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ABSTRACT

This paper proposes a general framework for matching sim-
ilar subsequences in both time series and string databases.
The matching results are pairs of query subsequences and
database subsequences. The framework finds all possible
pairs of similar subsequences if the distance measure satis-
fies the “consistency” property, which is a property intro-
duced in this paper. We show that most popular distance
functions, such as the Euclidean distance, DTW, ERP, the
Frechét distance for time series, and the Hamming distance
and Levenshtein distance for strings, are all “consistent”.
We also propose a generic index structure for metric spaces
named “reference net”. The reference net occupies O(n)
space, where n is the size of the dataset and is optimized
to work well with our framework. The experiments demon-
strate the ability of our method to improve retrieval perfor-
mance when combined with diverse distance measures. The
experiments also illustrate that the reference net scales well
in terms of space overhead and query time.

1. INTRODUCTION
Sequence databases are used in many real-world applica-

tions to store diverse types of information, such as DNA and
protein data, wireless sensor observations, music and video
streams, and financial data. Similarity-based search in such
databases is an important functionality, that allows identi-
fying, within large amounts of data, the few sequences that
contain useful information for a specific task at hand. For
example, identifying the most similar database matches for
a query sequence can be useful for classification, forecasting,
or retrieval of similar past events.

The most straightforward way to compare the similarity
between two sequences is to use a global similarity mea-
sure, that computes an alignment matching the entire first
sequence to the entire second sequence. However, in many
scenarios it is desirable to perform subsequence matching,
where, given two sequences Q and X, we want to identify
pairs of subsequences SQ of Q and SX of X, such that

the similarity between SQ and SX is high. When a large
database of sequences is available, it is important to be able
to identify, given a query Q, an optimally matching pair SQ
and SX, where SX can be a subsequence of any database
sequence.

A well-known example of the need for subsequence match-
ing is in comparisons of biological sequences. It is quite
possible that two DNA sequences Q and X have a large
Levenshtein distance [22] (also known as edit distance) be-
tween them (e.g., a distance equal to 90% of the length of
the sequences), while nonetheless containing subsequences
SQ and SX that match at a very high level of statistical
significance. Identifying these optimally matching subse-
quences [34] helps biologists reason about the evolutionary
relationship between Q and X, and possible similarities of
functionality between those two pieces of genetic code.

Similarly, subsequence matching can be useful in searching
music databases, video databases, or databases of events
and activities represented as time series. In all the above
cases, while the entire query sequence may not have a good
match in the database, there can be highly informative and
statistically significant matches between subsequences of the
query and subsequences of database sequences.

Several methods have been proposed for efficient subse-
quence matching in large sequence databases. However, all
the proposed techniques are targeted to specific distance
or similarity functions, and it is not clear how and when
these techniques can be generalized and applied to other dis-
tances. Especially, subsequence retrieval methods for string
databases are difficult to be used for time-series databases.
Furthermore, when a new distance function is proposed, we
need to develop new techniques for efficient subsequence
matching. In this paper we present a general framework,
which can be applied to any arbitrary distance metric, as
long as the metric satisfies a specific property that we call
“consistency”. Furthermore, we show that many well-known
existing distance functions satisfy consistency. Thus, our
framework can deal with both sequence types, i.e., strings
and time series, including cases where each element of the
sequence is a complex object.

The framework in this paper consists of a number of steps:
dataset segmentation, query segmentation, range query, can-
didate generation, and subsequence retrieval. Brute-force
search would require evaluating a total of O (|Q|2 |X|2)
pairs of subsequences of Q and X. However our filtering
method produces a shortlist of candidates after considering
O (|Q| |X|) pairs of segments only. For the case where the
distance is a metric, we also present a hierarchical reference



net, a novel generic index structure that can be used within
our framework to provide efficient query processing.

Overall, this paper makes the following contributions:

• We propose a framework that, compared to alterna-
tive methods, makes minimal assumptions about the
underlying distance, and thus can be applied to a large
variety of distance functions.

• We introduce the notion of “consistency” as an im-
portant property for distance measures applied to se-
quences.

• We propose an efficient filtering method, which pro-
duces a shortlist of candidates by matching only O(|Q|
|X|) pairs of subsequences, whereas brute force would
match O (|Q|2 |X|2) pairs of subsequences.

• We make this filtering method even faster, by using a
generic indexing structure with linear space based on
reference nets, that efficiently supports range similar-
ity queries.

• Experiments demonstrate the ability of our method to
provide good performance when combined with diverse
metrics such as the Levenshtein distance for strings,
and ERP [8] and the discrete Frechét distance [11])
for time series.

2. RELATEDWORK
Typically, the term “sequences” can refer to two different

data types: strings and time-series. There has been a lot of
work in subsequence retrieval for both time series and string
databases. However, in almost all cases, existing methods
concentrate on a specific distance function or specific type of
queries. Here we review some of the recent works on subse-
quence matching. Notice that this review is not exhaustive
since the topic has received a lot of attention and a complete
survey is beyond the scope of this paper.

Time-series databases and efficient similarity retrieval have
received a lot of attention in the last two decades. The first
method for subsequence similarity retrieval under the Eu-
clidean (L2−norm) distance appeared in the seminal paper
of Faloutsos et al. [12]. The main idea is to use a sliding win-
dow to create smaller sequences of fixed length and then use
a dimensionality reduction technique to map each window
to a small number of features that are indexed using a spa-
tial index (e.g., R∗-tree). Improvements of this technique
have appeared in [28, 27] that improve both the window-
based index construction and the query time using sliding
windows on the query and not on the database. However,
all these techniques are applicable to the Euclidean distance
only.

Another popular distance function for time series is the
Dynamic Time Warping (DTW) distance [4, 17]. Subse-
quence similarity retrieval under DTW has also received
some interest recently. An approach to improve the dynamic
programming algorithm to compute subsequence matchings
under DTW for a single streaming time series appeared
in [32]. In [15] Han et al. proposed a technique that ex-
tends the work by Keogh et al. [16] to deal with subse-
quence retrieval under DTW. An improvement over this
technique appeared in [14]. An efficient approximate sub-
sequence matching under DTW was proposed in [3] that

used reference based indexing for efficient retrieval. Another
technique that uses early abandoning during the execution
of dynamic programming appeared in [2] and a recent work
that provides very fast query times even for extremely large
datasets appeared recently [31]. An interesting new direc-
tion is to use FPGAs and GPUs for fast subsequence match-
ing under DTW [33]. Again, all these works are tailored to
the DTW distance.

Subsequence retrieval for string datasets has also received
a lot of attention, especially in the context of biological data
like DNA and protein sequences. BLAST [1] is the most
popular tool that is used in the bioinformatics community
for sequence and subsequence alignment of DNA and pro-
tein sequences. However, it has a number of limitations, in-
cluding the fact that it is a heuristic and therefore may not
report the optimal alignment. The distance functions that
BLAST tries to approximate are variations of the Edit dis-
tance, with appropriate weights for biological sequences [34,
29]. A number of recent works have proposed new meth-
ods that improve the quality of the results and the query
performance for large query sizes. RBSA is an embedding
based method that appeared in [30] and that works well for
large queries on DNA sequences. BWT-SW [20] employs
a suffix array and efficient compression to speed up local
alignment search. Other techniques target more specialized
query models. A recent example is WHAM [25] that uses
hash based indexing and bit-wise operations to perform ef-
ficient alignment of short sequences. Other techniques for
similar problems include [21, 24, 13]. Finally, a number
of techniques that use q-grams [38, 23, 18, 26] have been
proposed for string databases, and can also be applied to
biological datasets. However, all of these methods are ap-
plicable to specific data types and query models.

Indexing in metric spaces has been studied a lot in the past
decades and a number of methods have been proposed. Tree-
based methods include the Metric-tree [9] for external mem-
ory and the Cover-tree [6] for main memory. The cover-tree
is a structure that provides efficient and provable logarith-
mic nearest neighbor retrieval under specific and reasonable
assumptions about the data distribution. Other tree-based
structures for metric spaces include the vp-tree [39] and the
mvp-tree [7]. A nice survey on efficient and provable index
methods in metric spaces is in [10].

Another popular approach is to use a set of carefully se-
lected references and pre-compute the distance of all data
in the database against these references [36]. Given a query,
the distance of the references is computed first and using
the triangular inequality of the metric distance, parts of the
database can be pruned without computing all the distances.
One problem with this approach is the large space require-
ment in practice.

3. PRELIMINARIES
Here we give the basic concepts and definitions that we use

to develop our framework. Let Q be a query sequence with
length |Q|, and X be a database sequence with length |X|.
Q = (q1, q2, q3, ..., q|Q|) and X = (x1, x2, x3, ..., x|X|), where
the individual values qi, xj are elements of an alphabet Σ. In
string databases, Σ is a finite set of characters. For example:
in DNA sequences, ΣD = {A, C, G, T}, |ΣD| = 4, while in
protein sequences, ΣP contains 20 letters. The alphabet
Σ can also be a multi-dimensional space and/or an infinite
set, which is the typical case if Q and X are time series.



For example: for trajectories on the surface of the Earth,
ΣT = {(longitude, latitude)} ⊆ R2, |ΣT | = ∞. Similarly, in
tracks over a 3D space, ΣT = {(x, y, z)} ⊆ R3, |ΣT | = ∞.

For sequences defined over an alphabet Σφ, we can choose
a distance measure δψ to measure the dissimilarity between
any two sequences. We say that sequence Q ∈ (Σφ, δψ)
when we want to explicitly specify the alphabet and distance
measure employed in a particular domain.

3.1 Similar Subsequences
Let SX with length |SX| be a subsequence of X, and SQ

with length |SQ| be a subsequence of Q. We denote SXa,b as
a subsequence with elements (xa, xa+1, xa+2, ..., xb), and the
elements of SQc,d are (qc, qc+1, qc+2, ..., qd). Subsequence
SX and SQ should be continuous. Determining whether
SX and SQ are similar will depend on two parameters, ε
and λ. Namely, we define that SX and SQ are similar to
each other if the distance δ(SX, SQ) is not larger than ε,
and the lengths of both SX and SQ are not less than λ.

Setting a minimal length parameter λ allows us to dis-
card certain subsequence retrieval results that are not very
meaningful. For example:

• Two subsequences SX and SQ can have very small
distance (even distance 0) to each other, but be too
small (e.g., of length 1) for this small distance to have
any significance. In many applications, it is not useful
to consider such subsequences as meaningful matches.
For example: two DNA sequences X and Q can each
have a length of one million letters, but contain sub-
sequences SX and SQ of length 3 that are identical.

• If the distance allows time shifting (like DTW [16],
ERP [8], or the discrete Frechét distance [11]), a long
subsequence can have a very short distance to a very
short subsequence. For example: sequence 111222333
according to DTW has a distance of 0 to sequence
123. Using a sufficiently high λ value, we can prevent
the short sequence to be presented to the user as a
meaningful match for the longer sequence.

As a matter of fact, later in the paper we will also use an
additional parameter λ0, that explicitly restricts the time
shifting that is allowed between similar subsequences. The
difference between the lengths of SX and SQ should not be
larger than λ0.

3.2 Query Types
Given a query sequence Q, there are three types of subse-

quence searches that we consider in this paper:

• Type I, Range Query: Return all pairs of similar sub-
sequences SX and SQ, where |SX| > λ, |SQ| > λ,
||SX| − |SQ|| 6 λ0 and δ(SX, SQ) 6 ε.

We should note that in typical cases, when SX and SQ
are long and similar to each other, any subsequence of
SX has a similar subsequence in SQ. This observa-
tion is formalized in Section 4, using our definition of
“consistency”. In such cases, the search may return a
large number of results that are quite related.

• Type II, Longest Similar Subsequence Query: Maxi-
mize |SQ|, subject to |SX| > λ, ||SX| − |SQ|| 6 λ0

and δ(SX, SQ) 6 ε.

• Type III, Nearest Neighbor Query: Minimize
δ(SX, SQ), subject to |SX| > λ, |SQ| > λ and ||SX|−
|SQ|| 6 λ0.

Since the first query type may lead to too many related
results, the second and third query types are more practical.
In Section 7, we introduce methods to retrieve query results
after we generate similar segment candidates.

In this paper, we allow ε to vary at runtime, whereas we
assume that λ is a user-specified predefined parameter. Our
rational is that, for a specific application, specific values of
λ may make sense, such as one hour, one day, one year,
one paragraph, or values related to a specific error model.
Thus, the system can be based on a predefined value of λ
that is appropriate for the specific data. On the other hand,
ε should be allowed to change according to different queries.

3.3 Using Metric Properties for Pruning
If distance δ is metric, then δ is symmetric and has to

obey the triangle inequality, so that δ(Q, R) + δ(R, X) >

δ(Q, X) and δ(Q, R) − δ(R, X) 6 δ(Q, X). The triangle
inequality can be used to reject, given a query sequence Q,
candidate database matches without evaluating the actual
distance between Q and those candidates.

For example, suppose that R is a preselected database
sequence, and that r is some positive real number. Further
suppose that, for a certain set L of database sequences, we
have verified that δ(R, X) > r for all X ∈ L. Then, given
query sequence Q, if δ(Q, R) 6 r− ε, the triangle inequality
guarantees that, for all X ∈ L, δ(Q, X) > ε. Thus, the
entire set X can be discarded from further consideration.

This type of pruning can only be applied when the under-
lying distance measure obeys the triangle inequality. Exam-
ples of such distances are the Euclidean distance, ERP, or
the Frechét distance for time series, as well as the Hamming
distance or Levenshtein distance for strings. DTW, on the
other hand, does not obey the triangle inequality.

4. THE CONSISTENCY PROPERTY
As before, let Q and X be two sequences, and let SQ and

SX be respectively subsequences of Q and X. A simple
way to identify similar subsequences SQ and SX would be
to exhaustively compare every subsequence of Q with ev-
ery subsequence of X. However, that brute-force approach
would be too time consuming.

In our method, as explained in later sections, we speed up
subsequence searches by first identifying matches between
segments of the query and each database sequence. It is
thus important to be able to reason about distances between
subsequences of SQ and SX, in the case where similar sub-
sequences SQ and SX do exist. As we want our method
to apply to a more general family of distance measures, we
need to specify what properties these measures must obey
in order for our analysis to be applicable. One property that
our analysis requires is a notion that we introduce in this
paper, and that we term “consistency”. Furthermore, if the
distance function satisfies the triangular inequality, we can
use efficient indexing techniques to improve the query time.
However, we want to point out, that some distances with
the consistency property may violate triangular inequality
or symmetry. The consistency property is defined as follows:

Definition 1. We call distance δ a consistent distance mea-
sure if it obeys the following property: if Q and X are two



sequences, then for every subsequence SX of X there exists
a subsequence SQ of Q such that δ(SQ, SX) 6 δ(Q, X).

At a high level, a consistent distance measure guarantees
that, if Q and X are similar, then for every subsequence of Q
there exists a similar subsequence in X. From the definition
of consistency, we can derive a straightforward lemma that
can be used for pruning dissimilar subsequences:

Lemma 1. If the distance δ is consistent and δ(Q, X) 6

ε, then for any subsequence SX of X there exists a subse-
quence SQ of Q such that δ(SQj,k, SX) 6 ε.

We will show in the next paragraphs that the consistency
property is satisfied by the Euclidean distance, the Ham-
ming distance, the discrete Frechét distance, DTW, ERP,
and the Levenshtein distance (edit distance).

We start with the Euclidean distance, which is defined as
δE(Q, X) = (

Pd
m=1(Qm − Xm)2)1/2, where |Q| = |X| = d.

Then, for any subsequence SQij in Q, there exists a subse-
quence SXij in X, such that δE(SQ, SX) = (

Pj
m=i(Qm −

Xm)2)1/2. Obviously, δE(SQ, SX) sums up only a subset of
the terms that δE(Q, X) sums up, and thus δE(SQ, SX) 6

δE(Q, X). Therefore, the Euclidean distance is consistent.
The same approach can be used to show that the Hamming
distance is also consistent.

Although DTW, the discrete Frechét distance, ERP, and
the Levenshtein distance allow time shifting or gaps, they
can also be shown to be consistent. Those distances are com-
puted using dynamic programming algorithms that identify,
given X and Q, an optimal alignment C between X and Q.
This alignment C is expressed as a sequence of couplings: C
= (ωk , 1 6 k 6 K), where K 6 |X| + |Q|, and where each
ωk = (i, j) specifies that element xi of X is coupled with
element qj of Q.

In an alignment C, each coupling incurs a specific cost.
This cost can only depend on the two elements matched in
the coupling, and possibly on the preceding coupling as well.
For example, in DTW the cost of a coupling is typically the
Euclidean distance between the two time series elements.
In ERP and the edit distance, the cost of a coupling also
depends on whether one of the two elements of the coupling
also appears in the previous coupling.

While DTW, ERP, and the Levenshtein distance assign
different costs to each coupling, they all define the optimal
alignment C to be the one that minimizes the sum of costs
of all couplings in C. The discrete Frechét distance, on the
other hand, defines the optimal alignment to be the one that
minimizes the maximal value of its couplings.

For all four distance measures, the alignment C has to sat-
isfy certain properties, namely boundary conditions, mono-
tonicity, and continuity [16]. Now, suppose that SXa,b =
(xa, xa+1, xa+2, ..., xb) is a subsequence of X. For any el-
ement xi of SX there exists some corresponding elements
qj of Q such that (xi, qj) is a coupling ω(i,j) in C. Sup-
pose that the earliest matching element for xa is qc and
the last matching element of xb is qd, and define SQc,d =
(qc, qc+1, qc+2, ..., qd). Because of the continuity and mono-
tonicity properties, SQc,d is a subsequence of Q. Further-
more, the sequence of couplings in C which match an ele-
ment in SX with an element in SQ form a subsequence SC
of C, and SC is an optimal alignment between SX and SQ.

It follows readily that the sum or maximum of the sub-
sequence SC cannot be larger than the sum or maximum

of the whole sequence C. Namely, δ(SX, SQ) 6 δ(X, Q).
This shows that ∀ SXa,b, ∃ SQc,d, such δ(SXa,b, SQc,d) 6

δ(X, Q). Thus DTW, the discrete Frechét distance, ERP,
and the Levenshtein distance are all “consistent”.

5. SEGMENTATION
Let X = (x1, x2, x3, ..., x|X|) and Q = (q1, q2, q3, ...,

q|Q|) be two sequences. We would like to find a pair of
subsequences SXa,b = (xa, xa+1, xa+2, ..., xb) and SQc,d =
(qc, qc+1, qc+2, ..., qd), such that δ(SX, SQ) 6 ε and |SX| >

λ, |SQ| > λ. Brute force search would check all (a, c) com-
binations and all possible |SX| and |SQ|. However, there
are O(|Q|2) different subsequences of Q, and O(|X|2) differ-
ent subsequences of X, so brute force search would need to
evaluate O(|Q|2|X|2) potential pairs of similar subsequences.
The resulting computational complexity is impractical.

With respect to subsequences of X, we can drastically re-
duce the number of subsequences that we need to evaluate,
by partitioning sequence X into fixed-length windows wi
with length l, so that X = (w1, w2, w3, ..., w|W |), where wi
= (x(i−1)∗l+1, x(i−1)∗l+2, ..., xi∗l), (i 6 |Q|/l). The follow-
ing lemma shows that matching segments of Q only against
such fixed-length windows can be used to identify possible
locations of all subsequence matches:

Lemma 2. Let SX and SQ be subsequences with lengths
> λ, such that δ(SQ, SX) 6 ε, where δ is consistent. Let
sequence X be partitioned into windows of fixed length l.
If l 6 λ/2, then there exists a window wj in SX and a
subsequence SSQ from SQ, such that δ(SSQ, wj) 6 ε.

Proof: If the length of the fixed-length windows is less
than or equal to λ/2, then for any subsequence SX of X
with length at least λ, there must be a window wi that is
fully contained within SX. Since δ is consistent, and based
on lemma 1, if there exist subsequences SQ and SX such
that δ(SQ, SX) 6 ε, then if wi is a sub-subsequence of SX,
there must be some sub-subsequence SSQ from SQ such
that δ(SSQ, wi) 6 ε.

Based on lemma 2 we can obtain another straightfor-
ward lemma, that can be used for pruning dissimilar subse-
quences:

Lemma 3. Let sequence X be partitioned into fixed-length
windows with length l = λ/2, and let distance δ be consis-
tent. If there is no subsequence SQ such that δ(SQ, wj) 6 ε,
then all subsequences which cover window wj have no sim-
ilar subsequence in Q (where “similar” is defined as having
distance at most ε and length at least λ).

To find a pair of similar subsequences between two se-
quences, we could partition one sequence into fixed-length
windows and match those windows with sliding windows of
the second sequence. Since the total length of sequences X
in the database is much larger than the length of query se-
quence Q, we partition sequences X in the database into
fixed-length windows with length λ/2, whereas from the
query Q we extract (using sliding windows) subsequences
with different lengths.

If we use brute force search, there are a total of O(|Q|2

|X|2) potential pairs of similar subsequences that need to be
checked. When we partition sequences X in the database as
described above, there are only (|X|/l) windows that need
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Figure 1: An example of a Reference Net

to be compared to query subsequences. Thus, the number
of subsequence comparisons involved here is O(|Q|2|X|).

For a query sequence Q, there are about (|Q|2/2) different
subsequences of Q with length at least λ. However, we can
further reduce the number of subsequence comparisons if we
limit the maximum temporal shift that can occur between
similar subsequences. In particular, if λ0 is the maximal
shift that we permit, then there are no more than (2λ0 +
1)|Q| different segments of Q need to be considered. The
total number of pairs of segments is no more than 2(2λ0 +
1)|X||Q|/λ. If λ0 ≪ λ, the number of pairs of segments is
much less than |X||Q|.

The method that we propose in the next sections assumes
both metricity and consistency. Thus, DTW is not suitable
for our method, as it is not metric. While the Euclidean
distance and the Hamming distance satisfy both metricity
and consistency, they cannot tolerate even the slightest tem-
poral misalignment or a single gap, and furthermore they
require matches to always have the same length. These two
limitations make the Euclidean and Hamming distances not
well matched for sequence matching. Meanwhile, the dis-
crete Frechét distance, the ERP distance, and the Leven-
shtein distance allow for temporal misalignments and se-
quence gaps, while also satisfying metricity and consistency.
Thus, the method we propose in the next sections can be
used for time-series data in conjunction with the discrete
Frechét distance or the ERP distance, whereas for string
sequences our method can be used in conjunction with the
Levenshtein distance.

6. INDEXING USING A REFERENCE NET
Based on the previous discussion, if a distance function

is consistent, we can quickly identify a shortlist of possi-
ble similar subsequences by matching segments of the query
with fixed-length window segments from the database. A
simple approach is to use a linear scan for that, but this can
be very expensive, especially for large databases. Therefore,
it is important to use an index structure to speed up this
operation.

Assuming that the distance function is a metric, we can
use one of the existing index structures for metric distances.

One approach is to use reference based indexing[36], as it
was used in[30] for subsequence matching of DNA sequences.
However, reference-based indexing has some important is-
sues. First, the space overhead of the index can be large
for some applications. Indeed, we need to use at least a
few tens of references per database and this may be very
costly for large databases, especially if the index has to be
kept in main memory. Furthermore, the most efficient refer-
ence based methods, like the Maximum Pruning algorithm
in [35], need a query sample set and a training step that can
be expensive for large datasets. Therefore, we want to use a
structure that has good performance, but at the same time
occupies much smaller space to be stored in main memory
and without the need of a training step. Another alternative
is to use the Cover tree [6], which is a data structure that has
linear space and answers nearest neighbor queries efficiently.
Actually, under certain assumptions, the cover tree provides
logarithmic query time for nearest neighbor retrieval. The
main issue here is that the query performance of the cover
tree for range queries may not be always good. As we show
in our experiments, for some cases the performance of the
cover tree can deteriorate quickly with increasing range size.

To address the issues discussed above, we propose a new
generic indexing structure that is called Reference Net. The
Reference Net can be used with any metric distance and
therefore is suitable for many applications besides subse-
quence matching. Unlike the approaches in [36, 35], it uses
much smaller space that is controllable and still provides
good performance. Unlike the cover tree, every node in the
structure is allowed to have multiple parents and this can
improve the query performance. Furthermore, it is opti-
mized to answer efficiently range queries for different range
values that can also be controlled. Therefore, the Reference
Net is a good fit for our framework.

The reference net is a hierarchical structure as shown in
Figure 1. The bottom level contains all original data in
the database. The structure has r levels that go from 0 to
r − 1 and in each level, other than the bottom level, we
maintain a list of references. The references are data from
the database. The top level has only one reference. In each
level i, we have some references that correspond to ranges
with radius ǫi = ǫ′ ∗ 2i. References in the same level should
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Figure 2: Difference between Net and Tree.

have a distance at least ǫi. Let Yi := {R(i, j)} be the set that
contains the references in level i. Each reference R(i, j) is
associated with a list L(i, j) that includes references from the
level below(i.e, Yi−1). In particular, it contains references
with distance less or equal to ǫi, that is:

L(i, j) := {z ∈ Yi−1|δ(R(i, j), z) 6 ǫi} (1)

Notice that every node in the hierarchy can have multiple
parents, if it is contained in multiple lists at the same level.
This is one main difference with the cover tree. Another
difference is that we can set the range ǫ′. This helps to create
a structure that better fits the application. Furthermore,
this structure can answer more efficiently range queries than
the cover tree. Another structure that is similar to ours is
the navigating nets [19]. However, in navigating nets, the
space can be more than linear. Each node in the structure
has to maintain a large number of lists which makes the
space and the update overhead of this structure large and
the update and query algorithm more complicated.

Similar to the cover tree, the reference net has the follow-
ing inclusive and exclusive properties for each level i:

• Inclusive : ∀ R(i−1, k) ∈ Yi−1, ∃ R(i, j) ∈ Yi, δ(R(i, j),
R(i − 1, k)) 6 ǫi, namely, R(i − 1, k) ∈ L(i, j).

• Exclusive : ∀ pairs of R(i, p) ∈ Yi and R(i, q) ∈ Yi,
δ(R(i, p), R(i, q)) > ǫi.

The inclusive property means that if a reference appears
in the level i − 1 it should appear in at least one reference
list in the level i (any reference has at least one parent in
the hierarchy.) The exclusive property says that for two
references to be at the same level they should be far apart
(at least ǫi).

In Figure 2 we show why it is important to have a multi-
parent hierarchy and not a tree. Assume δ(R1, Xi) 6 ε and
δ(R2, Xi) 6 ε, but Xi are only in the list of R2. If δ(Q, R2)
+ ε > r we do not know whether δ(Q, Xi) 6 r or not.
However, if we maintain Xi also in R1, and δ(Q, R1) + ε 6

r, we know δ(Q, Xi) 6 r by checking δ(Q, R1). A similar
idea has also been used in the mvp-tree [7], which is another
structure that is optimized for nearest neighbor and not for
range queries.

Notice that we do not have to maintain empty lists or the
list of a reference to itself. Indeed, according to the defini-
tion, when a reference appears in the hierarchy at the level
i, it will appear in all levels between i − 1 and 0. However,
we just keep each reference only in the highest level. An-
other issue is that, depending on the data distribution and
the value of ǫ′, we may have many parent links from some

Ri

Q

Ri−1

2i+1

2i

2i−1

> 2i

Figure 3: Intuition of Lemma 4

level to the next and this may increase the space overhead.
In order to keep the space linear and small, we impose a
restriction on the number of lists that can contain a given
reference to nummax. In most of our experiments, this was
not an issue, but there are cases where this helps to keep
the space overhead in check.

The advantage of the reference net compared to the refer-
ence based methods is that using a single reference we can
prune much more data from the database. This is exempli-
fied in the following lemma:

Lemma 4. Let R(i, j) ∈ L(i, j). If δ(Q, R(i, j)) > ǫi+1, ∀
R(i − 1, k) ∈ L(i, j), δ(Q, R(i − 1, k)) > ǫi.

Proof: Since R(i − 1, k) ∈ L(i, j), then according to defi-
nition of reference:

δ(R(i − 1, k), R(i, j)) 6 ǫ′ ∗ 2i (2)

While:

δ(Q, R(i, j)) > ǫ′ ∗ 2i+1 (3)

Then according to triangular inequality:

δ(Q, R(i − 1, k)) > ǫ′ ∗ 2i (4)

Then for any reference R(l, k), l < i derived from reference
R(i, j), δ(R(l, k), R(i, j)) < 2i+1. If δ(Q, R(i, j)) − 2i+1 >
r, δ(Q, R(l, k)) > r. If δ(Q, R(i, j)) + 2i+1

6 r, δ(Q, R(l, k))
6 r. So, not only we can prune the references in one list,
but we may also prune all references derived from that list.
A simple example is illustrated in Figure 3.

For more details on the algorithms for insertion, deletion,
and range query for reference nets see the Appendix.

7. SUBSEQUENCE MATCHING
Using the concepts introduced in the previous sections,

the subsequence matching framework proposed in this paper
consists of five steps:

1. Partition each database sequence into windows of length
λ/2.

2. Build the hierarchical reference net by inserting all
windows of length λ/2 from the database.

3. Extract from the query Q all segments with lengths
from λ/2 − λ0 to λ/2 + λ0.

4. For each segment extracted from Q, conduct a range
query on the hierarchical reference net, so as to find
similar windows from the database.



Figure 4: Distance Distribution for different data sets

5. Using the pairings between a query segment and a
database window identified in the previous step, gen-
erate candidates and identify the pairs of similar sub-
sequences that answer the user’s query.

In the next few paragraphs, we describe each of these steps.
The first two steps are offline preprocessing operations.

The first step partitions each database sequence X into win-
dows of length λ/2, producing a total of 2/λ ∗ |X| windows
per sequence X. At the second step, we build a hierarchical
reference net.

The next three steps are performed online, for each user
query. Step 3 extracts from Q all possible segments of
lengths between λ/2 − λ0 and λ/2 + λ0. This produces at
most (2λ0 +1)∗ |Q| segments. At step 4 we conduct a range
query for each of those segments. Step 4 outputs a set of
pairs, each pair coupling a query segment with a database
window of length λ/2. Note that, it is possible that many
queries are executed at the same time on the index structure
in a single traversal.

Given a database sequence X, 2/λ∗ |X| windows of X are
stored in the reference net. Thus, each query subsequence
is compared to 2/λ ∗ |X| ∗ (1 − α) windows from X, where
α < 1 is the pruning ratio attained using the reference net.
Since there are at most (2λ0 + 1) ∗ |Q| query segments, and
λ is a constant, the total number of segment pairs between
Q and X that must be evaluated is:

2(2λ0 + 1)/λ ∗ (|X||Q|) ∗ (1 − α) → O(|X||Q|) (5)

In the experiments we show that the pruning ratio α of
the proposed reference net is better than the ratios attained
using cover tree and maximum variance.

The final step in our framework finds the pairs of similar
subsequences that actually answer the user’s query. These
pairs are identified based on the pairs of subsequences from
step 4. Let SSQa,b = (Qa, Qa+1, ..., Qb) and SSXc =
(Xc, Xc+1, ..., Xc+λ/2) be a pair of segments from step 4.
We must identify supersequences SQ of SSQa,b and SX
of SSXc that should be included in the query results. It
suffices to consider sequences SQ whose start points are from
a − λ/2 − λ0 to a, and whose endpoints are between b and
b + λ/2 + λ0. Similarly, it suffices to consider subsequences
SX whose starting points are between c − λ/2 and c, and
whose endpoints are between c + λ/2 and c + λ.

As described in Section 3.2, we consider three query types.
For the first type, step 5 checks all pairs of possible similar
subsequences and returns all the pairs that are indeed simi-
lar. However, this query type would generate a lot of results
according to the consistency property. For the second and

third type, only optimal results will be returned. Also, not
all pairs of possible similar subsequences need to be checked.

For query type II: Maximize |SX| > λ, Subject to ||SQ|
− |SX|| > λ0 and δ(SX, SQ) 6 ε, we have:

1. Conduct a range query with radius ε (step 4.) Get a
set of similar segments. If there is no similar segments,
there cannot be any similar subsequences.

2. Find the longest similar subsequences: If 〈xi, qj〉 and
〈xi+1, qj+1〉 are two pairs of segments in the results,
they can be concatenated. After concatenation, as-
sume the longest sequence of segments has length kλ/2,
then the longest similar subsequence has length no
longer than (k + 2)λ/2. Then, we start the verifica-
tion from the longest sequence of segments.

If k > 1, at least one pair of subsequences with length at
least kλ/2 will be similar. On the other hand, if k = 1, there
may not exist similar subsequences at all.

For query type III: Minimize δ(SX, SQ), Subject to ||SQ|
− |SX|| > λ0 and δ(SX, SQ) 6 ε, we have.

1. Use binary search to find the minimal ε that gives at
least a pair of similar segments in step 4.

2. Find the longest similar subsequences: Conduct step
(2) of query type II to get the longest similar sub-
sequences. If we find some results, the current ε is
optimal.

3. If there is no similar subsequence, increase ε by an
increment ǫinc and find similar segments. Then redo
step (2).

The increment ǫinc depends on the dataset and the dis-
tance function and can be a constant factor of the minimum
pairwise distance in the dataset.

8. EXPERIMENTS
In this section we present an experimental evaluation of

the reference net using different datasets and distance func-
tions. The goal of this evaluation is to demonstrate that the
proposed approach works efficiently for a number of diverse
datasets and distance functions.

The first dataset is a protein sequence dataset 1 (PRO-

TEINS). Proteins are strings with an alphabet of 20 and
the distance function is the Levenshtein (Edit) distance.

1http://www.ebi.ac.uk/uniprot/
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The protein sequences are partitioned into 100K total win-
dows of size l = 20. We also use two different time se-
ries datasets. One is the SONGS dataset, where we use
sequences of pitches of songs as time series from a collection
of songs [5] and the other is a trajectory (TRAJ) dataset
that was created using video sequences in a parking lot [37].
The SONGS dataset contains up to 20K windows and the
TRAJ dataset up to 100k windows both of size l = 20. For
the time series datasets we used two distance functions: the
Discrete Frechét Distance (DFD) and the ERP distance.

First, we show the distance distributions of these datasets
and distance functions in Figure 4. It is interesting to note
that for the SONGS dataset, since the pitch values range
between 0 and 11, the DFD distribution is very skewed and
most of the distances are between 2 and 5. On the other
hand, the ERP distance on the same dataset gives a distance
distribution that is more spread out. As we will see later this
can affect the index performance.

8.1 Space Overhead of Reference Net
Here we present the space overhead of the reference net

index for each dataset. In all our experiments we used a
default value for ǫ′ = 1. In Figure 5, we plot the space con-
sumption of the reference net for the PROTEINS dataset
under the Levenshtein distance. We show the number of
nodes in the index in thousands, when the number of in-
serted windows ranges from 10K to 100K. As we can see,
this increases linearly with the number of inserted windows.
We plot also the average size of each reference list in the net,
which is in general below 4. Note that the average size of
each list is actually the average number of parents for each
node. Therefore, the size of the reference net is about three
to four times more than the size of the cover tree where each
node has only one parent. Finally, the total size of the index
for 100K windows is about 2.9MBytes.

In Figure 6, we show the results for the SONGS dataset
using the two different distance functions DFD and ERP.
In the first plot we show the number of reference lists (top
three lines) and the size of the index in MBytes for different
number of windows ranging from 1K to 20K. Recall that
the DFD distance creates a very skewed distribution for this
dataset. Therefore, the number of references as well the size
of the index is much larger than using the ERP. The reason
is explained in the next plot, where we show the average
number of parents per window. As we can see, inserting

Figure 6: Space Overhead for SONGS

more and more windows increases the size of the reference
lists for DFD, since most new windows have small distance
with many other existing ones and the number of parents
increases. We have to mention that here we did not restrict
the size of the number of parents yet. On the other hand,
the ERP distance creates a more wide-spread distance dis-
tribution and the average number of parents remains small.
Then, we impose a constraint and limit the maximum num-
ber of lists that a given window can appear to nummax = 5
and we call this DFD-5. Notice that the average number of
parents per window is now below 5. The reason is that all
windows that can have more than 5 parents in the uncon-
strained case are limited to the have exactly 5. As we can
see, the size of the index now decreases and is similar to the
index created with the ERP distance.

Finally, in Figure 7, we show the results for the TRAJ

dataset. Since the variance of the distance distribution is
now higher for both distance functions, the reference net
has small average number of parents per window and the
size of the index is small. Actually, in that case the size of
the index is less than twice the size of the cover tree.

8.2 Query Evaluation
Here we present the query performance of reference net

(RN) compared against the cover tree (CT) and the refer-
ence based indexing that uses similar or larger space. For
the reference based method we use the Maximum Variance
(MV) approach to select references [36]. The main reason is
the we did not have enough training data for the Maximum
Pruning (MP) approach and actually it performed similarly



Figure 7: Space Overhead for TRAJ

Figure 8: Query Performance for PROTEINS

Figure 9: Query Performance for SONGS and DFD

with the MV for the queries that we used. The MV method
is also much faster to compute.

In Figure 8 we show the performance of all the indices
on the PROTEINS for range queries with different sizes.
Here we show the percentage of the distance computations
that we need to perform using the different indices against
the naive solution where we compute the distance of the
query with each window in the database. We can verify that
the reference net performs better than the cover tree as ex-
pected. Furthermore, the MV-5, which has the same space
requirement as the reference net, performs much worse. In-
creasing the size of the MV method by a factor of 10 (MV-
50), helps to improve the performance for very small ranges,
but when the range size increases a little bit (becomes 10%
of the maximum distance) the performance of MV-50 be-
comes similar to the reference net and then becomes worse.
Notice that the maximum distance is 20 and therefore the
10% means a distance of 2 in our case.

In the Figure 9, we see the results for the SONGS dataset
and the DFD distance. Notice that the RN-5 which is the
reference net with the constraint that nummax = 5 has simi-
lar performance with the unconstrained reference net. Again
the performance is better than the cover tree and the MV
with similar space. We got similar results with the ERP
distance for this dataset.

In Figure 10, we show the performance for the TRAJ

dataset and the ERP distance. In addition to the percent-
age of distance computations versus the naive solution we
show in the plot the pairwise distance distribution for this
dataset and distance function. In particular, for each query
range we show the distribution of the pairs of sequences that
have this distance. It is interesting to note that the perfor-
mance of the index methods follow the distribution of the
distance values. Furthermore, the cover tree and the refer-
ence net have similar performance since they have similar
space and structure. However, they perform much better
than the MV-20 methods which has 10 times more space.
We get similar results for the DFD distance as we can see
in Figure 11.

Overall, the reference net performs better than the cover
tree and much better than the MV approach when they use
the same space. Actually, sometimes it performs better than
the MV method even when we use 10 time more space than
the reference net.
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Figure 11: Query for TRAJ and DFD

Figure 12: Query Results for PROTEINS-10K

Finally, in Figure 12, we report some results on the num-
ber of unique windows that match at least one segment of
the query for the PROTEINS dataset. We generated ran-
dom queries of size similar to the smallest proteins in the
dataset and we run a number of queries for different val-
ues of ǫ. As expected, the number of unique windows in
the database that have a match with the query follows the
distribution of the distances. Notice that the maximum dis-
tance is 20 and therefore, when we set ǫ = 20 we get the full
database back. A more interesting result is the number of
consecutive windows (at least two consecutive windows) as a
percentage of the total number of windows. As we can see,
this number is much smaller than the number of unique sin-
gle matching windows. Therefore, for answering the query
Type II, we will start first from the consecutive windows and
if we succeed, we may not need to check any other matching
windows that are not consecutive. This shows that for more
interesting query types (II and III), we may have to check
a small number of candidate matches and we can perform
the refinement step very efficiently depending on the dataset
and the query.

9. CONCLUSIONS
We have presented a novel method for efficient subse-

quence matching in string and time series databases. The
key difference of the proposed method from existing ap-
proaches is that our method can work with a variety of
distance measures. As shown in the paper, the only re-
strictions that our method places on a distance measure is
that the distance should be metric and consistent. Actually,
it is important to note that the pruning method of Section 5
only requires consistency, but not metricity. We show that
the consistency property is obeyed by most popular distance
measures that have been proposed for sequences, and thus
requiring this property is a fairly mild restriction.

We have also presented a generic metric indexing struc-
ture, namely hierarchical reference net, which can be used
to further improve the efficiency of our method. We show
that, compared to alternative indexing methods such as
the cover tree and reference-based indexing, for compara-
ble space costs the reference net is faster than the alterna-
tives. Overall, our experiments demonstrate the ability of
our method to be applied to diverse data and diverse dis-
tance measures.
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APPENDIX

A. ALGORITHMS FOR REFERENCE NET

A.1 Insertion
The insertion algorithm starts from the top level of the

hierarchy of a reference net. When inserting a new object X,
initially C includes only the root reference and i is the level
where ǫ′ ∗ 2i−1 < δ(root, X) 6 ǫ′ ∗ 2i. Then the algorithm
keeps updating the candidate parents C and level i until
there is no parent in C. The algorithm allows to insert
one object into several lists at the same level. Insertion is
illustrated in algorithm 1.

Algorithm 1: Insertion(X)

Input: An object X, initial set of candidate parents C,
initial i

1 while ∃ R(i, j) ∈ C do

2 Find L(i + 1, k), where R(i, j) ∈ L(i + 1, k);
3 forall the S ∈ L(i, j)

S

L(i + 1, k) do

4 Compute i′, ǫ′ ∗ 2i
′−1 < δ(S, X) 6 ǫ′ ∗ 2i

′

;
5 Update i = min{i′} ;

6 Update C = {S | δ(S, X) 6 ǫ′ ∗ 2min{i
′} };

7 end

8 end

9 Insert X to L(i′, j) where R(i′, j) ∈ last C;

Notice that the insertion algorithm jumps to the lowest
level in each update. Because, if the inserted object is in the
list L(i, j), it cannot belong to any list L(i′, j′) in a higher
level (i′ > i). Hence, we try to go to the lowest possible
level to generate less candidates.

A.2 Deletion
The deletion algorithm consists of two phases: First, finds

the lists that the object belongs to. Then re-distributes the
object in its list. Similar to insertion algorithm, the dele-
tion algorithm also runs from the top level of a hierarchical
reference net. For all objects in the list of the deleting ob-
ject, when re-distributing them, they either belong to some
references in the same level of the deleting one, or belong to
the object whose lists the deleting object is in. Deletion is
illustrated in algorithm 2.

Algorithm 2: Deletion(X)

Input: An object X
1 Find X = R(i, j);
2 Remove X from L(i + 1, j0);
3 forall the R(i − 1, k) ∈ L(i, j) do

4 if ∄ j′, R(i − 1, k) ∈ L(i, j′) then

5 Insert R(i − 1, k) to every L(i + 1, j0);
6 end

7 end

A.3 Range Query
The range query takes a query Q and a distance ε, and

finds all object X, where δ(Q, X) 6 ε. We use lemma 4
and the triangular inequality to prune object in each level.
If δ(R(i, j), Q) + ǫ′ ∗ 2i 6 ε, for every object X in L(i, j),
δ(Q, X) 6 ε. If δ(R(i, j), Q) − ǫ′ ∗ 2i > ε, for every object
X in L(i, j), δ(Q, X) > ε. If δ(R(i, j), Q) + ǫ′ ∗ 2i+1

6 ε,
for every object X derived from R(i, j), δ(Q, X) 6 ε. If
δ(R(i, j), Q) − ǫ′ ∗2i+1 > ε, for every object X derived from
R(i, j), δ(Q, X) > ε. We actually maintain two sets: C and
P . C includes all object which are definitely in the results
of the range query. P includes all objects that are definitely
not in the result of the range query.

Algorithm 3: Range Query(Q, ε)

Input: A query Q and a distance ε
1 foreach R(i, j) ∈ Yi, i from r − 1 to 0 do

2 if R(i, j) /∈ C
S

P then

3 Compute d = δ(R(i, j), Q);

4 if d + ǫ′ ∗ 2i+1
6 ε then

5 Insert all X derived from R(i, j) to C;

6 else if d + ǫ′ ∗ 2i 6 ε then

7 Insert all X ∈ L(i, j) to C;
8 end

9 if d − ǫ′ ∗ 2i+1 > ε then

10 Insert all X derived from R(i, j) to P ;

11 else if d − ǫ′ ∗ 2i > ε then

12 Insert all X ∈ L(i, j) to P ;
13 end

14 end

15 end

16 Expand all objects in C;

Note that sometimes ǫ′ ∗ 2i < δ(R(i, j), Q) − ε 6 ǫ′ ∗ 2i+1

holds. And for some R(i − 1, k) ∈ L(i, j), δ(R(i − 1, k), Q)
− ε > ǫ′ ∗ 2i−1. If we prune all R(i − 1, k) ∈ L(i, j) at level
i, then we cannot prune all X derived from R(i − 1, k) at
level i − 1.


