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Abstract

In gesture and sign language video sequences, hand motion
tends to be rapid, and hands frequently appear in front of
each other or in front of the face. Thus, hand location is
often ambiguous, and naive color-based hand tracking is
insufficient. To improve tracking accuracy, some methods
employ a prediction-update framework, but such methods
require careful initialization of model parameters, and tend
to drift and lose track in extended sequences. In this paper, a
temporal filtering framework for hand tracking is proposed
that can initialize and reset itself without human interven-
tion. In each frame, simple features like color and motion
residue are exploited to identify multiple candidate hand lo-
cations. The temporal filter then uses the Viterbi algorithm
to select among the candidates from frame to frame. The re-
sulting tracking system can automatically identify video tra-
jectories of unambiguous hand motion, and detect frames
where tracking becomes ambiguous because of occlusions
or overlaps. Experiments on video sequences of several
hundred frames in duration demonstrate the system’s ability
to track hands robustly, to detect and handle tracking ambi-
guities, and to extract the trajectories of unambiguous hand
motion.

1. Introduction
Accurate detection and tracking of moving hands is a chal-
lenging problem, with applications in sign language recog-
nition, human-computer interfaces and virtual reality envi-
ronments. Magnetic trackers can capture hand motion ac-
curately, but they are expensive and intrusive (users have to
wear special equipment).

Vision systems are less intrusive to human users, but
in monocular gesture and sign language video sequences
the hand motion is highly non-rigid, and there are frequent
occlusions and overlaps of hands. These conditions make
hand tracking a challenging problem.

We propose a temporal filtering method for 2D hand
tracking, i.e. for identifying the bounding box of the two
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hands in each frame of a video sequence. In each video
frame a small number of candidate hand locations is de-
tected using features based on color and motion residue.
Then a temporal filter selects the most likely trajectory of
hand locations. The observation probability is estimated
using the average of posterior skin color probability over
the candidate region. The transition probability is estimated
using features based on hand location, hand velocity and
normalized cross-correlation of two hand regions. We also
propose a probabilistic method for identifying the begin-
ning and end of trajectories where the hand location is un-
ambiguous. Identifying such trajectories allows the tracker
to stop and reset itself when there are occlusions, overlaps,
or other events that make tracking ambiguous. We believe
that identifying unambiguous trajectories and automatic re-
setting are very useful properties of the system. The tracker
can track for long periods of time, and automatic resetting
addresses the problems of drifting and losing track. Fur-
thermore, video trajectories of unambiguous hand locations
can be extracted and passed on for higher level processing
tasks, like sign language recognition.

2. Related Work
Methods that employ the Prediction-Update framework are
often applied to general tracking problems. The Kalman fil-
ter [1] and particle filters [18] are examples of such methods
that have been employed to track moving hands. Isard and
Blake [4] introduced a statistical factored sampling algo-
rithm known as CONDENSATION to track hand contours
in a cluttered background. This method was extended to
track both hands by Mammen [14]. In that method, large
perturbations in the measurement due to occlusion or clut-
ter are modeled. However, these methods need manual ini-
tialization of model parameters before tracking, and they
cannot tell when the tracker has lost track.

In Yang and Ahuja [8], hand gestures are tracked and rec-
ognized using a time-delay neural network, with features
based on motion estimation of multiple regions. That ap-
proach did not address the cases when a substantial part of
the hand is occluded or when two hands overlap. In Martin
[9], 2D hand tracking is achieved by combining cues from



skin detection and image differencing. These cues can be
insufficient in some domains, for example if no color in-
formation is available, or when image differencing picks up
motion from clothes, the face, or other objects.

Rasmussen and Hager [11] proposed a tracking method
for multiple objects by using a joint PDAF, which extends
the probabilistic data association filter(PDAF) [15] in Mul-
tiple Hypothesis Tracking. Their algorithm enforces a prob-
abilistic exclusion principle to prevent two trackers from
latching onto the same target. However, that system still
needs initialization and an arbitrary minimum separation
between targets.

A significant amount of work has focused on articulated
hand tracking. The goal in such methods is to track in
detail the motion of each finger and the palm, which is a
much harder task than merely tracking the 2D location or
bounding rectangles of hands. Rehg and Kanade [3] intro-
duced the use of a highly articulated 3D hand model in their
DigitEyes hand tracking system. Stenger [10] used a hand
model of 39 quadrics and applied the unscented Kalman fil-
ter to track hand motion. Lu [12] used edge and optical flow
to fit 3D models to 2D images and then track the hand mo-
tion. Sudderth [13] used nonparametric belief propagation
and geometric hand model to track hand motion. Articu-
lated models require accurate initialization. They are also
sensitive to large occlusions of hands, which happen fre-
quently in human gestures and sign languages.

3. Overview

Given a video sequence of a person performing a gesture,
our goal is to find the bounding square of each hand at each
frame. A good bounding square catches as many hand pix-
els as possible and as few background pixels as possible.

Given motion and color information about a single
frame, our single-frame hand detector generates a small
number of candidate hand locations, i.e., candidate bound-
ing squares of hands. At most two of those locations are
correct, since there are only two hands, and sometimes they
overlap, so they are at the same location. However, motion
and color information about a single frame are not suffi-
cient to unambiguously identify the two hands. To account
for that, the single-frame detector generates more than two
candidate locations (five locations are generated in our ex-
periments), in order to ensure that the true hand locations
will almost always be among the candidates.

Given hand location candidates in multiple consecutive
frames, we apply a temporal filtering method to refine the
results of the single-frame detector. The hand location can-
didates that correspond to the same hand (say the right
hand) in different frames are expected to be consistent with
each other, in the sense that their position, velocity and ap-
pearance will not change much from frame to frame. We

formulate a probabilistic criterion that identifies, among all
possible trajectories of candidate locations, the top few tra-
jectories that are the most likely to consist of candidates that
correspond to a single hand.

Sometimes hand location becomes ambiguous, for ex-
ample when hands overlap each other. The system identifies
cases in which, for a trajectory of candidate hand locations,
no candidate in the current frame is a good match. In such
cases the tracker simply stops the trajectory, and tries to start
a new trajectory. In this way, every trajectory output by the
system consists of hand locations that are consistent with
their previous and their next locations.

4. Detecting Candidate Hand Loca-
tions in a Single Frame

Most existing hand detection methods detect hands using
some of the following assumptions: hands are skin-colored,
the background is known and can be subtracted, and hands
are moving faster than other objects. While these assump-
tions can be very useful in some domains, there also exist
many cases where these assumptions are violated. An ex-
ample is shown in Fig.1: The sequence is gray-scale, so
no color information is available, background subtraction
would also pick up the body and face of the subject, and
motion detection also picks up the shirt, which is heavily
textured. It is therefore beneficial to utilize additional fea-
tures that can improve the hand detection in such cases.

In this paper we propose a novel feature, based on mo-
tion residue. Hands typically undergo non-rigid motion, be-
cause they are articulated objects. This means that hand
appearance changes more frequently from frame to frame,
compared to appearance of the clothes, the face, and back-
ground objects. We can use this property to detect hands, by
identifying regions in each frame that have no good matches
(in terms of appearance) among regions in the next frame.

For every two consecutive frames, the first frame is parti-
tioned into blocks and then we try to find best match of each
block in the next frame by translation. The block matching
process is performed in a Gaussian pyramid which prop-
agates the velocity of blocks from low-resolution levels to
high-resolution levels. Using image pyramids, the matching
process can be done efficiently.

Figure 1: Find best match of each block in the next frame.
The partitioned current frame is shown on the left, and the
next frame is shown on the right.



Figure 2: On the left is the motion residue of two frames in
Figure 1. On the right is the located hands in current frame

Based on the best match of each block, we make an im-
age of “block flow” to estimate the motion of regions. For
every block we also estimate the residue, which is simply
the average of absolute difference in intensity level between
the block and its best match in the next frame. Because
hands move nonrigidly in most cases, the blocks in a hand
region tend to have high residues, and therefore we can use
residue as a feature for detecting hands.

Hand candidates are identified as square areas with the
largest residue value. In color sequences, we use skin de-
tection to further improve detection accuracy. A skin color
likelihood distribution and a non-skin color distribution are
proposed in [7], in which the color space is in RGB but
quantized to32× 32× 32 values. For each color, the prob-
ability of being skin is determined by the values for its skin
likelihood and non-skin likelihood. We obtain a skin mask
by thresholding the skin probability of each pixel. This
mask is applied to the residue image, before searching for
maxima in the residue image. In this way, no maxima will
be found in image areas that are not skin-colored.

Each candidate hand location returned by the single-
frame detector is a square bounding box centered at one
of the local maxima in the residue image. The size of the
bounding box is determined by the bounding box of the
face, which is detected using a standard face detector [6].

5. Temporal Filtering
In each frame, we have hand candidates corresponding to
real hand locations, and we also have false detections. Gen-
erally the real hand candidates are consistent from frame to
frame, while the false detections lack such temporal consis-
tency. Through temporal filtering, we can remove the false
detections in each frame and extract the real hand trajecto-
ries.

First we introduce some notation:

P (A): Probability of A, where A is an observation or a hy-
pothesis. Similarly,P (A|B) denotes the probability of
A givenB, where B can similarly be an observation or
a hypothesis.

ot: Feature vector of a hand candidate at framet. The
feature vector contains information about appearance,
skin likelihood, location, and velocity.

H: The hypothesis that a feature vector (or every vector of
a trajectory of feature vectors) corresponds to a hand.
For example,P (H|o1, . . . , oT ) is the probability that
every singleoi in {o1, . . . , oT } is a hand.

HS : The hypothesis that every vector of a trajectory of fea-
ture vectors corresponds to the same hand (i.e. the sub-
ject’s left or right hand).

st: Part of ot, that contains all the features that we need
in order to estimate the probability thatot is a hand.
Formally,st is a subset of features fromot that satisfies
thatP (H|st) = P (H|ot).

∆(ot, ot−1): A feature vector extracted from two hand can-
didatesot and ot−1, that captures all the informa-
tion that we need to know to estimate the probabil-
ity that ot and ot−1 correspond to the same hand
(given the knowledge that bothot and ot−1 are ac-
tually hands). Formally,∆(ot, ot−1) is such that
P (HS |∆(ot, ot−1),H) = P (HS |ot, ot−1,H).

5.1. Optimization Criterion
Overall, we want our system to identify a trajectory
o1, . . . , oT that maximizeP (HS |o1, . . . , oT ). That is, we
want to pick from each framet a candidateot, so that each
ot is likely to be a hand, and each pairot−1, ot is likely to
correspond to the same hand.

This subsection proves that, under some assumptions,
the following equation holds:

P (HS |o1, . . . , oT ) ∝
T∏

t=2

P (∆(ot, ot−1)|HS)
T∏

t=1

P (st|H)

(1)
This equation will allow us to construct optimal trajectories
using the Viterbi algorithm [2]. The remainder of this sub-
section proves Eq. 1 and can be skipped if the reader is not
interested in the mathematical details.

We assume that the probability that each ofo1, . . . , oT is
a hand is simply the product of the individual probabilities
that each one of them is a hand. This assumption, together
with the definition ofst, can be summarized as

P (H|o1, . . . , oT ) =
T∏

t=1

P (H|ot) =
T∏

t=1

P (H|st) (2)

We also assume that, if allo1, . . . , ot are hands, the prob-
ability that they correspond to the same hand is simply the
product of the probabilities of every pairot−1, ot corre-
sponding to the same hand. This assumption, together with
the definition of∆(ot, ot−1) can be summarized as:

P (HS |o1, . . . , oT ,H) =
T∏

t=2

P (HS |∆(ot, ot−1),H) (3)



Overall, we want our system to construct a trajectory
o1, . . . , oT that maximizesP (HS |o1, . . . , oT ). We can ex-
pandP (HS |o1, . . . , oT ) as follows:

P (HS |o1, . . . , oT )
= P (HS ,H|o1, . . . , oT )
= P (HS |o1, . . . , oT , H)P (H|o1, . . . , oT ) (4)

In the first step of Eq.4 we used the fact that the hypoth-
esis(HS , H) is the same as the hypothesisHS . In other
words, if, for a trajectory of candidate hand locations, we
know that all of them correspond to the same hand, then we
also know that all those locations correspond to hands.

We have that

P (HS |o1, . . . , oT , H)
= P (HS |∆(o2, o1), . . . , ∆(oT , oT−1), H)

=
T∏

t=2

P (HS |∆(ot, ot−1), H) (5)

Using Bayes rule, we get, fort = 2, . . . , T that

P (HS |∆(ot, ot−1),H)

=
P (∆(ot, ot−1)|HS)P (HS |H)

P (∆(ot, ot−1))
(6)

We assume that, as long as we do not know whetherot

andot−1 are hands or not,P (∆(ot, ot−1)) can be approxi-
mated as a uniform distribution. This means that the denom-
inator of Eq. 6 reduces to a constant. Along the same line,
the P (HS |H) in the numerator is also a constant. There-
fore, we get that

P (HS |∆(ot, ot−1), H) ∝ P (∆(ot, ot−1)|HS) (7)

P (HS |o1, . . . , oT ,H) ∝
T∏

t=2

P (∆(ot, ot−1)|HS) (8)

Using similar manipulations, and by assuming that
P (st) is uniform, we get:

P (H|o1, . . . , oT ) = P (H|s1 . . . , sT )

=
T∏

t=1

P (H|st) ∝
T∏

t=1

P (st|H) (9)

By combining all these results together, we get Eq. 1.

5.2. Estimation of Observation Probabilities
In order to maximize the right side of Eq. 1 we need to
knowP (st|H) andP (∆(ot, ot−1)|HS).

Featurest is simply the mean, over all pixels in the can-
didate hand locationot, of the probability of each pixel be-
ing skin. This probability is estimated as discussed in Sec.

4. We modelP (st|H) as a Gaussian distribution, with mean
uh and varianceσ:

P (st|H) ∼ 1√
2πσ

e
−(st−uh)2

2σ2 . (10)

Quantitiesuh and σ are estimated from a set of training
samples.

Feature∆(ot, ot−1) is a five-dimensional vector describ-
ing how differentot andot−1 are in position, velocity and
appearance. We define(xt, yt) to be the center of candi-
date hand locationot, and we define(ut, vt) to be the ob-
served velocity at that location. Velocity is estimated as a
by-product of estimating the residual image (Sec. 4), where
we find, for each block in one frame, its best matching block
in the next frame. The velocity(ut, vt) of ot is simply the
average of the velocities of all the blocks that are inside the
bounding square that specifies the location ofot. We define
the four-dimensional vector∆′(ot, ot−1) to be the vector
(xt − xt−1, yt − yt−1, ut − ut−1, vt − vt−1).

Since we are not focusing on specific gestures, we as-
sume that the change of position and velocity fromot−1 to
ot has a multi-dimensional Gaussian distribution, whenot

andot−1 correspond indeed to the same hand:

P (∆′(ot, ot−1)|HS) ∼ N (0̄; Σ) . (11)

The covariance matrixΣ is trained by sample trajectories.
To measure how similar the appearance ofot andot−1

is, we take the maximum normalized cross-correlation co-
efficient Corr(ot, ot−1) of the two image windows cor-
responding toot and ot−1. We make a histogram
Hist(Corr(ot, ot−1)) using training trajectories in which
we manually identify, in consecutive frames, pairs of win-
dows in consecutive frames that correspond to the same
hand. We normalize the histogram so that the sum of its
entries is 1, so that the histogram describes the probabil-
ity of getting a correlation value given thatot andot−1 are
indeed hands and correspond to the same hand:

Hist(Corr(ot, ot−1)) ' P (Corr(ot, ot−1)|HS) . (12)

Now we can finally define feature∆(ot, ot−1) as
(Corr(ot, ot−1),∆′(ot, ot−1)). Assuming that the proba-
bility of the appearance-based correlation is independent
of the probability of the combined position and velocity
changes, we have:

P (∆(ot, ot−1)|HS)
= P (∆′(ot, ot−1)|HS)P (Corr(ot, ot−1)|HS)(13)

5.3. Measuring Consistency Between Consec-
utive Frames

In this subsection we establish a criterion for telling when
two consecutive observationsot−1, ot are likely to belong



to the same hand. This criterion is useful for preventing
the system from forming trajectories in which two consecu-
tive locations are deemed to be inconsistent with each other.
If, at previous framet − 1, the observationot−1 found by
the Viterbi algorithm to have a link to the observationot is
inconsistent withot , we don’t add observationot to that
trajectory ending atot−1. If ot−1 can’t have any link to
observations in framet, the trajectory ending atot−1 stops.

We define this consistency criterionPS(HS |ot, ot−1) to
be the probability, given thatot−1 is a hand, thatot andot−1

correspond to the same hand. WhenPS is greater than0.5,
we consider observationsot, ot−1 to be consistent with each
other. To derive whatPS is equal to, first we observe that,
based on Eq. 4,

P (HS |ot, ot−1) = P (HS |∆(ot, ot−1), H)P (H|ot, ot−1)
(14)

To save space, we definek1 = P (HS |H), and ∆t =
∆(ot, ot−1). We get that

PS(HS |ot, ot−1) =
P (HS |ot, ot−1)

P (H|ot−1)
= P (HS |∆t, H)P (H|ot)

=
P (∆t|HS)k1

k1P (∆t|HS) + (1− k1)P (∆t|HS , H)

× P (ot|H)P (H)
P (H)P (ot|H) + P (H)P (ot|H)

(15)

Here we assume thatP (∆(ot, ot−1)|HS ,H) and
P (ot|H) are uniformly distributed. QuantitiesP (H),
P (H), P (HS |H), P (HS |H) are constants. To simplify no-
tation, we introduce the following new constants:

k2 = P (H),
c1 = P (HS |H)P (∆(ot, ot−1)|HS ,H),
c2 = P (H)P (ot|H)
So if PS(HS |ot, ot−1) > 0.5 then we have

k1k2P (∆t|HS)P (ot|H)
(k1P (∆t|HS) + c1)(k2P (ot|H) + c2)

> 0.5

⇒ 2k1k2P (∆t|HS)P (ot|H) >

k1k2P (∆t|HS)P (ot|H) + k1c2P (∆t|HS) +
k2c1P (ot|H) + c1c2

⇒ k1k2P (∆t|HS)P (ot|H)− k1c2P (∆t|HS)−
k2c1P (ot|H)− c1c2 > 0 (16)

Then, to tell whetherPS(HS |ot, ot−1) > 0.5, we can build
a linear discriminant(a, b, c, d) such that

aP (∆t|HS)P (ot|H)+bP (∆t|HS)+cP (ot|H)+d > 0
whenot is the same hand asot−1 and

aP (∆t|HS)P (ot|H)+bP (∆t|HS)+cP (ot|H)+d < 0
whenot is not a hand or is not the same hand asot−1.

Findinga, b, c, d is a standard problem of finding a lin-
ear discriminant for two classes. To solve it, we use the

standard Minimum Squared-Error technique of the pseudo-
inverse matrix [17]. We use some training trajectories to
obtain positive and negative examples for the training.

5.4. Dynamic Programming Implementation
In Sec. 5.1, we use the Viterbi algorithm to extract the most
likely hand trajectories. In a Viterbi net a nodeN at cur-
rent timet corresponds to a candidate hand feature vector
in frame t. Each node points to a node corresponding to
time t− 1, and by tracing these pointers starting at nodeN
we can recover the current best trajectory ending atN .

The complete procedure is given in Algorithm 1. To sim-
plify notation we useL(st|H) andLH(ot, ot−1) to denote
the logarithm ofP (st|H) andP (∆(ot, ot−1)|HS) respec-
tively.

input : A sequence ofT frames, withn feature vectorsx1
t . . . xn

t
at each nodet

output : a group of trajectories seq(1),seq(2),...
//Definitions
δi
t: current score of candidateoi

t in framet.
ψt(i): index of candidates at framet− 1, which links to candidatexi

t
at framet.
n: the number of candidates in each frame.
m: the number of candidates we will extract in each frame .
while total number of extracted candidates < mT do

Find first nodeτwith more thann−m feature vectors.
//Initialization
for i = 1 : number of feature vectors at node τ do

δi
τ = L(xi

τ |H);
ψτ (i) = 0;

end
//Recursion
t = τ + 1
while (Not all δs

t−1 = −∞) ∧ (t ≤ T ) do
for j = 1 : number of feature vectors at t do

δj
t = max1≤i≤n[δi

t−1 + LH(oj
t , oi

t−1) + L(oj
t |H)]

ψt(j) = argmax
1≤i≤n

[δi
t−1 + LH(oj

t , oi
t−1) + L(oj

t |H)]

if (oj
t ando

ψt(j)
t−1 ) does not satisfy Eq. 16then

δj
t = −∞

end
end
t = t + 1

end
Output the trajectory of feature vectors fromτ to t−1 by tracking
backψt(jm), wherejm = arg max1≤j≤n δj

t−1

end

Algorithm 1: Modified Viterbi algorithm used in our sys-
tem.

To decide whether the current best trajectory should end
at framet, we only need to check whether the current best
trajectory can find a candidate hand square in framet + 1
that satisfies Eq. 16. So, different from the conventional
Viterbi algorithm, we have an extra check at each timet.
When all the trajectories cannot go beyond framet, the best



trajectory at framet is output. Then the algorithm finds the
first frame with a sufficient number of candidates as a new
start.

The time complexity of this modified Viterbi algorithm
is O(mn2T ), where m is the number of targets and n is the
number of candidates in each frame.

In Algorithm 1, the parameterm is the number of objects
we expect to track in a video sequence. Because human
faces have similar color and size as hands, we setm = 3 in
our hand tracking system. After the Viterbi algorithm we
then remove face trajectories by a post-processing step: we
compare the extracted trajectories with locations of detected
faces in all the frames. If three of the hand locations in a tra-
jectory overlap with face regions, this trajectory is regarded
as a face trajectory and removed. Trajectories shorter than
three frames are also discarded. After post-processing it is
possible that in some frames we have 3 trajectories, but this
error occurred rarely in our experiments.

6. Experiments
The method is tested on sign language sequences. We evalu-
ate the single-frame detector on gray-scale video sequences,
on which skin-color detection is not applicable. We also
evaluate the overall algorithm on color video sequences and
compare with CONDENSATION[4]. All video sequences
display subjects using sign language. None of the test se-
quences was used for training the system.

6.1. Single-Frame Detection Results
We tested the single-frame detector on a number of Amer-
ican sign language videos which have 1444 frames in to-
tal. These videos are 8-bit gray-level videos, so skin color
detection cannot be applied to them. The ground-truth of
hand locations is manually recorded. The size of blocks
is 8 by 8 when the translation residue is computed. We
use 3-level Gaussian pyramid which propagates the velocity
of blocks from higher level to lower level. At each frame
we pick up three maxima in the motion residue image as
hand candidates and then compare them with the ground-
truth. To measure accuracy we compute the distance be-
tween centers of hand candidates(xc, yc) and centers of
hand locations based on ground-truth(xg, yg). Let d be the
distance between(xc, yc) and(xg, yg). Whend is smaller
than the minimum radius of the bounding circles of the
ground-truth and the candidate, then we consider the can-
didate “well-located”. In these 1444 frames we get 1.8061
“well-located” candidates per frame. Naturally, a perfect
result would be 2.0 “well-located” candidates per frame.

6.2. Temporal Filtering Results
We extracted four video sequences of 200 frames each. Two
video sequences depict American Sign Language [19]. The

other two depict Flemish sign language [20]. For ground
truth we manually marked the hand locations in each frame
by squares. When the center of an extracted hand is inside
the hand square according to ground-truth, then the ground-
truth hand is regarded as correctly detected (denoted as “de-
tected hands” in Table 1).

Ideally the system would extract trajectories composed
completely of locations of the same hand. However, an ex-
tracted trajectory sometimes includes locations of the other
hand, or even non-hand locations. As a measure of system
performance, we estimate for each extracted trajectory the
percentage of locations that correspond to the same hand.
We call this measure “consistency.” For example, if a trajec-
tory of 30 locations is composed of only left hands, the con-
sistency score is 100%. If the trajectory contains 24 right
hands, 4 left hands and 2 non-hand locations, the consis-
tency score is 80% (i.e, 24/30). The final consistency score
for a video is the weighted sum of the consistency scores of
all extracted trajectories, where each trajectory is weighted
by its length.

Table 1: Test results on sign language data, the perfect
value of Detected hands and Consistency are 100%.

% Detected hands A B C D
our method 90% 66.5% 75.8% 81.8%

CONDENSATION 66% 14.5% 73% 38.3%

% Consistency A B C D
Our method 92.4% 70.2% 90.1% 83%

CONDENSATION 78.1% 11.6% 72.6% 40%

A: “DSP Introduction to a Story” in [19], frame 1 to frame 200.
B: “DSP Ski Trip Story” in [19], frame 4001 to frame 4200.
C: “NGT AH fab2 b.mpg” in [20], frame 1 to frame 200.

D: “NGT AW fab5 b.mpg” in [20], frame 501 to frame 700.

78 82 87 

91 96 101 

106 112 117 

Figure 3: Tracked hand locations (2 hand trajectories com-
bined ) from the “Ski Trip Story” in ASLLRP SignStream
Databases [19]. At the top-left corner is the frame number.
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Figure 4:Tracked hand locations in the Flemish Sign Lan-
guage [20] video “NGTAH fab2 b.mpg” .

We compare our method with the CONDENSATION[4]
algorithm. To apply CONDENSATION, we manually ini-
tialize the hand locations in the first frame and we keep 100
samples in each of the following frames. The prediction is
based on the same Gaussian model of 2-D location as in
our method, Eq.10. The update is based on skin probability,
normalized correlation score and blockflow of the new sam-
ple, using the same model and parameter values as in our
method. For the four sequences tested it was observed that
CONDENSATION tends to drift when there are occlusions
or hands are moving fast. When CONDENSATION loses
track, it has no mechanism to reset itself. Table 1 compares
the results of our algorithm versus CONDENSATION.

7. Conclusion
We have described a 2D hand tracking method that extracts
trajectories of unambiguous hand locations. Candidate hand
bounding squares are detected using a novel feature, based
on motion residue. This feature is combined with skin de-
tection in color video. A temporal filter employs the Viterbi
algorithm to identify consistent hand trajectories. An addi-
tional consistency check is added to the Viterbi algorithm,
to increase the likelihood that each extracted trajectory will
contain hand locations corresponding to the same hand. The
consistency check allows the system to stop tracking when
there are ambiguous observations. The tracker can reset it-
self automatically after stopping the previous trajectory. Re-
sults on video sequences of sign languages demonstrate the
robustness of our method.
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