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Abstract—A novel approach for real-time skin segmentation in video sequences is described. The approach enables reliable skin

segmentation despite wide variation in illumination during tracking. An explicit second order Markov model is used to predict evolution

of the skin-color (HSV) histogram over time. Histograms are dynamically updated based on feedback from the current segmentation

and predictions of the Markov model. The evolution of the skin-color distribution at each frame is parameterized by translation, scaling,

and rotation in color space. Consequent changes in geometric parameterization of the distribution are propagated by warping and

resampling the histogram. The parameters of the discrete-time dynamic Markov model are estimated using Maximum Likelihood

Estimation and also evolve over time. The accuracy of the new dynamic skin color segmentation algorithm is compared to that

obtained via a static color model. Segmentation accuracy is evaluated using labeled ground-truth video sequences taken from staged

experiments and popular movies. An overall increase in segmentation accuracy of up to 24 percent is observed in 17 out of 21 test

sequences. In all but one case, the skin-color classification rates for our system were higher, with background classification rates

comparable to those of the static segmentation.

Index Terms—Color video segmentation, human skin detection, dynamic Markov model.
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1 INTRODUCTION

LOCATING and tracking patches of skin-colored pixels
through an image sequence is a tool used in many face

recognition and gesture tracking systems [1], [4], [5], [7], [8],
[11], [12], [13]. Skin-color segmentation, particularly useful
for its orientation and size invariance, is usually used for
localization in early stages of these higher-level systems. An
important challenge for any skin-color tracking system is to
accommodate varying illumination conditions that may
occur within an image sequence. Some robustness may be
achieved via the use of luminance invariant color-spaces [7],
[12]; however, such an approach canwithstand only changes
that skin-color distributions undergo within a narrow set of
conditions. It has been shown that even in the chromaticity
plane skin-color undergoes significant changes when the
color temperature of the light source changes [16], [21].

The conditions that we are concerned with in this paper
are broader than those assumed in many previous systems.
In particular, we are concerned with three conditions:
1) time-varying illumination, 2) multiple sources, with
time-varying illumination, and 3) single or multiple-colored
sources. Most previous skin segmentation and tracking
systems address only condition 1, defined over a narrow
range (white light). Nevertheless, conditions 2 and 3 are also
important, and have to be addressed in order to build a
general purpose skin-color tracker. We will now list a few
common scenarios that may lead to consideration of some or
all of the conditions cited above.

Consider a person driving a car at night. Illumination
from streetlights and traffic lights will be at least in part
responsible for the color appearance of his/her skin. Hence,
if we want to build a skin-color tracking system that would
be used in surveiling the driver [9], we need to account for
varying illuminant intensity and color. Clearly, we cannot
expect that color alone would be sufficient to give a robust
solution in these generally dark illumination conditions, but
it could serve as an important cue in the more integrated
approach [32]. For example, it can be used to bootstrap
infrared eye-detection [33], or extract the bounding box of
the head for 3D gaze detection [32].

Skin-color person tracking is also useful in indexing
multimedia content such as movies. In this case, multiple
colored lights with varying intensity play a direct role, since
many movies are filmed with theatrical lighting to
dramatize the effects of the screenplay.

Still another example of time-varying color illuminant is
apparent in observing a person walking down a corridor
with windows or lights that are significantly spaced apart.
The color appearance of the person’s skin will smoothly
change as they move toward and then away from various
light sources along the corridor.

Finally, it should be noted that it is not necessary to have
colored lights to achieve effects equivalent to those that
occur with colored lighting. Equivalent effects commonly
arise due to surface interreflectance. For instance, consider a
person walking down a corridor that has colored walls
and/or carpet, or a person wearing colorful clothing [14].
These surfaces reflect a color tinge onto the person’s skin.

These are a few examples of applications that motivate
our approach. Even though we agree that the majority of
everyday lighting effects are due to white light attenuation,
we hold that it is important to consider alternatives as well,
in order to have a robust skin-color tracker that can handle a
wider variety of environmental conditions.
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The goal of our system is to address smooth but
relatively fast changing illumination and its effects on the
skin-color appearance. An explicit second order Markov
model is used to predict evolution of the skin-color
distribution over time. Histograms are dynamically up-
dated based on feedback from the current segmentation and
predictions of the Markov model. The parameters of the
discrete-time dynamic Markov model are estimated using
Maximum Likelihood Estimation and also evolve over time.
Quantitative evaluation of the method has been conducted
on video sequences taken from staged experiments and
popular movies and the results are encouraging.1

2 RELATED WORK

Existing skin-color segmentation approaches can be grouped
into two basic categories: physically-based approaches and
statistical approaches. Statistical approaches can be subdi-
vided further into: parametric approaches [4], [5], [7], [8], [12],
[22], [24], [25] and nonparametric approaches [1], [14], [20],
[31]. Both parametric and nonparametric statistical ap-
proaches usually perform color-segmentation in color spaces
that reduce the effects of varying illuminant. A number of
different color spaces have been used; however, normalized
RGB [7], [12], [20], [31] andHSV [8], [14], [22], [24] are themost
commoncolor spacesused. Ithasbeenshownthat, inaddition
to being tolerant to minor variations in the illuminant, these
color spaces also tend to produceminimum overlap between
skin-color and background-color distributions [23].

Parametric statistical approaches represent the skin-color
distribution inparametric form, such as aGaussianmodel [4],
[5], [12]. However, the skin-color distribution is oftentimes
multimodal, and cannot be adequately represented as a
single Gaussian in color space [12], [23], [24]. Therefore, the
use of a Mixture of Gaussians model has been proposed [7],
[8], [22], [24], [25]. Typically, the Expectation-Maximization
(EM) algorithm is employed to fit and update these models
based on observed data [5], [7], [12], [22], [24], [25]. The key
advantages of parametric models are: 1) low space complex-
ity and 2) relatively small training sets are required. The
major difficulty is order selection, in particular, for the
Mixture ofGaussians case. The order is generally determined
via heuristics. In constrained environments, the model order
can be predefined based on the known environmental
conditions.

The parameters of the skin-color distribution can vary
significantly with people and lighting conditions [12], [16],
[21], [24]. Thus, to build a system that is general enough to
model and track different people or robust enough to handle
even modest variations in illumination conditions, one must
employ an algorithm that adjusts the parameters of the
distribution accordingly. In one of the first systems to take an
adaptiveapproach, [12]useda linearcombinationofprevious
parameters to estimate the new parameters for the Gaussian
distribution in normalized ðr; gÞ color space. In a similar
system,[5]usedexponential functions(insteadoflinear) inthe
estimation of the evolving distribution’s parameters. More
recent work suggests that a low-order, dynamic Gaussian

Mixture model in the chromatic color space, such as normal-
ized RGB orHSV, is better-suited for skin-colormodeling [8].
Adaptation techniques for GaussianMixture models usually
employ aderivative of the EMalgorithm, such as incremental
EM [7]. With a small number of mixtures, evaluation and
updates of the probability density function can be accom-
plishedinreal-time.However, ifmoremixturesareneededfor
accurate representation, this approach becomes infeasible.

A more general representation of the color distribution is
available in the nonparametric statistical approaches [1], [14],
[20], [31], where histograms are used to represent density in
color space. A major advantage of the histogram representa-
tion is that the probability density function can be evaluated
trivially regardless of the complexity of the underlying
distribution. A major drawback is that the histogram
approach requires a considerable amount of training data.
Furthermore, care must be taken in setting the quantization
level, which can be found via cross-validation [6] or using
heuristics. Generally, nonparametric approaches work well
where the histograms are quantized properly and when
sufficient training data is available.

The previous histogram-based methods do not directly
model the time-varying nature of skin-color distributions in
video. The face tracking system of [20] reestimates the skin-
color histogram every time it detects an eye blink and,
thereby, adapts to changes in ambient lighting. However,
the system does not explicitly include a dynamical model
for the evolution of the skin-color distribution under
varying illuminant.

In a completely different approach [16], [21] made direct
use of a physical model of skin reflectance. The reflectance
model is used to discount a known, time-varying illuminant
to obtain color constancy. Segmentation tends to be more
accurate due to the algorithm’s use of strong prior knowl-
edge: camera and illumination parameters, as well as initial
image segmentation. However, such information may not be
readily available in analysis of everyday image sequences. In
later work, [31] introduced an algorithm that uses the skin
locus in color space to adapt the skin-color over time. Pixels
that fall within the tracked bounding box region and within
the skin locus defined in the normalized RGB color space are
assumed to be skin and are used to adapt the histogram over
time. It was observed that the skin-color distribution for any
given frame tends to occupy only a small portion of the locus;
hence, tracking that small portion instead of the whole locus
is advantageous in the cases where a cluttered background is
present.

Finally, the accuracy of nearly any color-based skin
segmentation algorithm can be improved if additional
features are exploited. For instance, [7] used a Gaussian
Mixture model in a 4D feature space that combined spatial
coordinates (x, y) with (r, g) normalized color components.
The Mixture model was updated dynamically via an
incremental EM algorithm. In a related approach [20], used
the spatial center of gravity combined with histograms in
normalized RGB color space to segment and track faces in
real time. Applications in certain domains even allowed for
explicitly precomputed spatial distributions [22] over the
image. Other approaches have incorporated stereo [4] and
range data [17] in the skin-color segmentation algorithms.
In general, these approaches are accurate and more robust
to occlusions, at the expense of their generality of use. In
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this paper, we concern ourselves with a general approach
that works purely on color data; however, other features
can be incorporated if particular applications call for it.

In conclusion, all systems employ a color space represen-
tation that provides robustness to illumination variation.
Statistical techniques that adapt the color distribution over
time perform better than nonadaptive techniques. While a
histogram representation offers some advantages over
parametric models, no scheme for modeling a dynamic
skin-color histogram has been proposed.

3 OVERVIEW OF APPROACH

As noted in the previous section, changes in illumination can
have drastic implications on the skin-color distribution. An

example of this is shown in Fig. 1. These changes can be

minimized in the chromaticity plane, but are still significant

when one considers a wide range of illumination conditions.

Disregarding the intensity component can lead to further

robustness to the changing illuminant, but may also lead to

separability issueswith the background. In addition, hue and

saturation become unstable when pixel intensities are too

large or too small; this leads to the conclusion that intensity,

however dependent on the illuminant it may be, is also

important. It should also be noted that severe changes in the

color of the illuminant can result in significant changes in the

saturation and intensity. An example of this can be seen in

Fig. 2, where theatrical lighting effects alter the skin-color

distribution in HSV space quite markedly.

SIGAL ET AL.: SKIN COLOR-BASED VIDEO SEGMENTATION UNDER TIME-VARYING ILLUMINATION 3

Fig. 1. Example showing dynamic skin-color distribution in HSV space. The top row shows equally spaced video frames from a 72 frame long image

sequence. The other rows show the corresponding 2D projection views of the skin-color distribution in HSV color space for each frame: (HS) Hue-

Saturation, (HI) Hue-Intensity, and (SI) Saturation-Intensity plane projections are shown.

Fig. 2. Example of dynamic skin-color distribution in HSV space when there is a dramatic change in the illuminant color (due to theatrical lighting). The

top row shows images taken from a 400 frame long video sequence, sampled equally in time. The other rows show the 2D projection views of the skin-

color distribution in HSV color space for each video frame: (HS) Hue-Saturation, (HI) Hue-Intensity, and (SI) Saturation-Intensity plane projections.



Recent research on the physical appearance of human skin
[16] has shown that the skin reflectance locus is closely and
directly related to the locus of the illuminant. Furthermore,
experimental evidence has led researchers to postulate that
the skin-color distribution changes smoothly, assuming
nonabrupt illuminant changes such as attenuation and time
varying lighting [12], [24]. This hasbeenborneout byourown
experiments with entertainment videos, one of which is
shown in Fig. 1. Moreover, from the data described in [16] it
canbe shown that the changes in the skin-color distributionof
a single person can be modeled accurately by a global affine
transformation of the skin-color distribution in the color
space.

Thus, our goal is to track a moving skin-color distribution
as defined by an adaptive color histogram in color space. We
formulate a system that employs predictive histogram adapta-
tion [10] in modeling the color distribution over time. The
evolution of the skin-color distribution at each frame is
parameterized by translation, scaling, and rotation in the
color space. Consequent changes in geometric parameteriza-
tion of the distribution are propagated by warping and re-
sampling the histogram using the predicted affine transfor-
mations. The algorithm has three stages: initialization,
learning, and then steady-state prediction/tracking.

3.1 Initialization

The initialization stage segments the first frame of the image
sequence to give an initial estimate for the skin-color
distribution to be tracked. This is done by using a two-class
Bayes classifier. The prior histograms used for classification
are precomputed offline using the database provided by
Jones and Rehg [6]. The resulting crude segmentation
estimate is then refined with binary image processing to
produce a binary mask for the initial skin-color regions to be
tracked.This initialization is simplyapreprocessing stepand,
hence, other algorithms such as [14], [15] can be used for this
stage. Alternatively, object detection may also be used to
bootstrap this portionof the system. Ifweassume that the face
is always present in the first frame, then face detection [13],
[18] may be used to find initial patches of skin.

3.2 Learning

Given the results of the initialization described above, a fully-
automated learning stage performs an Expectation Maximi-
zation (EM) process over the first few frames in the video
sequence. For each frame, the EM algorithm’s E step is
histogram-based segmentation, and the M step is histogram
adaptation. This process defines the evolution of the
distribution in discrete time. The evolution of the distribution
is implicitly defined in terms of translation, rotation, and
scaling of the samples in color space. The transformation
parameters are easily estimated via standard statistical
methods. Given the evolution of the parameters, we can
estimate themotionmodel for the skin color distribution, and
hence predict further deformations. The motion model that
we use for the predictions is a second order discrete-time
Markovmodel. TheMarkovmodel parameters are estimated
by maximum likelihood estimation.

3.3 Prediction and Tracking

Once a motion model is learned we proceed to the
prediction/tracking stage. At this stage, in addition to

segmentation and distribution estimation, changes in

translation, scaling, and rotation of the distribution are

predicted given the Markov model estimated in the learning

stage. The parameters of Markov model are reestimated

over time as well. By predicting parametric changes, we can

get a better estimate of the true distribution at the next time

step. Even though adaptive histograms are used for

segmentation, we cannot apply the predictions to the

histograms directly due to the problems with resolution

and sampling. Instead the predictions are propagated via a

transformation applied on the samples directly. The newly

transformed samples are used to help estimate the

histogram used for segmentation of the next frame.
While both background and skin-color distributions are

adaptive, the backgrounddistributionneednot bepredictive.

We assume that changes in the background distribution are

considerably smaller, in general, than changes in the fore-

ground (skin) distribution. Hence, the change in illumination

that is due to the motion will be smaller. This is a reasonable

assumption for a grand majority of scenes, particularly if the

camera is stationary or moving slowly. The background

generally is much less dependent on lighting conditions and

does not change significantly from one frame to the next. The

exception to this are the scenes that stabilize the cameraon the

moving character. In many applications it is customary to

assume that motion in the background is smaller than that in

the foreground distribution [1], [7], [11]. In our experience,

adequate segmentation of image sequences can be achieved

using a simple adaptive histogram implementation for

background distribution.
Each of the three basic stages of the algorithm will now

be described in greater detail.

4 INITIALIZATION

The first stage of the system is designed to give an initial

estimate for the location of the foreground (skin) and

background (nonskin) regions in the first frame of the image

sequence. This is achieved by segmenting the first frame,

with histogram-based conditional probability distributions

for the two classes that have been computed offline. The

diagram of the algorithm can be seen in Fig. 3. After the first

frame is segmented using a Bayes classifier, spatial

morphological filters, such as size filtering and hole

filtering, are used to clean up the mask.
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4.1 Prior Histogram Learning

Histograms for the skin and background distributions are
learned offline from a database provided by Jones and Rehg
[6].2 The database contains 4,668 skin images with corre-
sponding masks and 8,960 nonskin images. All images were
collected from the World Wide Web and skin regions were
labeled by hand.

Following [6], histogram-based distributions were com-
puted at a 32� 32� 32 bin resolution in RGB color space.
Results obtained in [6] showed that 32� 32� 32 bin
histograms are not only sufficient but are superior in the
segmentation to the fully-ranked 256� 256� 256 histo-
grams. The lower-dimensional histograms are advanta-
geous mainly because they require considerably fewer
training pixels to adequately estimate the distribution.
Estimating a full-resolution 256� 256� 256 histogram
would require on the order of 512 times more training data.

Conditional probability densities were obtained by
dividing the count of pixels in each histogram bin by the
total number of pixels in the histogram. The conditional
densities will be denoted P ðrgbjfgÞ and P ðrgbjbgÞ, where fg
denotes foreground, bg background, and rgb 2 <3.

Looking at the different rendering views of the skin-color
distribution, we can infer some structure of the distribution.
As originally observed in [6], the skin-color distribution for
this database is fairly compact, and lies mainly along the
gray line. Where the gray line is defined to be the line of
gray values in the color space. In the background distribu-
tion, black and white are the most common colors and the
colors most frequently fall near the gray line.

4.2 Skin Segmentation Using Prior Histograms

Using Bayes’ formula, we can compute P ðfgjrgbÞ and
P ðbgjrgbÞ. The classification boundary can be drawn where
the ratio of P ðfgjrgbÞ and P ðbgjrgbÞ exceeds some threshold
K that is based on a relative risk factor associated with
misclassification. For example,

K <
P ðfgjrgbÞ
P ðbgjrgbÞ ¼

P ðrgbjfgÞP ðfgÞ
P ðrgbjbgÞP ðbgÞ ð1Þ

corresponds to pixel value rgb being labeled as foreground.
Rearranging terms

K � 1� P ðfgÞ
P ðfgÞ <

P ðrgbjfgÞ
P ðrgbjbgÞ ; ð2Þ

where P ðfgÞ is the probability of an arbitrary pixel in an
image being skin. Clearly, this probability will vary from
image to image, but given a large enough data set we can
come up with the aggregate probability that can serve as
our best estimate. Using the entire database as the data set
we can express P ðfgÞ as

P ðfgÞ ¼ Nforeground

Nforeground þNbackground
; ð3Þ

whereNforeground is the totalnumberofpixels in the foreground
histogram, andNbackground is the total number of pixels in the

background histogram. In our training database,Nforeground ¼
80; 306; 243 and Nbackground ¼ 861; 142; 189. Hence, in our
training database, P ðfgÞ ¼ 0:09.

Given P ðfgÞ, we can now empirically establish the
threshold K. One of the standard ways of determining the
threshold is by computing a Receiver Operating Character-
istic (ROC) curve. The ROC curves in Fig. 4 show the trade
off between the true positives and false positives for various
possible settings of the decision criterion K.

A thresholdwas chosen such that at least 85percent correct
classification is achieved while having under 25 percent
chance of false alarm. This choicewasmade in light of [6] and
the fact that theoptimalvalue for the threshold should lienear
the bend of the ROC curve. The selected threshold was
K ¼ 0:0673. This was consistent across a number of trials.

The result of the pixel classification scheme above is a
binary image mask in which 0s correspond to background
pixels and 1s to foreground pixels. In order to minimize
noise effects, we employ size and hole filtering before the
binary mask is passed to the learning stage of the system.

5 LEARNING

Thus far, only aggregate statistics have been employed in
segmentation. However, our ultimate goal is to learn the
statistics that are specific to the image sequence at hand.
The mask for the first frame of the sequence (provided by
the initialization) is a good initial estimate of skin and
nonskin regions. The pixels from those regions can be used
to reestimate histograms for the foreground and the
background. The new histograms are sequence-specific
and, hence, are better estimates. The new sequence-specific
value for the P ðfgÞ is also reestimated based on the image
mask. Since the histograms are sampled from a single
image, it is possible to run into sampling problems,
especially for the skin-color distribution, since the skin
regions are usually relatively small in comparison to the
background. In practice, we found that smoothing the skin-
color histogram using a 3� 3� 3 Gaussian kernel with a
small � ¼ 0:45 helps resolve this problem.
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Fig. 4. Average ROC curves (computed over three random sets of
100 images excluded from the training data) for skin segmentation as a
function of the threshold K. The x-axis corresponds to the probability of
false detection and the y-axis to the probability of correct classification of
skin pixels.

2. The database given to us by Jones and Rehg contained some images that
were unreadable, hence our numbers for the number of images and number
of pixels in each class are slightly different from the numbers given in [6].



However, using static histograms for an image sequence
where the distribution constantly changes is inappropriate;
hence, we employ an adaptive histogram scheme to facilitate
the tracking of the distributions. From the foreground and
background distributions observed over an initial sequence
of frames, sequence-specific motion patterns are learned. A
second-order Markov process is used to model the evolution
of the color distributions over time. The flow diagram of this
stage of our system is shown in Fig. 5.

From Fig. 5, we can see that once the new frame from the
image sequence is acquired and converted into the appro-
priate color space (HSV), the histogram estimates from the
previous frame are used to segment the new image. The
newly classified pixels are then used as color features to
update the foreground and background distributions. The
evolution of the foreground distribution, parameterized at
each time (t) by translation, rotation, and scaling in the color
space is then used to estimate parameters of the second-order
Markov motion model. The formulation will now be
described in greater detail.

5.1 Color Space for Skin-Color Tracking

An important aspect of any skin-color tracking system is
choosing a color space that is relatively invariant to minor
illuminant changes. The two popular color spaces that have
proven to be robust to minor illuminant changes are HSV
and normalized RGB. The normalized RGB space has only
two dimensions and, hence, estimating the probability
density function in normalized RGB space requires con-
siderably less training data. However, this comes at the
expense of discriminating power that can be compromised
by projecting the data into this lower-dimensional space.
Terrillon and Akamatsu [23] recently conducted a study on
the comparative segmentation performance of nine differ-
ent color spaces. The color spaces that were best in terms of
minimizing overlap between the skin and background
distributions were HSV and normalized RGB in that order,
with the HSV color space having roughly one percent less
overlap. Slightly worse discriminability was observed for
the TSL, CIE-xy, and CIE-DSH color spaces. Since it is
important to have as much discrimination between skin-

color and background-color as possible, we felt that use of
HSV color space in our system was well-grounded.

In preliminary experiments, we found that the HSV color
space is much better-suited than normalized ðr; gÞ for
estimationandpredictionof skin-colordistribution evolution
in image sequences taken from entertainment videos and
movies.

The only disadvantage of the HSV color space is the costly
conversion from the standard RGB video source. In the real-
time implementation of the system,we handled this problem
by quantizing the HSV space into a (64� 64� 64) RGB to
HSV lookup table. To gain a uniform sampling of the color
space, each of the HSV color channels is normalized to
floating point values between 0 and 1, given the expected
range of HSV values.

5.2 Motion of Distributions

As mentioned earlier, skin-color distributions tend to
evolve over the sequence of observed frames. In order to
model and predict this evolution, we need to make some
assumptions about the types of motions that distributions
can undergo in the color space.

One assumption is that the skin-color distribution evolves
as a whole; thus, there cannot be any local deformation or
evolution of the distribution. This is similar to the global
illuminant assumption, where one assumes nothing about
the nature of the illuminant, so long as it acts uniformly over
all skin patches in the image. Changing nonuniform
illumination is likely to cause local deformations in the
skin-color distribution, which will invalidate our assump-
tions and call for a more complex deformation model.
Furthermore, global deformations of the distribution are
assumed to be affine. These decisions are based on observa-
tions made in goodness of fit studies. To further simplify our
prediction model, we constrain ourselves to the three most
significant affine transformations: translation, rotation, and
scaling. We employ an eight-parameter vector:

� ¼ ½TH; TS; TV ; SH; SS; SV ; �; ��T ; ð4Þ

where Ti are translation, Si scaling, and � and � are angles
of spherical rotation applied about the mean of the skin-
color distribution.

In order to visualize how these parameters change over
time in a typical image sequence, we plotted them over
72 consecutive framesof the sample sequence shown inFig. 1.
The chosen sequence contains an actor who bends to pick up
a newspaper, in front of a skin-colored door background. As
he conducts this task, the distance to the light sources
changes, resulting in transformations in the skin color
distribution. The parameters of the distribution are shown
in Fig. 6. The top and middle rows show graphs of the skin-
color distribution’s mean (translation) and standard devia-
tion (scale). The graphs in the bottom row show evolution of
the rotation parameters � and �, computed as the difference
between the first frame of the image sequence and the frame
at time t. Note that the distribution’s variation in rotation is
fairly small for this sequence (< 3 degrees variation).

Two important observations can be made from observing
the parameter evolution 1) parameters change smoothly over
time and 2) parameters can change in nonlinear fashion, like
the mean along the Intensity axis. This follows intuition and
supports our choice for the dynamical model.

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 6, JUNE 2004

Fig. 5. Learning stage of the algorithm.



5.3 Estimating Distribution Motion Parameters

In order to learn parameters of the dynamic motion model

and predict the skin-color distribution at the next time step,

tþ 1, we use a sliding window of the last nþ 2 frames.

Frames t� n� 2 to t� 2 inclusively are used for learning the

parameters of the Markov model, and frames t� 1 and t are

used to define the state vector that is used for prediction. For

each of these nþ 2 frames, parameter vectors of the form

shown in (4) must be estimated.
We define � ¼ t� n� 2 as the base frame in the sliding

window of the previous nþ 2 frames, for a given time t. For

any frame k 2 ð0; nþ 2Þ the translation parameters TH;k,

TS;k, and TV ;k can be extracted directly from the means of

the HSV skin-color distribution histogram at time � þ k. The

scaling parameters SH;k, SS;k, and SV ;k can be extracted from

the standard deviation of the skin-color distribution. The

standard deviation represents the relative scaling of the

distribution along the Hue, Saturation, and Intensity axes.
Estimating rotation is slightly more complicated. We

measure differential rotation of the distribution from the

base frame at time � . It is assumed that the incremental

rotation of the distribution is smooth and relatively small.

The eigenvectors of the covariance matrices for the skin-

color distributions of frames � and � þ k define the two

coordinate frames. Our problem is reduced to finding the

two angles in the spherical coordinate space centered at the

mean that would align these two coordinate systems. The

first angle can be found as follows:

�k ¼ acosðe1;� � e1;�þkÞ; ð5Þ

where e1;� is the eigenvector corresponding to the largest

eigenvalue of the covariance matrix at time � , and e1;�þk is

the eigenvector corresponding to the largest eigenvalue at

time � þ k. The axis of rotation v�;k is found via the cross

product: v�;k ¼ e1;� � e1;�þk.
This defines the rotation Rðv�;k; �kÞ that will align the

corresponding axes of greatest variation. This rotation when

applied to e2;� and e3;� will put them in the plane perpendi-

cular to e1;�þk. In order to align the axes defined by e2;� and

e2;�þk as well as e3;� and e3;�þk, we need to apply a single

rotation about e1;�þk. The angle of this second rotation is

�k ¼ acosððRðv�;k; �kÞ � e2;� Þ � e2;�þkÞ.

5.4 Dynamical Distribution Model

In order to estimate and predict the skin-color distribution

over time, we need to formalize a dynamic motion model. It

has been shown that affine motion can be fully expressed in

terms of an autoregressive Markov process [2]. A second-

order dynamical process handles both oscillatory and

arbitrary translational motion. We will now formulate the

discrete second-order Markov process that will be used in

our system. The formulation follows [2].
First, we define the N-dimensional state vector X, which

in our case is an eight-dimensional parameter vector (4).

The system’s second-order dynamics is defined by a

stochastic differential equation [2]. The stochastic portion

of the dynamics is modeled by zero mean, unit variance
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Fig. 6. Evolution of the skin-color distribution parameters over time, for the image sequence shown in Fig. 1. The graphs of angles Theta and Phi are

given in units of degrees. The variation in rotation is fairly small for this sequence (< 3 degrees variation).



N-dimensional Brownian motion. For our application, we
utilize the discrete-time model:

Xn � �XX
Xnþ1 � �XX

� �
¼ 0 I

A0 A1

� �
Xn�1 � �XX
Xn � �XX

� �
þ 0

Bwn

� �
: ð6Þ

The mean vector �XX corresponds to the observed mean

displacement in each of the eight affine parameters. The

N �N submatrices A0 and A1 govern the deterministic part

of the motion model, whereas the submatrix B governs the

stochastic part. Rearranging terms yields:

Xnþ1 ¼ A0Xn�1 þA1Xn þ ðI �A0 �A1Þ �XX þBwn: ð7Þ

5.5 Learning Parameters for the Dynamical Model

An algorithm for learning the parameters of the proposed

second-order Markov dynamical model is needed. The

parameters to be learned are A0, A1, and B. Unfortunately,

it is impossible to observe B directly; instead, we observe

C ¼ BBT . We can estimate these parameters using a

standard MLE algorithm described in [3]. The results of

the algorithm are restated here for completeness.
To simplify the notation, let X ! X � �XX, where �XX is the

expected value of X. The log-likelihood function L that we

need to maximize is:

LðX1; . . . ; XnjA0; A1; BÞ ¼ � 1

2

Xm�2

n¼1

jB�1ðXnþ1 �A0Xn�1

�A1XnÞj2 � ðm� 2Þ log detB:
ð8Þ

We can estimate the parameters by first maximizing with

respect to A0 and then with respect to A1. It was shown by

Blake and Isard in [3] that matrices A0 and A1 can be

estimated from the following set of simultaneous equations:

S20 � Â0A0S00 � Â1A1S10 ¼ 0

S21 � Â0A0S01 � Â1A1S11 ¼ 0;
ð9Þ

where

Sij ¼
Xm�2

n¼1

Xðn�1ÞþiX
T
ðn�1Þþj; i; j ¼ 0; 1; 2: ð10Þ

After A0 and A1 have been estimated, we can estimate C
using the following equation:

ĈC ¼ 1

m� 2
ZðÂ0A0; Â1A1Þ; ð11Þ

where ZðA0; A1Þ is defined as follows:

ZðA0; A1Þ ¼S22 þA1S11A
T
1 þA0S00A

T
0 � S21A

T
1

�S20A
T
0 þA1S10A

T
0 �A1S12�A0S02 þA0S01A

T
1 :

ð12Þ

We learn the parameters A0, A1, and B by applying the

aforementioned technique on the data collected in the

learning stage of the system. The eight parameters are treated

as independent variables, allowing us to estimate the motion

model parameterswith fewer observation frames thanwould

be required in the fully-coupled eight-dimensional case. In

our case, the minimum number of observation frames

required for learning is four. However, more robust perfor-

mance can be achieved by considering more frames. In

experiments, the best results were achieved with n ¼ 8 to

30 frames.Hence, for a real-timeNTSCvideo stream, learning

takes less than one second.

5.6 Histogram Adaptation

Adaptive histograms combine predictions and observations.
In our system, color histograms are first normalized to obtain
estimates of the actual probability density functions of the
skin and background distributions at hand. Updates to
histogram bins are made via the following model:

Hi;j;kðtÞ ¼ ð1� aÞHi;j;kðt� 1Þ þ ðaÞHðpÞ
i;j;kðtÞ; ð13Þ

where i, j, and k designate the bin under consideration and
a is a scalar between 0 and 1 that allows us to adjust the
speed of adaptation. The histogram HðpÞ is predicted by the
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Fig. 7. Prediction/tracking stage of the algorithm.



second-order Markov model as described above. Optimal

values of the adaptation parameter a can be determined

empirically, as discussed in Section 7.

6 PREDICTION AND TRACKING

The prediction-tracking phase is an extension of the

learning phase with one additional construct: the prediction

module. This module predicts the future deformations that

the distribution will undergo and, hence, makes it possible

to segment the future frame with a more accurate estimate.
The predicted changes in the translation, rotation, and

scalingof thedistributionarepropagatedbywarpingall color

vectors making up the histogram distribution and then

resampling it. The new resampleddistribution is thenused to

segment the next frame, instead of the previous observation

aswasdone in the learningphaseof the system.The rest of the

system performs the same as before, as shown in Fig. 7.

6.1 Evolution of Dynamical Model

It is reasonable to assume that not only can a distribution

evolve over time, but in addition the process that guides the

evolution may change also. This is especially true for long

sequences where various illumination changes are ex-

pected. In order to handle this, we retrain the motion

model as new data becomes available. We always use the

last n frames to learn the motion model, hence at any given

time t the model will be extracted from (t� n� 2; . . . ; t� 2)

frames inclusively. Frames t� 1 and t define the parameter

state vector and are used to predict the future parameters.

7 FINDING OPTIMAL ADAPTATION COEFFICIENTS

As described in (13), each adaptive histogram has a single
adaptation parameter a 2 ½0; 1� that controls the adaptation
speed. An adaptation coefficient of a ¼ 0 corresponds to a
fully nonadaptive histogram, whereas a ¼ 1 yields a
memoryless histogram representation that is fully-adaptive.
Since we have two histograms that we use for two
corresponding classes, there are two adaptation parameters
that must be estimated, afg and abg, for our system. These
parameters can be determined empirically, as is demon-
strated in the following example.

We establish the optimal foreground adaptation by fixing
the background at abg ¼ 0 and varying afg over its entire
effective rangewhile recording the results of segmentationon
each of the three 75 frame learning sequences. The resulting
segmentation is then comparedwith thehand labeledground
truth data in order to evaluate the performance. Performance
is evaluated using two criteria: The trace of the confusion
matrix [26], [27] and a receiver operator characteristic
(ROC) curve. The trace of the confusion matrix measures
the overall classification performance of the classifier, under
the assumption that the misclassification penalty is the same
for all classes. In our case of the two-class classifier, the trace
measure can range from 0 to 2. Higher values of the trace
correspond to better overall classification.

Fig. 8 shows the result of the experiment described. The
adaptation coefficient afg varies between 0 and 1 by a
constant delta of 0:05. The first graph shows the trace of the
confusion matrix as afg varies. As can be seen in the graph,
the trace is maximized in the region between afg ¼ 0:7 and
afg ¼ 0:95. The second graph shows the effects of changing
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Fig. 8. Performance as a function of the foreground histogram adaptation factor afg. The left graph plots the trace of the confusion matrix. The right

graph shows the ROC curve. Graphs show the average performance over three 75 frame learning sequences. The optimal point is shown in red.

Fig. 9. Performance as a function of the background histogram adaptation factor abg. The left graph plots the trace of the confusion matrix. The right

graph shows the ROC curve. Graphs show the average performance over three 75 frame learning sequences. The optimal point is shown in red.



the foreground adaptation coefficient on the ROC curve.
The choice of afg ¼ 0:8 was made in light of both measures.
The ROC curve confirms that afg ¼ 0:8 maximizes the true
positive rate while minimizing the false positives.

In order to find the optimal adaptation for the background,
we fix the afg ¼ 0:8 and repeat the procedure varying the
values for abg. Fig. 9 shows the two performance curves that
were constructed to evaluate theperformanceof the systemat
eachof the testedvalues forabg. Thegraphsare essentially flat.
This can be explained in terms of the training set, which
consists of sequences with only very slowly moving back-
ground. In general, however, we want to be able to handle
faster varying backgrounds and, hence, we pick a reasonable
adaptation value of abg ¼ 0:60.

Two observations arise from this empirical study. First,
adaptation of the foreground is more significant than that of
the background, which agrees with intuition. The person in
front of the camera usually moves much faster than the
background; thus, the foreground tends to experience a
much greater variation in its color distribution changes and,
hence, requires a more adaptive model. Second, even
though segmentation using adaptive histograms performs
better than static segmentation (afg ¼ 0), the fully-adaptive
(afg ¼ 1) setup is not ideal. One reason for this is noise that
is present in the segmentation process as well as in the
input. The semiadaptive system suggested by the empirical
study (afg ¼ 0:8; abg ¼ 0:60) tends to be more robust.

8 EXPERIMENTS WITH THEATRICAL VIDEOS

To evaluate the performance of our system,we collected a set
of 21 video sequences from nine popular movies. The
sequenceswerechosen to spanawide rangeofenvironmental
conditions. People of different ethnicity and various skin
tones are represented. Some scenes contain multiple people
and/or multiple visible body parts. Collected sequences
containscenesshotboth indoorsandoutdoors,withstaticand
moving camera. The lighting varies from natural light to
directional stage lighting. Some sequences contain shadows
and minor occlusions. Collected sequences vary in length
from50to350frames;most,however,are in the70to100frame

range. Fig. 10 shows example frames from the collected

sequences.
All experimental sequences were hand-labeled to pro-

vide ground truth data for algorithm performance evalua-

tion. Every fifth frame of the sequences was labeled. For

each labeled frame, the human operator created one binary

image mask for skin regions and one for nonskin regions

(background). Boundaries between skin regions and back-

ground, as well as regions that had no clearly distinguish-

able membership in either class were not included in the

masks and are considered don’t care regions. The segmenta-

tion of these regions was not counted during the experi-

mentation or evaluation of the system. Fig. 11 shows one

example frame and its ground-truth labeling.

8.1 Performance Experiments

The performance of the system was evaluated using the

trace of the confusion matrix criterion. The trace of the

confusion matrix was computed for every hand-labeled

frame of the sequence. To gain an aggregate performance
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Fig. 10. Examples frames from sequences used for experimentation.

Fig. 11. Example of a labeled ground truth frame: (a) original image from
a sequence in which a hand is shown reaching to lift a drinking glass, (b)
corresponding labeled ground truth mask image for skin, (c) back-
ground, and (d) don’t care regions. Boundaries between skin regions
and background, as well as regions that had no clearly distinguishable
membership in either class were not included in the masks and are
considered don’t care regions.



metric for the sequence, the average trace of the confusion
matrix was computed.

For comparison, we measured the classification perfor-
mance of a standard static histogram segmentation approach
[6] on the same data set. The static histogram approach
implemented used the same prior histograms and threshold
as our adaptive system (see Section 4.2). The same binary
image processing operations of connected component analy-
sis, size filtering, andhole filteringwereperformed to achieve
a fair comparison.

The performance results are outlined in Table 1. Three
performance measures were computed: correct classification
of skin pixels, correct classification of background pixels, and
the trace of the confusion matrix Tr½C�. With respect to the
Tr½C�measure, out of 21 sequences considered, 17 performed
better using our dynamical approach. An increase in
performance of up to 24 percent was observed. A perfor-
mance increase of over 10 percent was observed on four
sequences. Skin classification rates with dynamic histograms
were as good or better than the static histogram approach in
all cases. In all but one case, the skin-color classification rate
was higher—in two cases by as much as 37 percent. In nearly
all cases, background classification rates were comparable to
those of static segmentation. Examples of successful perfor-
mance can be seen in Fig. 12.

Twoout of four sequences that failed toperformbetter had
an insignificant performance loss. In the other two failure
cases, the system performance loss was around 10 percent.

This performance degradation was due to skin-like color
patches appearing in the background of initial frames of a
sequence, as can be seen from Fig. 13. Recall that these initial
frames are used in estimating the parameters of the Markov
model (Section 5).

Finally, we performed a set of experiments to establish
system stability over time. For example, the graph in Fig. 14
shows system performance on the longest sequence in our
test set (349 frames).

As can be seen from the graph in Fig. 14, the dynamic
approach was consistently better than the static method in
classifying skin and background pixels. Not only does our
systemperformover 10percent better for the entire sequence,
it is also more stable. The standard deviation of performance
for our system was measured to be 0.0314, which is almost
half of the standarddeviationof 0.0589measured for the static
segmentationapproach. It shouldbenoted that the stability of
our system was consistent across experiments.

The adaptation coefficients afg ¼ 0:8 and abg ¼ 0:6 were
determined once offline for a given training set as described
in Section 7. The adaptation coefficients remained fixed
across all trials. In all of the above experiments,n ¼ 20 frames
were used for learning of the motion model.

9 EXPERIMENTS WITH INDOOR LIVE VIDEO

In addition to evaluating the performance of our system on
the sequences collected from popular movies, we also
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TABLE 1
Table of Performance Figures for the 21 Different Video Sequences from Popular DVD Movies

The experiments compared classification accuracy for the dynamic versus static histogram approach. Three performance measures were computed:
correct classification of skin pixels, correct classification of background pixels, and the trace of the confusion matrix Tr½C�.



conducted a number of experiments using a live video
camera.3 Example frames from these test sequences and the
corresponding segmentation for each frame are shown in
Figs. 15, 16, and 17. In these experiments, we tried to stage
some of scenarios that motivated this work.

Fig. 15 shows frames from the first test sequence: a video
of a person walking down a corridor that is illuminated by
widely-spaced fluorescent lights. As can be seen in the
figure, the observed skin color distribution evolves as the
person’s distance and the angle to the illuminant changes. It
is evident that our dynamic segmentation algorithm per-
forms consistently better than static segmentation through-
out the sequence for this test case.

The next two experiments utilized changing colored
illumination. Fig. 16 shows an experiment where a person is
illuminated by two different light sources: the room’s
ambient fluorescent light, and a directed green light that
is oriented towards the face of the subject. As the subject
walks toward the directed green light source, the effects of
the green tint can clearly be seen on the left side of the face
and the neck. As shown in Fig. 16, the static segmentation
fails to segment the tinted regions. In contrast, the dynamic

segmentation performs considerably better in these regions,
segmenting most of the face reliably.

Our last example test sequence is shown in Fig. 17. In this

experiment,weuseda sequenceof amovinghandandarm, to

emphasize that our system is not biased to the face skin color

or geometry. In this case, there is blue directed lighting, in

addition to the room’s ambient fluorescent component. As

before, the dynamic segmentation produces considerably

better results than could be obtained via a static approach.

10 DISCUSSION

In our experiments, it was observed that an affine transfor-

mation is a good approximation to the motion of skin-color

distributions that arises when tracking a single person in an

image, with global illuminant changes. More specifically, we

observed that translation and scaling parameters were most

useful in tracking the skin-color distribution over time. In the

sequences we have tested, rotation did not seem to be a

significant factor. To this end, we believe that one could

exclude rotation from the model and gain better computa-

tional performance with only negligible performance loss.

Quantitative validation of this remains for future study.
In general, however, a single affine transformation may

not always be sufficient to model the skin-color distribution
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Fig. 12. Examples of segmentation obtained by the dynamic and static approaches. The examples above are among those for which our system had
a superior performance. Frames from image sequence (top), static segmentation (middle), and dynamic segmentation (bottom) are shown.

3. All live video used in these experiments was captured using a Canon
Optura Pi Mini DV camera with automatic white balancing, shutter speed,
and focus.



for multiple people, or accounting for localized illuminant

changes. In some multimodal cases, our system works well,

as is shown in Fig. 18. However, in general, such cases will

require a much more elaborate deformation model. For

instance, we could employ polynomial transformations

computed from higher order statistics or use multiple affine

color-trackers (one per unique region/patch, for example).

Both of these approaches are reasonable and straight-

forward extensions of our system.

In our system, we assume that there are enough sample

pixels to provide a good sampling of the underlying

distribution. This is a reasonable assumption given that

skin-colorpixels of anyparticularpersonare closely clustered

inHSV color space [22], [24]. In addition, the recursive nature

of theadaptivehistogramalgorithmallows theuseof samples

frommore than one frame, thereby increasing the number of

samples used in estimating thedistribution at any given time.

To further ensure that we have a good sampling for the skin-

color distribution we apply a 3� 3� 3 Gaussian smoothing

over the histogram with a very small �.
In general, we noticed that the final result of our algorithm

depends greatly on the initialization phase. If the algorithm is

initialized with an oversegmented region it generally per-

forms much worse than if it is initialized with an under-

segmented version of the same image. This is due to the way

adaptation works. In general, adaptation facilitates bounded

region growing. In addition, due to its adaptive nature our

algorithm is also more susceptible to the background skin-

color patches that may appear due to the motion blurring

effects (see Sequence 16 in Fig. 12) or specular highlights on

the background objects. Initialization and subsequent seg-

mentation accuracy could be further improved via the use of

shapeandblob-basedmotionconstraints [7], and/ordomain-

specific constraints like face detection [30].
Furthermore, in our experiments the foreground adapta-

tion had a much greater impact on the final system

performance, as opposed to the background adaptation. This

was true even for sequences with slowly varying back-

grounds. It has been observed that, for many sequences, the

use of a very inadaptive background distribution yields
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Fig. 14. Performance of the dynamical system over an extended
sequence. The horizontal axis represents time, measured in frames.
The vertical axis represents the performance measured by the trace of
the confusion matrix. The dotted line corresponds to the performance of
the static histogram segmentation, and the solid line to our dynamic
approach.

Fig. 13. Two experimental sequences where our algorithm performed slightly worse than the static histogram approach. Frames from image
sequence (top), static segmentation (middle), and dynamic segmentation (bottom) are shown. This performance degradation was likely due to skin-
like color patches appearing in the background of the initial frames of the sequence.



almost the same error rates, as long as foreground adaptation
stays the same.

Scene changes are not explicitly modeled by our system;
however, the system can account for slowly changing
dynamic scenes due to the nature of the algorithm.

Dramatic or abrupt changes in the background will cause
significant performance loss. As a possible future extension
to the system, we are considering automatic reinitialization
based on the threshold for the magnitude of change in the
background and foreground distributions.
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Fig. 16. Experimental sequence of a person walking in an environment illuminated by colored lights. The environment contains a fluorescent ambient
component, and a green directed light aimed toward the face of the subject. The subject is walking toward the directed green light source. Frames
from image sequence (top), static segmentation (middle), and dynamic segmentation (bottom) are shown. Notice that in frames 60, 80, and 100
where the effects of the directional green light source are most noticeable, the dynamic system is still able to reliably segment those regions.

Fig. 17. Experimental sequences of tracking a hand in an environment that contains a fluorescent ambient component and a directed blue light facing
toward the arm of the subject. Frames from image sequence (top), static segmentation (middle), and dynamic segmentation (bottom) are shown.

Fig. 15. Experimental sequence of a person walking down a corridor illuminated by widely spaced fluorescent lights. Frames from image sequence
(top), static segmentation (middle), and dynamic segmentation (bottom) are shown. An improved segmentation can be observed in regions where
illuminant changes are most prevalent, for example nose and the forehead.



11 CONCLUSION

In this paper, we have developed a novel approach for real-
time skin segmentation in video using color. The approach
enables robust segmentation of skin-colored patches despite
dynamic illumination conditions. We have quantitatively
tested the performance of our system on 21 test sequences,
with hand-labeled ground truth, obtained from popular
movies. The sequences contained a good variety of indoor
and outdoor scenes, with one and two actors and a wide
range of motions and illumination changes. The perfor-
mance of our algorithm was compared to the segmentation
obtained using a static color model. An overall increase in
performance in 17 out of 21 test sequences was observed,
sometimes by as much as 24 percent. In all but one case, the
skin-color classification rates for our system were higher,
with background classification rates comparable to those of
the static segmentation. The system was also tested on live
video sequences collected indoors, with dynamic and
colored illumination. Dynamic segmentation performs
considerably better than the static approach under changing
illumination conditions and gives comparable performance
when illumination changes are insignificant.

In our implementation, we assumed that the parameters
of the skin-color distribution were independent, hence
allowing us to use diagonal matrices for A0, A1, and B in
our dynamical model. The experiments that we conducted
support this independence assumption to a large extent; we
have not seen any significant correlations between the
deformation parameters of the skin-color distributions.
However, further experiments are needed to establish this
definitively. If correlations exist, then changing the imple-
mentation to estimate dependent variables in pairs or triplets
may further enhance the performance of the system. Note
that this will not require any changes to the formulation, but

rather only a small change in implementation of the relevant
matrices.

In this paper, we used HSV, as the color-space for
tracking the evolution of the color distributions in time. This
choice of the color space was motivated by [23] and by our
own empirical studies. Due to the large number of the color
spaces available, we were not able to experiment with all of
them. Latest work by [28], suggests that CIE-xy is another
promising color space in terms of background separability
for skin-color segmentation. Additional studies would be
needed to determine if the skin color evolution in CIE-xy
space is well-behaved and can be effectively modeled using
the dynamical model presented in this paper.

Finally, application-specific information such as human
motion models [7] or geometric/spatial constraints on the
regions being tracked [1], [20], [22] can be incorporated in
our system to further improve performance. For example,
our tests have shown that using a face detector [30] to
bootstrap initialization, considerably boosts the perfor-
mance of our system.
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