 90.2 100 0.90 96.9 100 0.97
6 71 96.3 100 0.96 97.5 100 0.98
7 74 90.7 95.4 0.86 91.6 94.0 0.86
8 119 15.1 100 0.15 38.3 100 0.38
9 71 85.9 99.5 0.85 89.8 99.5 0.89
10 71 77.1 91.6 0.69 77.8 89.8 0.68
11 109 92.4 99.7 0.92 94.5 99.5 0.94
12 49 43.1 100 0.43 69.2 100 0.69
13 74 96.9 99.9 0.97 97.6 99.9 0.97
14 74 97.8 100 0.98 98.3 100 0.98
15 90 87.3 100 0.87 86.5 100 0.87
16 75 74.7 100 0.75 84.3 100 0.84
17 72 98.6 98.8 0.97 98.6 98.8 0.97
18 71 81.5 99.8 0.81 88.0 100 0.88
19 71 36.3 100 0.36 37.6 100 0.38
20 71 93.2 37.5 0.31 97.1 36.6 0.34
21 232 83.6 100 0.84 83.4 100 0.83
Average 76.9 96.1 0.73 82.2 95.8 0.78

Table 1: Table of performance figures for the 21 different video
sequences from popular DVD movies. The experiments com-
pared classification accuracy for the dynamic vs. static histogram
approach. Three performance measures were computed: correct
classification of skin pixels, correct classification of background
pixels, and the determinant of the confusion matrix Det[C].

25% was observed. Performance increase of over 10% was
observed on five sequences. Skin classification rates with
dynamic histograms were as good or better than the static
histogram approach in all cases.

The five sequences that failed to perform better, had an
insignificant performance loss. In all five failure cases, the
system performed no worse than 1%. This performance
degradation was due to skin-like color patches appearing in

7



the background of initial frames of a sequence. Recall that
these initial frames are used in in estimating the parameters
of the Markov model (Sec. 5).

Finally, we performed a set of experiments to establish
system stability over time. For example, the graph in Fig. 6
shows system performance on the longest sequence in our
test set (349 frames).
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Figure 6: Performance of the dynamical system over an ex-
tended sequence. The horizontal axis represents time, measured
in frames. The vertical axis represents the performance measured
by the determinant of the confusion matrix. The dotted line corre-
sponds to the performance of the static histogram segmentation,
and the solid line to our dynamic approach.

As can be seen from the graph in Fig. 6, the dynamic
approach was consistently better than the static method in
classifying skin and background pixels. Not only does our
system perform over 10% better for the entire sequence, it
is also more stable. The standard deviation of performance
for our system was measured to be 0.0375, which is almost
a half of the standard deviation of 0.0630 measured for the
static segmentation approach. It should be noted that the
stability of our system was consistent across experiments.

In all of the above experiments, adaptation coefficients
afg = 0:8 and abg = 0:60 were determined once off-line
for a given training set as described in Sec. 7. The adapta-
tion coefficients remain fixed across all trials.

9 Discussion
As exhibited in the experiments, the proposed algorithm
generally performs better than the competing stationary
histogram approach. The main advantage of the new tech-
nique is its stability to fairly rapid changes in the appar-
ent skin-color due to illumination changes, surface inter-
reflection, and rapid changes in background.

In general we noticed that the final result of our algo-
rithm depends greatly on the initialization phase. If the
algorithm is initialized with an over-segmented region it
generally performs much worse than if it is initialized with
an under-segmented version of the same image. This is
due to the way adaptation works. In general adaptation
facilitates bounded region growing. Initialization and sub-
sequent segmentation accuracy could be further improved

via the use of shape and blob-based motion constraints [7],
and/or domain-specific constraints like face detection [9].

Furthermore, in our experiments the foreground adapta-
tion had a much higher impact on the final system perfor-
mance, as opposed to the background adaptation. This was
true even for sequences with slowly varying backgrounds.
It has been observed that for many sequences one can get
away with a very inadaptive background distribution, while
maintaining almost the same error rates, as long as fore-
ground adaptation stays the same.

Scene changes are not explicitly modeled by our sys-
tem; however the system can account for slowly changing
dynamic scenes due to the nature of the algorithm. As a
possible future extension to the system we are consider-
ing automatic re-initialization based on the threshold for
the magnitude of change in the background and foreground
distributions. It is expected that this would make the sys-
tem more robust to abrupt scene and illuminant changes.
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