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CSMMI: Class-Specific Maximization of Mutual
Information for Action and Gesture Recognition
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Abstract— In this paper, we propose a novel approach called
class-specific maximization of mutual information (CSMMI)
using a submodular method, which aims at learning a compact
and discriminative dictionary for each class. Unlike traditional
dictionary-based algorithms, which typically learn a shared dic-
tionary for all of the classes, we unify the intraclass and interclass
mutual information (MI) into an single objective function to
optimize class-specific dictionary. The objective function has two
aims: 1) maximizing the MI between dictionary items within
a specific class (intrinsic structure) and 2) minimizing the MI
between the dictionary items in a given class and those of the
other classes (extrinsic structure). We significantly reduce the
computational complexity of CSMMI by introducing an novel
submodular method, which is one of the important contributions
of this paper. This paper also contributes a state-of-the-art end-
to-end system for action and gesture recognition incorporating
CSMMI, with feature extraction, learning initial dictionary per
each class by sparse coding, CSMMI via submodularity, and
classification based on reconstruction errors. We performed
extensive experiments on synthetic data and eight benchmark
data sets. Our experimental results show that CSMMI outper-
forms shared dictionary methods and that our end-to-end system
is competitive with other state-of-the-art approaches.

Index Terms— Intra-class mutual information, inter-class
mutual information, class-specific dictionary, dictionary learning,
Gaussian Process, sparse coding, gesture recognition, action
recognition.
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I. INTRODUCTION

RECENTLY, sparse representations for human action
recognition are receiving an increasing attention [1]. The

theory of sparse representation aims at finding efficient and
compact representations for signals. In the works of [1], three
overcomplete dictionary learning frameworks were proposed
using K-SVD [2]: shared dictionary (one dictionary for all
classes), class-specific dictionary (one dictionary per class) and
concatenated dictionary (concatenation of the class-specific
dictionaries). However, K-SVD only focuses on minimizing
the reconstruction error and it is not clear from [1] how to opti-
mize the learned dictionaries. The learned dictionary obtained
via K-SVD may be not compact and discriminative [3]. In this
paper, we introduce a new method (named CSMMI) which
is used to learn a compact and discriminative dictionary for
each class. CSMMI not only discovers the latent class-specific
dictionary items that best discriminates different actions, but
also captures unique dictionary items for a specific class.

One of the common approaches for dictionary optimization
is to use information theory [4], [5] (e.g. maximization of
entropy (ME), maximization of mutual information (MMI))
and it shows promising results for action and gesture recogni-
tion [3], [6]. Accordingly, we adopt the MMI rule to optimize
the class-specific dictionaries. However, our approach varies
from the shared dictionary learning methods [3], [6]. In [6],
the authors only maximize the MI for class distribution and
obtain an optimal dictionary through merging of two dictionary
items (see Fig. 1(a)), which can be time-consuming when the
dictionary is large. We call this method Liu-Shah. In [3], the
authors propose a Gaussian Process (GP) model for sparse rep-
resentation to optimize an objective function which maximizes
the MI for both appearance information and class distribution.
The method [3] is referred to as Qiu-Jiang. However, the
Liu-Shah and Qiu-Jiang methods only consider only shared
dictionaries. Therefore, the optimized shared dictionary in
[3] and [6] may be compact but not discriminative.

CSMMI not only considers the global information but
also unifies the intra-class and inter-class MI in a single
objective function. Intra-class and inter-class information is
more specific and useful than the class distribution used in
Qiu-Jiang since CSMMI captures discriminative dictionary
items for a specific class. Our experimental results on public
action and gesture recognition databases demonstrate that
CSMMI compares favorably to the shared dictionary meth-
ods and other state-of-the-art approaches. The differences
between CSMMI and shared dictionary methods [3], [6] are
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Fig. 1. (a) Liu-Shah [6]; (b) Qiu-Jiang [3], (c) CSMMI (our method). Each
green circle denotes the region of an initial dictionary. The black points denote
the initial dictionary items and the blue points represent the selected dictionary
items. In the methods of Liu-Shah and Qiu-Jiang, the shared dictionary makes
it difficult to distinguish which dictionary item is important to a specific class.
The authors only find the dictionary items that have the minimum loss of MI.
In CSMMI, each class have one specific dictionary and some dictionary items
shared between classes can be filtered out (see the overlapped part of (c)).

shown in Fig. 1. The main contributions of this paper are:

• CSMMI unifies the intra-class and inter-class MI into an
objective function to seek one class-specific dictionary
per each class. The objective function includes two parts.
The first is the intrinsic structure to keep MMI between
the selected dictionary items and the rest of dictionary
items in a specific class. The second is the extrinsic
structure to keep minimization of mutual information
(mMI) between the selected dictionary items in a specific
class and the dictionary items of other classes. The aim
of CSMMI is to select the dictionary items that are highly
correlated to a specific class and less correlated to other
classes.

• Because of the high computational complexity of
CSMMI, we propose submodularity to calculate the class-
specific dictionary. Compared with the primitive com-
plexity O(kC5 K 4), the complexity of submodularity is
only O(kC2 K 4), where K is the initial dictionary size;
C is the number of classes and k (k < K ) is the number
of selected dictionary items from an initial dictionary.

• Because each class has one dictionary, we can execute
class-specific dictionaries in a parallel to speed up the
processing time in the recognition stage. Besides, in the
initial class-specific dictionary learning stage, each action
class is modeled independently of the others and hence
the painful repetition of the training process when a new
class is added is no longer necessary.

The rest of the paper is organized as follows. In Section II
we briefly describe the related work on dictionary learning
for action and gesture recognition. In Section III we present
the proposed algorithm for class-specific dictionary learning in
detail. Submodularity is proposed for reducing the complexity
of CSMMI in Section IV. Then, in Section V, we show the
experimental results and discussions. Finally, a conclusion is
given in Section VI.

II. RELATED WORK

There is a wide range of works for action and gesture
recognition (see the surveys [7] and [8]). Among these meth-
ods, the dictionary-based approaches have gained widespread
attention. A basic dictionary-based method is k-means that
is widely used in the bag of features (BoF) model for object

categorization [9]–[11] and action recognition [12], [13]. Some
other methods include sparse coding-based dictionary learning
[14]–[17], combined dictionary learning and classifier training
[18] or information theory [3], [5], [6].

Among these dictionary-based methods, MMI clustering
has revealed inspiring results, such as Liu-Shah [6] and
Qiu-Jiang [3] methods. Liu-Shah first extracts cuboid fea-
tures [19] and quantizes the cuboids using k-means to generate
an initial dictionary (also called video-words). Then, MMI
clustering, which groups a pair of dictionary items if they
are highly correlated, is applied to find the optimal number of
dictionary. Qiu-Jiang [3] maximizes MI for both appearance
information and class distribution of dictionary items. This
method first generates the initial dictionary using K-SVD [2].
Then, an objective function is defined to learn an optimal
dictionary (a subset of the initial dictionary) that most reduces
the entropy about the rest of the dictionary items [3]. Besides,
Qiu-Jiang uses a Gaussian Process (GP) model to calculate
the conditional entropy. However, those methods only focus
on shared dictionary learning. When a new class of data is
added to the action systems, shared dictionary-based methods
have to repeatedly learn a new dictionary.

Besides, Mairal et al. [16] learned one dictionary for each
class and used class-specfic dictionaries to achieve texture
segmentation. Yang et al. [20] introduced a method to learn
class-specific dictionary via fisher discrimination, which was
successfully applied in face and digit recognition. From the
experiments in [16] and [20], they did not evaluate their algo-
rithm for video-based recognition tasks. Later, Guha et al. [1]
proposed a random sample reconstruction method which
used class-specific dictionaries to achieve action recognition.
However, the authors of [1] didn’t consider how to optimize
class-specific dictionaries, so the learned dictionaries may be
not compact and discriminative.

A. BoF Modeling and Dictionary Learning

In the BoF model, a dictionary is commonly learned by clus-
tering (e.g. k-means, sparse coding), which has been adopted
by many computer vision researchers [19], [21]. So one
learned dictionary consists of a number of clustering centers
and each clustering center is treated as one codeword. Then
each sample vector is allowed to be approximated by one or
limited codewords. For example, when the vector quantization
[22] is used, each vector is assigned to one codeword that is
closest to it in terms of Euclidean distance. However, this leads
to a high approximation error. To reduce the approximation
error, the sparsity constrain can be relaxed by allowing a
few codewords to participate in the approximation process,
which is the idea of sparse representation-based dictionary
learning. Then, each vector can be represented by a weighted
sum of a small number of codewords. Although BoF modeling
method discards the spatial and temporal relationships among
the codewords, it has revealed promising results [19], [21].

III. CLASS-SPECIFIC SPARSE REPRESENTATION

CLASSIFICATION (CSSRC)

In this section, we propose a framework named CSSRC for
action and gesture recognition. CSSRC includes four steps:
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feature extraction and representation, learning initial class-
specific dictionaries, CSMMI and classification. This work is
inspired by [3], [23]. But [3] and [23] only focus on the shared
dictionary while this work explores the relationship between
intra-class and inter-class MI for video-based recognition.

A. Feature Extraction and Representation

We use four types of features in this paper. The first
type is the space-time interest points (STIP) feature proposed
by Laptev et al. [24]. We use STIP features to represent
a video, and then histograms of oriented gradients (HOG)
and histograms of optic flow (HOF) to describe each interest
point. The second type is 3D enhanced motion scale invariant
feature transform (EMoSIFT) [21] feature which fuses the
RGB data and depth information into the feature descriptors.
The third type is Histograms of 3D Joints (HOJ3D) feature
[25] computed from skeleton information. The last type is
shape-motion feature [26], which is used to extract shape and
motion features from video sequences. For different datasets,
we may use different features based on the experimental
results.

B. Learning Initial Class-Specific Dictionaries

Suppose there are C classes and each class has m train-
ing samples. We first extract the feature set denoted by
Yi = [y1, . . . y j , . . . yp], y j ∈ �n (each feature descrip-
tor has n dimensions) from m training videos in the
i th class, where p is the number of feature descriptors.
Then, for the i th class, we can obtain an initial dictionary
�0

i = [φ1, . . . φ j , . . . φK ], φ j ∈ �n with the dictionary
size K over which Yi has a sparse representation X�0

i
=

[x1, . . . x j , . . . x p], x j ∈ �K . It is formally written as the
following optimization problem:

min
�0

i ,X
�0

i

{‖Yi − �0
i X�0

i
‖2

F } s.t . ‖x j‖0 ≤ T (1)

where i denotes the i th class label, ‖ · ‖F is the Frobenius
norm, ‖ · ‖0 is the �0 norm that counts the number of nonzero
elements in a vector, and T is the sparsity parameter (i.e., the
number of non-zero elements allowed). To solve Eq. 1, K-SVD
[2] is considered, which is usually used to learn a dictionary
for sparse coding [1], [3]. Therefore, we can get initial
dictionaries �0

1,�
0
2, . . . ,�

0
C for C classes (one dictionary

per class), and the concatenated dictionary is represented by
�0 = [�0

1,�
0
2, . . . ,�

0
C ].

C. CSMMI

Given initial dictionaries �0
1,�

0
2, . . . ,�

0
C (dictionary size

|�0
i | = K ), we aim to compress them into new dictionaries

�∗
1,�

∗
2, . . . ,�

∗
C (|�∗

i | = k, k < K ). For the i th class
with its initial dictionary �0

i , we seek to learn �∗
i which

keeps the MMI by the difference between the intra-class and
inter-class MI. The objective function to find a new dictionary
�∗

i for the i th class is defined as:

arg max
�∗

i

intra−classM I
︷ ︸︸ ︷

I (�∗
i ; �0

i \ �∗
i ) −

inter−classM I
︷ ︸︸ ︷

I (�∗
i ; �0 \ �0

i ) (2)

where I (�∗
i ; �0

i \�∗
i ) is the MI between the selected dictionary

items �∗
i and the rest of dictionary items �0

i \�∗
i ; I (�∗

i ; �0 \
�0

i ) is the MI between the selected dictionary items �∗
i and

other class dictionaries �0 \�0
i . Our objectives are to keep

MMI between the selected dictionary items and the rest of
dictionary items in a specific class (see intra-class MI), and
keep mMI between the selected dictionary items in a specific
class and dictionary items of other classes (see inter-class MI).

It is known that maximizing the above function is NP-hard.
Although the problem has been studied in the machine learning
literature [23], it is only used to seek a shared dictionary. The
differences of the optimization problems between the shared
dictionary and class-specific dictionaries are the different
objective functions and the number of dictionaries. Here, we
extend the work from [23] to seek class-specific dictionary.
We first initialize �∗

i = null (an empty matrix), then our
goal is to greedily select the next best dictionary item φi that
maximizes:

arg max
φi ∈�0

i \�∗
i

intra−class M I term(τ1)
︷ ︸︸ ︷

I (�∗
i ∪ φi ; �0

i \ (�∗
i ∪ φi )) − I (�∗

i ; �0
i \ �∗

i )

−[
inter−class M I term(τ2)

︷ ︸︸ ︷

I (�∗
i ∪ φi ; �0 \ �0

i ) − I (�∗
i ; �0 \ �0

i )] (3)

Then, we use the knowledge from information theory [27] to
simplify the intra-class and inter-class MI terms.

τ1 = H (φi |�∗
i ) − H (φi |�∗

i )

τ2 = H (φi |�∗
i ) − H (φi |(�l ∪ �∗

i )) (4)

where �l is the concatenated dictionary �0 except �0
i of the

i th class, that means �l = �0\�0
i ; H (·|·) is the conditional

entropy. The formula derivations of Eq. 4 are given in Appen-
dix B. Hence, the objective function in Eq. 3 can be rewritten
using Eq. 4,

arg max
φi∈�0

i \�∗
i

H (φi |�′) − H (φi |�∗
i ) (5)

where �′ = �l ∪ �∗
i . Intuitively, the conditional entropy

H (φi |�′) forces φi to be most different not only from the
already selected dictionary items �∗

i but also from other class
dictionaries �l = �0 \ �0

i . Besides, the greedy MI trades off
this uncertainty with −H (φi |�∗

i ), which forces us to pick an
item that is the least conditional entropy H (φi |�∗

i ).
To estimate the conditional entropy, a GP model for sparse

representation is used. The GP model gives us a powerful
property [3], [23]: given a set of dictionary items � and the
associated sparse coefficients X�, the distribution of Xφ given
a testing dictionary item φ is a Gaussian whose conditional
variance is given by:

σ 2
φ|� = κ(φ,φ) − κ(φ,�)κ

−1
(�,�)κ(�,φ) (6)

where κ(φ,�) is the covariance vector with one entry for
each u ∈ � with the value κ(φ,u), and κ(�,φ) = κT

(φ,�).
The covariance matrix is denoted by κ(�,�) where the entry
u, v ∈ � have a value κ(u,v). Then we can evaluate H (φ|�)
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Fig. 2. It shows the flowchart to select one dictionary item φi from �0
i for the i th class. (a) CSMMI mentioned in Section III-C; (b) CSMMI via submodularity.

as a Gaussian conditional entropy [23],

H (φ|�) = 1

2
log(2πeσ 2

φ|�) (7)

With the GP model, the objective function in Eq. 5 can be
rewritten using Eq. 6 and Eq. 7.

arg max
φi ∈�0

i \�∗
i

κ(φi ,φi ) − κ(φi ,�′)κ
−1
(�′,�′)κ(�′,φi )

κ(φi ,φi ) − κ(φi ,�
∗
i )κ

−1
(�∗

i ,�∗
i )

κ(�∗
i ,φi )

(8)

Interestingly, Eq. 8 looks like the objective function in
[3, eq. 6]. However, Eq. 8 considers both the intra-class
and inter-class dictionary items while [3] only considers MI
between shared dictionary items. In addition, the formula
derivations of Eq. 8 are given in Appendix B.

Given C classes and the initial dictionary size |�0
i | = K ,

i = 1, 2, . . . , C , each iteration requires O(C4 K 4) to evaluate
Eq. 8. When C class dictionaries with |�∗

i | = k (k < K )

are calculated, the complexity is O(kC5 K 4). It seems to be
computationally infeasible for any large initial dictionary size.
Therefore, we present an effective learning method to reduce
the complexity by submodularity mentioned in Section IV.

D. Classification

A query video is represented by a collection of features Y =
[y1, . . . , y j , . . . , yp], y j ∈ �n . The simple way to classify the
query video is to find the smallest reconstruction error:

iY = arg min
i∈[1,2,...,C]

‖Y − �∗
i
̂XYi ‖2

2 (9)

where iY is the estimated class label and ̂XYi is defined as,

̂XYi = arg min
XYi

‖Y − �∗
i XYi ‖2

F s.t . ‖x‖0 ≤ T (10)

where XYi = [x1, . . . , x j , . . . , x p], x j ∈ �k is the sparse rep-
resentation of Y over �∗

i . In our work, we use the Orthogonal
Matching Pursuit (OMP) to solve Eq. 10 as in the original
K-SVD paper, because it is fast and fairly accurate [2].

Owing to one dictionary per each class, we can execute
Eq. 9 in a parallel way, which can speed up the processing
time in the recognition stage.

IV. REDUCING THE COMPLEXITY OF CSMMI

In Eq. 8, when we select one dictionary item for the i th

class, it has to use C −1 initial dictionaries from other classes
at the same time, which leads to a high complexity O(C4 K 4)
in each iteration (see Fig. 2(a)). To reduce the complexity, we
propose submodularity1 and its flowchart is shown in Fig. 2(b).
In the submodular method, one should note that when only
one dictionary from other classes are considered to seek one
dictionary item for the i th class in each time, computational
complexity will be significantly reduced (about O(24 K 4) in
Eq. 11). Eq. 11 is defined as,

φ
j
i = arg max

φi ∈�0
i \�∗

i

κ(φi ,φi ) − κ(φi ,� j )κ
−1
(� j ,� j )

κ(� j ,φi )

κ(φi ,φi ) − κ
(φi ,�

∗
i )

κ−1
(�∗

i ,�∗
i )

κ
(�∗

i ,φi )

(11)

where � j = �0
j ∪ �∗

i ; φ
j
i denotes a selected dictionary item

from �0
i \ �∗

i for the i th class when using �0
i and �0

j ;
And the corresponding maximum MI is,

ρ(φ
j
i ) =

κ
(φ

j
i ,φ

j
i )

− κ
(φ

j
i ,� j )

κ−1
(� j ,� j )

κ
(� j ,φ

j
i )

κ
(φ

j
i ,φ

j
i )

− κ
(φ

j
i ,�∗

i )
κ−1
(�∗

i ,�∗
i )

κ
(�∗

i ,φ
j
i )

(12)

Then, we can find the optimal index ̂id which has the largest
MI ρ(φ

j
i ).

̂id = arg max
j=1,...,C; j 	=i

ρ(φ
j
i ) (13)

Finally, one best dictionary item can be selected φi = φ
̂id
i .

The above mentioned process is illustrated in Figure 2(b). The
complexity of submodularity to seek one dictionary item φi

is O((C − 1)(2K )4) ≈ O(C K 4) (suppose initial dictionary
|�0

i | = K ). When there are C dictionaries (|�∗
i | = k,

k < K ) to be calculated, the computational complexity is
O(kC(C − 1)(2K )4) ≈ O(kC2 K 4). We can see that when
C � 2, the complexity is significantly reduced, compared
with O(kC5 K 4) mentioned in Section III-C.

1In [23], there is also a submodular method, but it is different from what
we are proposing in this paper. Krause et al. [23] proposed a submodular
technique, which is a set of function F , to prove that their greedy method
to seek dictionary items from a shared dictionary keeps 1 − 1/e of optimum,
while our proposed submodularity tends to split the objective function Eq. 8
into C −1 objective functions Eq. 11 to reduce the computational complexity.
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Fig. 3. Some samples from different datasets. (a) Weizmann action dataset;
(b) KTH action dataset; (c) UCF sports action dataset; (d) UCF Youtube
action dataset; (e) Hollywood2 action dataset; (f) Keck gesture dataset;
(g) one-shot learning Chalearn gesture dataset; (h) multi-modal gesture
dataset. In (g) and (h), the first row is RGB frames and the second row
is the corresponding depth frames.

To elaborate on how to calculate a dictionary �∗
i for the i th

class, we first initialize C dictionaries �0
1, . . . ,�

0
i , . . . ,�

0
C .

Then the covariance matrix is calculated via the associated
sparse coefficients. In every C − 1 iterations, we can select
one best dictionary item φi . Lastly, we can obtain an optimal
dictionary �∗

i via two ways. The first way is that we set the
desired dictionary size |�∗

i | = k for each class. The second
way is to use a predefined threshold ε to seek the optimal
dictionary. CSMMI via submodularity to seek one dictionary
for the i th class is summarized as follows:

step 1. Calculate sparse coefficient X�0
j

via Eq. 1 (using

Yi and �0
j ), where j = 1, . . . , C and Yi is the training feature

set from the i th class.
step 2. Calculate covariance matrix κ(�0

i ,�
0
j ) = cov(X�0

i
,

X�0
j
), where j = 1, . . . , C; j 	= i .

step 3. Calculate φ
j
i and ρ(φ

j
i ) via Eq. 11, where j =

1, . . . , C; j 	= i .
step 4. Select one best dictionary items using ̂id =

arg max j=1,...,C; j 	=i ρ(φ
j
i ) ⇒ φi = φ

̂id
i .

step 5. Continue steps 3∼4 until ρ(φ
̂id
i ) is larger than a

predefined threshold ε or a desired dictionary size k.
In step 5, the threshold parameter ε is obtained empirically.

In all our experiments, we simply set ε = 0.2 ∗ ρ(φ1
i ), where

ρ(φ1
i ) is the MI for selecting the first dictionary item of the

i th class. The dictionary size of each class may be different
when we use ε.

V. EXPERIMENTS AND DISCUSSION

We evaluated the proposed method on five action
recognition datasets and three gesture recognition
datasets. The five action datasets are: Weizmann [28],
KTH [29], UCF sports [30], UCF YouTube [31] and
Hollywoods2 [32], and the three gesture datasets are:
Keck [26], one-shot learning Chalearn [33] and multi-modal
gesture datasets [34]. Fig. 3 shows sample frames from
these datasets. The leave-one-out-cross-validation (LOOCV)
is adopted for the evaluation of all the datasets unless
mentioned otherwise in our experiments. For one-shot

Fig. 4. It shows the MIs and rate of MI loss for each class via the direct
method mentioned in Section III-C and submodularity.

learning Chalearn gesture and multi-modal gesture datasets,
the recognition performance is evaluated in predefined
training/test partitions, and using the Levenshtein distance
(LD) [33], also known as edit distance. Lower LD values
indicate better performance. For shared dictionary-based
methods, we used BoF model and a support vector machine
(SVM) with intersection kernel [35] as the multi-classifier.
Besides, The shared dictionary-based methods (ME, Liu-Shah
and Qiu-Jiang) under sparse representations are described
in [3] if the reader is interested in the detailed information.
We set the regularized parameter λ = 1 for Qiu-Jiang, which
agrees with the settings in [3]. All initial dictionaries (�0

s and
�0

i ) are learned via Eq. 1 with sparsity T = 10.

A. Experimental Results for Synthetic Data

In this section, we first investigate the MI loss when we
replace CSMMI mentioned in Section III-C with submodu-
larity. Then, we illustrate how to eliminate shared dictionary
items when some parts among different classes are overlapped.

1) MI Loss: Suppose there are three classes. Each class
can be represented by a feature set Yi ∈ �512×1000, i = 1, 2, 3
which is generated based on uniform distribution (each feature
descriptor has 512 dimensions). Then, we calculate the initial
dictionary �0

i , i = 1, 2, 3 for each class via Eq. 1 and
each dictionary is of size 50. Finally, we can obtain the
information of MI when we select each dictionary item using
two methods: CSMMI mentioned in Section III-C and CSMMI
via submodularity. To measure the lost information, we define
the rate of MI loss Rl as,

Rl = (ρ1(p) − ρ2(p))/M; p = 1, 2, . . . , k (14)

where k is the number of selected dictionary items, ρ1(p)
and ρ2(p) are the MIs of the pth selected dictionary item via
CSMMI mentioned in Section III-C or submodularity, respec-
tively, M is the largest MI among all of selected dictionary
items and M = max{ρ1(1), ρ2(1), . . . , ρ1(k), ρ2(k)}.

Fig. 4 shows the information of MIs via two methods to
select dictionary items from �0

i . In the first row, it shows
the MIs when each dictionary item is selected, and the rates
of MI loss Rl for each class are shown in the second row.
The average rates of MI loss for three classes are 9.32%,
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Fig. 5. (a) It shows original data and initial dictionary items (cluster
centers). (b) It shows selected dictionary items from initial dictionary via
submodularity. We can see that eight dictionary items are selected for each
class and shared dictionary items are eliminated via submodularity.

4.41% and 1.80%, respectively. It demonstrates that submodu-
larity behaves enough to keep the MI, compared with the direct
method mentioned in Section III-C. Besides, submodularity
has a low complexity and it achieves promising results in our
experiments. Therefore, we will use submodularity to seek
class-specific dictionary unless mentioned otherwise in our
experiments.

2) Eliminating Shared Dictionary Items: Here, we generate
two classes denoted by data1 and data2. Data1 is randomly
sampled from the inner of one circle with radius 2 and
center (2, 2) and data2 is from the inner of one circle with
radius 2 and center (5, 2). Both data1 and data2 are the set
of coordinates of points. Some points from both classes may
be overlapped shown in Fig. 5(a). We first obtain two initial
dictionaries (K = 10) using data1 and data2, respectively.
The initial dictionary items (or cluster centers) are shown
in Fig. 5(a) where two dictionary items are located in the
overlapped region. Then we use submodularity to seek one
new dictionary per class and the results are shown in Fig. 5(b).
We can see that eight dictionary items are selected for each
class and the shared dictionary items have been eliminated.

B. Video Representation by Sparse Coefficient Histograms

For a STIP feature set Y ∈ �n×q extracted from a query
video, whenever we use shared or class-specific dictionary, we
can calculate sparse coefficients XY = [x1, . . . , xq ], x j ∈ �k

via Eq. 10. Therefore, the coefficient histogram is computed
via h = 1

q

∑q
j=1 x j , where h is a vector with k elements. Then

we normalize the coefficient histogram by �2 norm.
We learned both shared and class-specific dictionary with

|�0
s | = |�0

i | = 200, where �0
s is the shared dictionary. Then,

we applied CSMMI to learn the class-specific dictionaries �∗
i

and used different shared dictionary methods (ME, Liu-Shah,
Qiu-Jiang) to learn a shared dictionary �∗

s , respectively.
We selected two videos per class (one as the reference

sample and the other as the test sample) as shown in
the first row of Fig. 6. Those videos are represented by
the coefficient histograms for both class-specific and shared
dictionary methods. For shared dictionary methods, there is
only one dictionary for all the classes. Therefore, a test video
is represented by one histogram. As shown in Fig. 6, actions
from the same class only have a few similar dominating bins

in the histograms (the similar conclusion can be found in [6])
and the large reconstructive errors calculated via Eq. 9 usually
occur by shared dictionary-based methods.

For CSMMI, the reference histograms for class-specific
dictionaries are shown in the first row of Fig. 7. For a test
video, we have to calculate one histogram for each class-
specific dictionary. In Fig. 7, we obtain six histograms for
a test video and calculate the corresponding reconstruction
errors. It demonstrates that a test video belonging to a specific
class not only has a relatively small reconstruction error for
that specific class (see the red rectangles) but also has a
similar histogram compared with the corresponding reference
histogram (not only dominating bins). For example, in the sec-
ond row of Fig. 7, the test video belonging to “boxing” class
has a relatively small reconstruction error for the “boxing”
class and its histogram is similar to the reference histogram
of “boxing”.

To evaluate the discrimination and compactness of the
learned dictionaries, we evaluate the compactness and purity
measures (under |�∗

s | = |�∗
i | = 22). The purity is the

histogram of the maximum probability observing any class
given a dictionary item, and the compactness is the his-
togram of pairwise correlation coefficients of dictionary items
[3], [36]. As shown in Fig. 8, our method is the most
compactness and the second most purity, compared with ME,
Liu-Shah, and Qiu-Jiang. We note that because there is one
dictionary per each class in our method, we calculate the
average purity and compactness of CSMMI in Fig. 8.

C. Weizmann Action Dataset

It consists of ninety low-resolution (180×144 pixels) video
sequences of nine subjects, each performing 10 natural actions:
bend, jack (jumping jack), jump (jump forward), pjump (jump
in place), run, side (gallop sideways), skip, walk, wave1 (wave
one hand) and wave2 (wave two hands).

We first extracted STIP features [24] and initialized |�0
s | =

|�0
i | = 500. The average accuracies using initial dictionaries

(�0
s and �0

i ) are 83.3% for shared dictionary methods and
87.8% for the class-specific dictionary method.

Then we applied dictionary-based methods with different
dictionary sizes k and recognition rates are shown in Fig. 9(a).
It shows that CSMMI outperforms other methods (ME,
Liu-Shah and Qiu-Jiang). Interestingly, when |�∗

i | ∈
[140, 275], we can obtain 100% recognition rate. Com-
pared with other methods, their best recognition rates are:
93.44% for ME, 92.33% for Liu-Shah and 92.33%2 for
Qiu-Jiang. Besides, when |�∗

i | > 275, the recognition
rates slowly decrease probably caused by over-clustering.
For more comparisons, we set |�0

s | = 1000 and performed
shared dictionary-based methods with different dictionary
sizes |�∗

s | = k (50 ≤ k ≤ 500). The corresponding best
recognition rates are 91.11% for ME, 93.33% for Liu-Shah and
95.56% for Qiu-Jiang. The results reveal that our method has a

2For sake of a fair comparison, we used the STIP feature for ME, Liu-Shah,
Qiu-Jiang and CSMMI in our experiments. While in [3], the authors used
complex features (shape and motion) to obtain 100% on Weizmann Action
Dataset. This is why the recognition rate (92.33%) reported in our paper is
different from that reported in [3].
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Fig. 6. The coefficient histograms of the shared dictionaries (|�∗
s | = 22) on KTH dataset by different methods (ME, Liu-Shah and Qiu-Jiang). It shows that

actions from the same class only have a few similar dominating bins in the histograms and large reconstructive errors usually occur in these three methods.

Fig. 7. The coefficient histograms of class-specific dictionaries (|�∗
i | = 22)

on KTH dataset. The first row is the reference histograms for six action
classes. The rest of rows are the test video clips. It demonstrates that a test
video belonging to a specific class usually has a relatively small reconstruction
error for that specific class (see the red rectangles) and has a similar histogram
compared with the corresponding reference histogram.

higher recognition rate than shared dictionary-based methods,
even though a small dictionary size is used by CSMMI.

For more comparisons, the proposed approach is compared
with a number of existing approaches, all of which use
the LOOCV scheme to evaluate their respective algorithms.
The performances are shown in Table I. Our approach achieves

Fig. 8. Purity and compactness comparisons with dictionary size 22 (|�∗
s | =

|�∗
i | = 22) on KTH action dataset. At the right-most bin of both (a) and (b),

a discriminate and compact dictionary should exhibit high purity and small
compactness [3].

Fig. 9. The performance comparison of different methods with different
dictionary sizes k. (a) Weizmann action dataset; (b) KTH action dataset.

remarkable recognition rates and outperforms most of the
recent methods reported in the literature. Besides, with such
basic features (STIP), we obtain 100% average recognition
accuracy with only |�∗

i | = 140. Though we use the simple
STIP feature, our accuracy is comparable to the performance
reported in [37] which uses complex features (silhouette-based
features). We know that silhouette features are hard to obtain in
complex environments, such as dynamic background, temporal
scale or rotation.

D. KTH Action Dataset

This dataset consists of six actions: walking, jogging,
running, boxing, waving, and clapping. They are performed
by 25 actors under four different scenarios: outdoors, out-
doors with scale variation, outdoors with different clothes
and indoors. Six hundred video sequences (160 × 120 pixels)
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TABLE I

COMPARISON ON THE WEIZMANN ACTION DATASET

Fig. 10. Confusion matrix for KTH dataset using different methods. The
average recognition rates are given: (a) ME (89.56%); (b) Liu-Shah (91.17%);
(c) Qiu-Jiang (92.17%); (d) CSMMI (98.83%).

are recorded. This dataset is challenging due to the significant
intraclass variations in terms of speed, spatial, and temporal
scale, clothing, and movement variations.

We extracted STIP features [24] and initialized |�0
s | =

|�0
i | = 500. The average accuracies using initial dictionaries

(�0
s and �0

i ) are 87.18% for shared dictionary methods and
90.33% for the class-specific dictionary method.

The recognition rates with different dictionary sizes are
shown in Fig. 9(b) which reveals that CSMMI outperforms the
rest. More specifically, the best recognition rate for CSMMI
is 98.83%, compared to 92.17% for Qiu-Jiang, 91.17% for
Liu-Shah and 89.56% for ME. The confusion matrices cor-
responding to the best recognition results are presented in
Fig. 10. We can see that the main error occurs between
“running” and “jogging” in shared dictionary-based methods.
However, CSMMI can reduce this confusion. That is because
the aims of our objective functions are to select discriminative
dictionary items which are highly correlated to a specific
class (intra-class MI) and less correlated to other classes
(inter-class MI).

Table II compares our results with some published papers
which have used this dataset. Our method achieves the high-
est accuracy. We note that because the published papers in
Table II use different experimental setups, the comparison

TABLE II

COMPARISON ON THE KTH ACTION DATASET

Fig. 11. Confusion matrix for UCF sports action dataset via CSMMI.

is not totally reliable. However, the comparisons are still
informative and encouraging for the researchers.

E. UCF Sports Action Dataset

The UCF sports dataset is considered to be one of the
most challenging datasets in the field of action recognition.
This dataset contains 150 action sequences collected from
various sports videos which are typically featured on broadcast
television channels such as the BBC and ESPN. The collection
represents a natural pool of actions featured in a wide range
of scenes and viewpoints. It also exhibits occlusion, cluttered
background, variations in illumination and scale. The nine
actions are: diving, golf swinging, kicking, lifting, horse
riding, running, skating, swinging and walking.

We extracted STIP features [24] and initialized |�0
s | =

|�0
i | = 500. The average accuracies using the initial dictio-

naries (�0
s and �0

i ) are 79.67% for shared dictionary methods
and 83.33% for the class-specific dictionary method. Then, we
can learn the class-specific dictionaries (�∗

i , i = 1, . . . , C) by
CSMMI (using ε) and the corresponding average dictionary
size is 469. We obtain 98% recognition rate and the corre-
sponding confusion matrix is shown in Fig. 11. We compare
our results with other methods shown in Table III where
we also give the recognition rate (87.33%) under a small
dictionary size |�∗

i | = 250. We can see that our method
shows significant improvements in accuracy (> 10%). Even
thought there is a small dictionary size (such as |�∗

i | = 250),
our method is still comparable to other methods. Because the
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TABLE III

COMPARISON ON THE UCF SPORTS ACTION DATASET

TABLE IV

COMPARISON ON THE UCF YOUTUBE ACTION DATASET

average recognition accuracies obtained from shared dictio-
nary methods are much lower than CSMMI, their confusion
matrixes are not given. From the above discussion, they serve
as proof to that CSMMI outperforms both shared dictionary
methods and some state-of-the-art methods.

F. UCF YouTube Action Dataset

It contains 11 categories: basketball shooting, cycling,
diving, golf swinging, horse back riding, soccer juggling,
swinging, tennis swinging, trampoline jumping, volleyball
spiking, and walking with a dog. This challenging dataset
represents the difficulties present in real consumer videos,
such as moving/cluttered background, variation in object scale,
varied viewpoint and illumination. For each category, the
videos are grouped into 25 groups with more than four action
clips in it.

We initialized |�∗
s | = |�∗

i | = 800 using STIP features and
the average accuracy of the initial dictionaries are 67.2% for
shared dictionary methods and 74.7% for the class-specific
dictionary method. Then the final results of shared and class-
specific dictionary methods are shown in Table IV where
other state-of-the-art methods are also given. We can see that
CSMMI improves by 3% the best result from any other method
mentioned in Table IV.

G. Hollywood2 Action Dataset

This dataset contains a training set (823 video sequences)
and a test set (884 sequences) and includes 12 action classes.
Training and test sequences come from different movies and
the performance is measured by mean average Precision
(mAP) over all classes as in [32]. The authors provide clean
and noisy versions of the dataset and we use the clean version.

TABLE V

COMPARISON ON THE HOLLYWOOD2 ACTION DATASET

TABLE VI

COMPARISON ON THE KECK ACTION DATASET

We first set |�0
s | = |�0

i | = 500 for the initial dictionary size
using STIP features. The mAPs using initial dictionaries is
39.1% for shared dictionary method and 58.7% for the class-
specific dictionary method. Then, we learn �∗

i by CSMMI
(using ε) and the corresponding average dictionary size is 437.
The final results are shown in Table V where some state-of-the-
art methods on these dataset are given. We can see that CSMMI
outperforms three shared dictionary-based methods (at least
18% improvement) and is comparable to other state-of-the-
art methods such as vector of local aggregated descriptors
(VLAD) representation [46].

H. Keck Gesture Dataset

Keck gesture dataset consists of 14 different gesture classes
which are military signals. The full list of gestures is: turn left,
turn right, attention left, attention right, attention both, stop
left, stop right, stop both, flap, start, go back, close distance,
speed up and come near. Each gesture is performed by there
persons who repeat each gesture three times. The training set
including 126 video sequences are captured with the simply
and static background while the test set including 168 video
sequences contains dynamic an cluttered backgrounds.

We follow the experimental protocol proposed by
Jiang et al. [26] for both static and dynamic settings. In the
static background setting, the experiments are based on leave-
one-person-out cross-validation. As for the dynamic environ-
ment, the gestures acquired from the static background are
used for training while the gestures collected from the dynamic
environment are the test videos. The average rates for both
static and dynamic backgrounds are reported in Table VI
where we used the shape-motion feature [26] and set |�0

s | =
|�0

i | = 600. We can see that the accuracy rate of our method
is slightly lower than that of Qiu-Jiang∗3 for the static setting.

3Qiu-Jiang and Qiu-Jiang∗ are the same method. In our paper, Qiu-Jiang,
ME, Liu-Shah results are based on our own implementations while Qiu-Jiang∗
results are derived from [3].
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TABLE VII

COMPARISON WITH STATE-OF-THE-ART METHODS ON ONE-SHOT

LEARNING CHALEARN GESTURE DATASET(devel01 ∼ devel20)

That is because we used a small dictionary size (|�0
i | =

600) in CSMMI but Qiu-Jiang∗ used a large dictionary size
(|�0

s | = 1200).

I. One-Shot Learning Chalearn Gesture Dataset

The main challenges for this dataset are: 1) there is only
one training example per class; 2) occlusions may occur
(for instance hand covering each other or covering the face).
We evaluate the proposed method on the development dataset
(devel01 ∼ devel20) which consists of 20 batches (totally
2000 gestures). Each batch is made of 47 gesture videos and
splitted into a training set and a test set. Every test video
contains 1 to 5 gestures. Detailed descriptions of gesture data
can be found in [33]. This dataset provides both RGB and
depth video clips (320 × 240 pixels).

We used 3D EMoSIFT feature which fuses RGB and depth
data. That is because 3D EMoSIFT has revealed promising
results on human activity and gesture recognition from RGB-D
data [21], [50]. Owing to some video clips including multiple
gestures, we first adopted dynamic time warping [21], [51]
to achieve temporal segmentation. That means we can get
isolated gestures from a test video. Then, we extracted 3D
EMoSIFT features for each isolated gesture.

We first set |�0
s | = |�0

i | = 200. Then the class-specific
dictionary �∗

i is learned via CSMMI (using ε) and the corre-
sponding average dictionary is 182. The final results are shown
in Table VII where we also give other three additional results
in published papers [21], [49], and [52]. In addition, we also
set |�0

s | = 2000 for shared dictionary methods and the best
results with their corresponding dictionary sizes are shown
in Table VII where CSMMI outperforms shared dictionary
methods in terms of accuracy and efficiency.

To show more detailed information, The LD for each batch
is illustrated in Fig. 12. We can see that both class-specific and
shared dictionary methods do not work well on devel03 batch.
That is because 3D EMoSIFT only captures discriminative
features when gestures are in motion while there are some
static gestures (or postures) on devel03 batch. Some postures
from devel03 batch are shown in Fig. 13. Future work will
focus on combining both appearance and motion features to
improve recognition rates.

J. Multi-Modal Gesture Dataset

Multi-modal gesture dataset [34] has been recently released.
There are 20 gesture classes and the training data has

Fig. 12. The performances of each batch (devel01 ∼ devel20) on one-shot-
learning Chalearn dataset. The edit distance and dictionary size of each batch
are given: ME (0.241,1273); Liu-Shah (0.223,1637); Qiu-Jiang (0.2075,1455);
CSMMI (0.1876,182).

Fig. 13. Some static gestures from devel03 batch on one-shot learning
Chalearn gesture dataset.

Fig. 14. An illustration of temporal segmentation by the audio file, where
the red lines indicate the segment position and blue lines indicate audio data.

393 segments of continuous video, which contain 7754 Italian
gestures (Italian cultural/anthropological signs were consid-
ered). Each section includes an RGB video, a depth video,
an audio file and skeleton information of every frame. The
validation data has 287 sessions, which correspond to 3362
Italian gestures.

In this dataset, gestures are continuously performed. It’s
hard to achieve temporal segmentation via RGB-D data.
Here, we use the audio data for this purpose. It is sup-
posed that the audio will return to silence before saying
a new gesture by an actor. Therefore, we can detect the
silence part [53] in audio file to achieve temporal segmen-
tation. Fig. 14 illustrates the temporal segmentation, where
the red lines indicate the detected positions pos_audio from
audio files. Because the sample rates between audio files
and videos are different, pos_audio are not true positions
in videos. The true positions pos_video in videos can be
obtained as, pos_video = pos_audio/step, where step =
f s_audio/ f s_video, f s_audio and f s_video represent the
sample rate of audio and video files, respectively. In the
dataset, f s_audio = 16000 Hz, f s_video = 20 Hz.
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Fig. 15. The three samples are represented the same gesture named ’vattene’
in Italian. But it shows very different appearance. Any hand of the actor (left
hand, right hand or both hands) can perform ’vattene’.

TABLE VIII

COMPARISON ON MULTI-MODAL GESTURE DATASET

We first extracted 3D EMoSIFT features from RGB-D data.
But it did not yield good results with CSMMI. That is because
one gesture class can be presented by different hands of an
actor as shown in Fig. 15 while 3D EMoSIFT feature is
sensitive to the direction of motion [21], [54]. Therefore, we
use HOJ3D feature which is view invariant [25].

Because this dataset includes noise gestures (gestures do not
contained in the vocabulary), we used training data to learn
21 initialized dictionaries (|�0

i | = 1000) (The noise gestures
are treated as a new class). Then we test the dictionary-
based methods on validation data. We experimented with two
settings. In the “true segment” setting, we predicted the labels
using true temporal segmentation. In the “predicted segment”
setting, we first used audio files to predict temporal segmenta-
tion and then applied shared-dictionary methods or CSMMI to
achieve gesture recognition. The results and comparisons can
be found in Table VIII. We can see that our method can get
the best performances in both “true segment” and “predicted
segment” settings. It is not surprising that the model performs
better in the “true segment” setting, because it has used true
temporal segmentation.

K. Discussion

In this section, we critically analyze the results obtained
for the proposed method on both synthetic data and public
datasets. From the experimental results, the proposed method
compares favorably to shared dictionary methods and other
state-of-the-art approaches. However, there are still some inter-
esting observations.

1) Running Time: We examined the computational cost
of CSMMI and compared it with other dictionary-based
methods, including ME, Liu-Shah and Qiu-Jiang. Our hard-
ware configuration is 3.30-GHz CPU and 8-GB RAM. Table
IX shows that the CPU times spent on the training and testing
(recognition) phases using MATLAB on KTH action dataset.

TABLE IX

RUNNING TIMES (IN SECONDS) ON KTH ACTION DATASET

Note that five samples of each class were selected for training,
and |�0

i | = |�0
s | = 200. And all selected dictionary items are

of size 140 (|�∗
i | = |�∗

s | = 140).
The computational complexity of the proposed method for

training is generally larger than that of other dictionary-based
methods as it has to learn one dictionary for each class.
In practical applications, training is usually an offline process.
Hence, the recognition time is usually more of our concern
than the training time. As shown in Table IX,4 it allows us to
reduce the recognition time of the proposed method and make
it comparable to that of other approaches. Moreover, the pro-
posed algorithm can be made more computationally efficient
than other approaches, including ME, Liu-Shah and Qiu-Jiang,
because it requires a smaller number of dictionary size than
other approaches to attain similar or higher performance (see
Table VII).

2) Choosing Initial Dictionary Size: The theory of sparse
coding and dictionary learning are in a developing stage and
the problems to select a initial dictionary size are still open
issues [1], [21]. For shared dictionary usually used in BoF
model, the authors [47] suggested that the dictionary size is
usually set to 4000, which has shown to empirically give good
results for a wide range of datasets. In our experiments, we
also determine the initial dictionary size for CSMMI based
on empirical results. When we use STIP features, the initial
dictionary sizes for the five action datasets are range from
500 to 800. From our experimental results, when the initial
dictionary size for CSMMI is not larger than 1000 in most
cases, it usually reveals good results.

VI. CONCLUSION

In this paper, we present a class-specific dictionary learning
approach via information theory for action and gesture recog-
nition. First, the aim of CSMMI is to select dictionary items
that are highly correlated to a specific class and less correlated
to other classes. Second, in the initial class-specific dictionary
learning stage, each action class is modeled independently of
the others and hence the painful repetition of the training
process when a new class is added is no longer necessary.
This also indicates the possibility of parallel implementation
to speed up the processing time in the recognition stage.
Besides, we propose submodularity to reduce the complexity
of CSMMI. Extensive experiments demonstrate that the pro-
posed algorithm has obtained impressive performances.

Although the proposed method has achieved promising
results, there are several avenues, which could be explored in
the future, for futher improvement, including: how to initialize
dictionary items candidates more efficiently and whether there

4Because we are using one dictionary per each class, we were able to use
the MATLAB parallel computing toolbox in the recognition stage of CSMMI.
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TABLE X

THE RELATIONSHIPS OF THE ENTROPY, JOINT ENTROPY, CONDITIONAL

ENTROPY AND MUTUAL INFORMATION

is a criterion to learn dictionary with different sizes for
different classes in the initial dictionary learning stage. Futher
work also includes exploring the optimization of various
parameters of the method, such as sparsity for sparse coding.
We also intend to apply the proposed method to other classi-
fication tasks such as face or object recognition in our future
works.

APPENDIX A

We give some concepts about entropy from information
theory. The formula derivations in the manuscript will use
these basic concepts, which are given in Appendix B.

The entropy H (X) measures the uncertainty inherent in the
distribution of a random variable X . Joint entropy H (X, Y )
and conditional entropy H (X |Y ) are simple extensions that
measure the uncertainty in the joint distribution of a pair of
random variables X, Y , and the uncertainty in the conditional
distribution of a pair of random variables X, Y , respectively.
The mutual information I (X; Y ) measures how much the
realization of random variable Y tells us about the realization
of X . More detailed information can be found in [27]. The
relationships are shown in Table X.

APPENDIX B

In this appendix, we first give a proposition and its
proof which will be used to simplify inter-class MI
term τ2.

Proposition 1: For three variables X, Y, Z , H (X ∪ Z |Y ) −
H (X |Y ) = H (Z |(X ∪ Y )).

Proof: To more easily understand for readers, we also
give some graphic representations in Fig. 16. The formula
derivations are followed,

H ((X ∪ Z)|Y ) − H (X |Y )

= [H (X ∪ Z ∪ Y ) − H (Y )] − [H (X ∪ Y ) − H (Y )]
= H (X ∪ Z ∪ Y ) − H (X ∪ Y )

= H (Z ∪ (X ∪ Y )) − H (X ∪ Y )

= H (Z |(X ∪ Y ))

Fig. 16. The graphic representations (the yellow lines denote the object
region): (a) H ((X ∪ Z)|Y ); (b) H (X |Y ); (c) H (Z |(X ∪ Y )).

Then we simplify Eq. 4 using formulas of Table X as follow:

τ1 = H (�∗
i ∪ φi ) − H ((�∗

i ∪ φi )|�∗
i )

−[H (�∗
i ) − H (�∗

i |(�∗
i ∪ φi ))]

= H (�∗
i ∪ φi ) − [H (�0

i ) − H (�∗
i )]

−[H (�∗
i ) − H (�0

i ) + H (�∗
i ∪ φi )]

= [H (�∗
i ∪ φi ) − H (�∗

i )] − [H (�∗
i ∪ φi ) − H (�∗

i )]
= H (φi |�∗

i ) − H (φi |�∗
i ) (15)

where �0
i = {�∗

i ,�
∗
i , φi }, i is the index of the i th class.

τ2 = H (�∗
i ∪ φi ) − H ((�∗

i ∪ φi )|�l)

−[H (�∗
i ) − H (�∗

i |�l)]
= H (�∗

i ) + H (φi |�∗
i ) − H ((�∗

i ∪ φi )|�l)

−[H (�∗
i ) − H (�∗

i |�l)]
= H (φi |�∗

i ) − [H ((�∗
i ∪ φi )|�l) − H (�∗

i |�l)]
= H (φi |�∗

i ) − H (φi |(�l ∪ �∗
i )) (16)

In the last two rows of Eq. 16, we can simplify H ((�∗
i ∪

φi )|�l) − H (�∗
i |�l) = H (φi |(�l ∪ �∗

i ) using Proposition 1.
Then, we can obtain the objective function of Eq. 5:

arg maxφi ∈�0
i \�∗

i
H (φi |(�l ∪ �∗

i )) − H (φi |�∗
i ), where

H (φi |(�l ∪ �∗
i )) − H (φi |�∗

i )

= 1

2
log(2πeσ 2

φi |(�l∪�∗
i )) − 1

2
log(2πeσ 2

φi |�∗
i
)

= 1

2
log(

σ 2
φi |(�l∪�∗

i )

σ 2
φi |�∗

i

)

= 1

2
log(

κ(φi ,φi ) − κ(φi ,�l∪�∗
i )κ

−1
(�l∪�∗

i ,�l∪�∗
i )
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(17)

Therefore, the final objective function is,

arg max
φi ∈�0

i \�∗
i

κ(φi ,φi ) − κ(φi ,�′)κ
−1
(�′,�′)κ(�′,φi )

κ(φi ,φi ) − κ(φi ,�
∗
i )κ

−1
(�∗

i ,�
∗
i )

κ(�∗
i ,φi )

where �′ = �l ∪ �∗
i .
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