

LEARNING HEALTH INFORMATION FROM FLOOR SENSOR DATA

WITHIN A PERVASIVE SMART HOME ENVIRONMENT

by

NICHOLAS BRENT BURNS

Presented to the Faculty of the Graduate School of

The University of Texas at Arlington in Partial Fulfillment

of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT ARLINGTON

September 2020

Supervising Committee:

Gergely Záruba, Supervising Professor

Manfred Huber, Co-Supervising Professor

Farhad Kamangar

Kathryn Daniel

ii

For Mom.

iii

ACKNOWLEDGEMENTS

I would like to thank my supervising and co-supervising professors Dr. Gergely Záruba

and Dr. Manfred Huber. Their welcoming nature made my graduate experience truly wonderful.

Dr. Záruba taught me how to solder properly, gave me a tremendous amount of electronic

knowledge, gave me a fun teaching opportunity, took me to faraway conferences, and informed

me that you do not bowl on Shabbos. The best mentor one could ask for.

Dr. Huber’s advice and direction was absolutely critical in navigating the more difficult

aspects of research. His endless knowledge of seemingly all computer science topics along with

his amazing personality might make him the most valuable resource at UTA. I am truly indebted

to your help, especially from the last year. Thank you for all you taught me.

The SmartCare project would not have been possible without the work of Dr. Kathryn

Daniel. Her behind the scenes work and organization was invaluable for the project. Thank you

for being a great and easy person to talk with.

I would like to thank Dr. Farhad Kamangar for offering his time and expertise on my

committee and providing extremely useful and interesting classes.

I would like to thank Dr. Darin Brezeale for introducing me to the CSE Department’s

undergraduate and graduate programs, teaching some of my favorite courses, and being a great

person to talk with.

I would also like to thank Bito Irie for all the great conversations, advice, and random run-

ins over the years.

Most importantly, I would like to thank my mom, Pam. Your never-ending support and

optimism makes everything worth it. I love you.

August 21, 2020

iv

ABSTRACT

LEARNING HEALTH INFORMATION FROM FLOOR SENSOR DATA

WITHIN A PERVASIVE SMART HOME ENVIRONMENT

Nicholas Brent Burns, Ph.D.

The University of Texas at Arlington, 2020

Supervising Professor: Gergely Záruba

Spatial and temporal gait analysis can provide useful measures for determining a person’s

state of health while also identifying deviations in day-to-day activity. The SmartCare project is a

multi-discipline health technologies project that aims to provide an unobtrusive and pervasive

system that provides in-home health monitoring for the elderly. This research work focuses on the

pressure-sensitive smart floor of the SmartCare project by using an experimental floor to develop

methods for future use on a floor deployed within a home.

This work presents a procedure to automatically calibrate a smart floor’s pressure sensors

without specialized physical effort. The calibration algorithm automatically filters out non-human

static weight and only retains weight generated by human activity. This technique is designed to

correctly translate sensor values to kg weight units even when direct independent access to the

pressure sensors is prohibited and when a shared tile floor sits above the sensor grid.

Using the calibrated sensor values, machine learning techniques are used to extract

individual contact points on a smart floor generated by a person’s walking cycle. This work

v

presents a three-step process of building and training neural network models of different

architectures (feedforward, convolutional, and autoencoder) to learn the unique non-linear

relationship between weight distribution, tile coupling, and physical floor variations.

Finally, this research work presents a recursive Hierarchical Clustering Analysis algorithm

that uses the individual contact points generated by the floor model to extract individual footfalls

of a person during a walking cycle. The footfall clusters are further grouped and segmented into

walking sequences. Spatial gait analysis is performed on the resulting footfall clusters within each

walking sequence to measure a variety of gait parameters. The results of the gait analysis are

compared to those generated by a high-resolution mat alternative showing comparable results for

most of the computed gait metrics.

vi

Table of Contents
ACKNOWLEDGEMENTS ... iii

ABSTRACT ... iv

LIST OF ILLUSTRATIONS .. x

LIST OF TABLES ... xiii

1 Overview ... 1

1.1 Introduction .. 1

1.2 Statement of Contributions... 2

1.3 Outline .. 3

2 BACKGROUND AND RELATED WORK .. 4

2.1 In-Home Healthcare Monitoring and Smart Floors ... 4

2.2 Gait Analysis .. 6

2.3 Hierarchical Clustering Analysis ... 7

2.4 Moving Average ... 12

2.4.1 Simple Moving Average ... 12

2.4.2 Exponential Moving Average ... 12

3 SMARTCARE APARTMENT INFRASTRUCTURE .. 14

3.1 Overview .. 14

3.2 Embedded Technologies .. 15

3.3 Apartment Smart Floor... 16

vii

4 Floor Sensor Calibration ... 18

4.1 Introduction .. 18

4.2 Lab Smart Floor ... 19

4.3 Calibration Notation, Model, and Sensor States .. 20

4.4 Calibration Process Overview .. 24

4.5 Finding Each Sensor’s Unloaded Standard Deviation ... 25

4.5.1 Hierarchical Clustering Analysis .. 25

4.5.2 Gaussian Mixture Model... 27

4.6 Determining Sensor State ... 29

4.6.1 Exponential Moving Average ... 29

4.7 Linear Regression to Find Calibration Term ... 35

5 Contact Point Extraction ... 37

5.1 Overview of Model .. 37

5.2 Training Data.. 39

5.3 Decoder .. 40

5.4 Convolutional Autoencoder ... 42

5.5 Encoder... 49

5.5.1 Converting Encoder Output to Contact Points.. 50

6 Clustering and Gait Analysis .. 52

6.1 Footfall Clustering.. 52

viii

6.1.1 Normalizing Contact Point Features ... 54

6.1.2 Recursive Hierarchical Clustering Analysis ... 55

6.1.3 Merging Dual Stance Contact Points .. 57

6.1.4 Segmenting into Gait Sequences .. 60

6.2 Gait Analysis .. 65

6.2.1 Foot Weight .. 65

6.2.2 Foot Length ... 65

6.2.3 Foot Angle .. 65

6.2.4 Step Length ... 67

6.2.5 Stride Length ... 68

6.2.6 Step Width .. 68

6.2.7 Step Time .. 69

6.2.8 Step Speed ... 69

6.2.9 Stride Time.. 69

6.2.10 Stride Speed .. 69

6.2.11 Gait Parameter Means and Variances ... 69

6.3 Future Work ... 71

7 High-Resolution Mat Study .. 72

7.1 Overview .. 72

7.2 Walking Procedure ... 73

ix

7.3 Results of High-Resolution Mat vs. Smart Floor ... 74

7.4 Preliminary Person Identification... 79

8 Conclusions and Future Work .. 82

8.1 Summary .. 82

8.2 Automatic Floor Sensor Calibration .. 82

8.3 Contact Point Extraction using Machine Learning Techniques 82

8.4 Footfall Clustering and Gait Analysis .. 83

8.5 Adapt Models for Apartment Floor Data ... 84

8.6 Incorporate Other Sensor Data from Apartment .. 84

9 References ... 86

x

LIST OF ILLUSTRATIONS

Figure 2.1: Gait Cycle Phases ... 6

Figure 2.2: Bird's Eye View of Footfalls for Gait Analysis .. 7

Figure 2.3: Different HCA Linkage Criteria ... 9

Figure 2.4: Dendrogram Best Cut Line Resulting in 7 Clusters ... 10

Figure 2.5: Scatter Plot of Raw Unclustered Contact Points .. 11

Figure 2.6: Scatter Plots of HCA Cluster Results of Different Linkage Types 11

Figure 2.7: Dendrograms of HCA Cluster Results of Different Linkage Types 11

Figure 2.8: Different EMA Alpha Smoothing Factors Applied to Noisy Data 13

Figure 3.1: SmartCare Apartment Images .. 15

Figure 3.2: SmartCare Apartment Tile and Floor Sensor Layout ... 16

Figure 3.3: Smart Floor Construction, Hardware, and Wiring ... 16

Figure 4.1: Lab Smart Floor for Experimentation .. 19

Figure 4.2: Lab Smart Floor Sensor Layout and Numbering Scheme .. 20

Figure 4.3: Theoretical Example of Translating Sensor Values s to Weight Values w 21

Figure 4.4: High-Level View of Calibration Process ... 24

Figure 4.5: Sample Sensor Under Unloaded Condition and Loaded Condition 26

Figure 4.6: Sample Sensor Values Before Clustering .. 26

Figure 4.7: Zoomed Image to Show Zero-Line Shift After Human Presence 26

Figure 4.8: Sample Sensor Values After Clustering (cluster 1 - orange, cluster 2 - blue) 27

Figure 4.9: Histogram Data for Sample Sensor (Modes 4 and 8) ... 28

Figure 4.10: GMM Output for Sample Sensor (5 found, 2 kept) ... 28

Figure 4.11: Different α Smoothing Factors on Sensor Data ... 30

xi

Figure 4.12: Stuck Sensor Condition .. 31

Figure 4.13: Incorrect State Labeling of a Still Person ... 32

Figure 5.1: High-Level View of Model Iterations .. 37

Figure 5.2: Single Contact Point Training Data Locations in Red ... 39

Figure 5.3: Decoder Training Data - 4x4 Sensor Area for Single Contact Point 40

Figure 5.4: Decoder Model Input and Output ... 41

Figure 5.5: Decoder Training Losses Over Time ... 42

Figure 5.6: 4x4 Sensor Kernel Convolving Over the Entire Floor ... 43

Figure 5.7: Detailed Architecture of the CAE .. 44

Figure 5.8: SIMO CAE Architecture with Regularization and Multiple Output Targets 47

Figure 5.9: CAE Training Losses Over Time ... 48

Figure 5.10: Detailed Architecture of the Extracted Encoder Model ... 49

Figure 5.11: Merging Incorrectly Split Contact Points from Encoder .. 50

Figure 5.12: Smart Floor vs High-Resolution Mat Contact Points ... 51

Figure 6.1: Unclustered Contact Points of an Entire Walking Sequence 53

Figure 6.2: Unclustered Contact Points of a Single Walking Pass ... 53

Figure 6.3: Contact Point Span Across X and Y Axes .. 54

Figure 6.4: Unclustered Contact Points of a Single Walking Pass ... 56

Figure 6.5: Dendrogram of HCA Results ... 56

Figure 6.6: Footfall Clusters After HCA (7 Found) ... 57

Figure 6.7: Merging Dual Stance Points within Single Footfall Clusters..................................... 58

Figure 6.8: LOP Vector and Angle Visualization ... 61

Figure 6.9: Gait Sequence of Straight and Turn Data ... 62

xii

Figure 6.10: Foot Clusters before Gait Sequence Segmentation .. 62

Figure 6.11: Walking Sequence after Gait Sequence Segmentation .. 63

Figure 6.12: Person Walking Left to Right with Foot Type Labels ... 64

Figure 6.13: PCA and Foot Angle (theta) Calculations .. 66

Figure 6.14: Sequential Pressure Profile of a Foot Cluster's Contact Points over Time 66

Figure 6.15: Step Length Calculation ... 67

Figure 6.16: Stride Length Calculation ... 68

Figure 6.17: Single Pass Showing Gait Means ... 70

Figure 6.18: Entire Walking Sequence (with turns removed) Showing Gait Means.................... 70

Figure 6.19: Future Person Separation and Identification .. 71

Figure 7.1: ProtoKinetics Zeno Walkway Mat and PKMAS Software .. 72

Figure 7.2: Walking Sequences on Smart Floor with Outline of High-Resolution Mat 73

Figure 7.3: Sample of Smart Floor vs High-Resolution Mat Contact Points and Foot Clusters .. 73

Figure 7.4: t-SNE Plot of k-NN Training Samples with Subject ID Labels 80

Figure 7.5: k-NN Classification Results Graph .. 81

xiii

LIST OF TABLES

Table 2-1: Clustering Distance Metrics .. 8

Table 7-1: PKMAS Mat Gait Means (single pass) ... 74

Table 7-2: Smart Floor Gait Means (single pass) ... 75

Table 7-3: Absolute Errors Between PKMAS Mat and Smart Floor (single vs. single pass) 75

Table 7-4: Average MAE for Each Gait Parameter (single pass vs. single pass) 76

Table 7-5: Smart Floor Gait Means (entire floor) ... 76

Table 7-6: Absolute Errors Between PKMAS Mat and Smart Floor (single vs. entire floor) 77

Table 7-7: Average MAE for Each Gait Parameter (single pass vs. entire floor) 77

Table 7-8: Smart Floor Gait Variances (single pass only) .. 78

Table 7-9: Smart Floor Gait Variances (entire floor) ... 78

Table 7-10: k-NN Data Samples and Labels ... 79

Table 7-11: k-NN Classification Results .. 81

1

1 Overview

1.1 Introduction

Advances in medical treatment and technology have increased the average life expectancy

considerably across the developed world, resulting in a larger elderly population. Falling is a

significant health risk for those over the age of 65. How well a person walks, and thus their gait

characteristics, can be a good indicator of how likely they might be to experience a tragic fall in

the future. Gait analysis also has applications in detecting early signs or diagnosing various

diseases and conditions [1]. Traditionally gait analysis was performed by a health professional

visually and in-person with a patient. Advances in computing and sensing technology have

introduced a more analytical and consistent measurement of how well a person walks. These

technologies range from high-resolution floor mats, video/image processing, depth camera

analysis, and wearable sensors. However, these are rarely used in the patient’s home but rather in

health facilities in a highly controlled environment. Embedded pervasive systems integrated within

the home of an older individual could offer better insight into their gait characteristics and overall

health. Not only could these in-home systems detect obvious emergencies, they could offer

predictive and preventative services to avoid serious health events in the future.

 The SmartCare project is a multi-discipline health technologies project between the

Nursing and Computer Science and Engineering departments at the University of Texas at

Arlington. SmartCare offers an unobtrusive and pervasive system that provides in-home health

monitoring for the elderly. Using a range of embedded sensing technologies along with hardware,

software, and communication infrastructure within one’s home allows continuous health

monitoring and alleviates the burden on older individuals in providing reliable activity and health

information to care providers and loved ones. The SmartCare system can provide early diagnosis

2

support for medical professionals, continuous activity monitoring, deviation detection, and self-

management assistance in the form of home automation and medication intake reminders.

1.2 Statement of Contributions

The specific research in this dissertation is at a system level and includes hardware,

middleware, system integration, and advanced software aspects to address the question of how to

measure the quality of one’s gait in their own home in a non-obtrusive, passive, and effective

manner. The specific contributions detailed in this dissertation regard smart floor data calibration,

extraction, and learning.

The first contribution is an automatic calibration technique for grouped sensors of a smart

floor that does not require rigid and specific physical effort of an expert technician. Rather, a

software approach is introduced here that utilizes normal everyday walking data to calibrate the

undefined units of pressure sensors into known kg units to make all sensors across the entire floor

uniformly reliable in measuring weight. The calibration technique also automatically detects and

accounts for non-human static weight that can be filtered out with only human weight and activity

remaining. Due to the calibrated sensor units not being sensitive to everchanging static weight on

the floor, this calibration technique is useful for a home fitted with this smart floor where furniture

and other objects may be rearranged over time. No special accommodations are needed for the

smart floor within a home; it is treated as a normal unobtrusive tile floor.

The second contribution is a multi-stage neural network model that extracts single contact

points from a person’s footfalls using the calibrated sensor units. Even in the low-resolution

environment of the smart floor (1-sqft sensor spacing) and in the presence of multiple contact

points for that person or the presence of multiple individuals, the model can accurately extract

3

individual moments of foot contact at any location across the tiled smart floor. The model learns

and accounts for the unique imperfections associated with shifting and flexing tile movement

which rests upon the floor sensors. The model learns the non-linear relationships and how weight

spreads (pressure profiles) across all areas of the smart floor.

The final contribution is a method to cluster and segment a person’s individual footfalls

using the model’s single contact point output data. Using a recursive Hierarchical Clustering

Analysis (HCA) technique, sequential footfalls are extracted while removing outlier contact points.

The resulting footfall clusters are further grouped and sorted into walking segments to allow the

calculation and measurement of various gait parameters of a person. The gait and walking features

are used to classify and identify different people from one another.

1.3 Outline

Chapter 2 discusses the current state of in-home healthcare methods and the uniqueness of

SmartCare’s smart floor while also providing background for key methods and algorithms used

throughout this dissertation. Chapter 3 provides the details of the SmartCare project’s sensor-rich

nursing home apartment. Chapter 4 describes the process of floor sensor calibration. Chapter 5

discusses the model architecture and procedure for extracting a person’s contact points when

walking across the smart floor. Chapter 6 details how individual footfalls are clustered over time

and how the extracted footfalls are used in gait analysis. Chapter 7 compares the accuracy of the

gait measurements from the low-resolution smart floor against those of a high-resolution walking

mat and demonstrates a preliminary effort of person identification (classification) using smart floor

gait data. Chapter 8 summarizes the conclusions of this work and describes how these methods

could be used in the future for application within the SmartCare apartment.

4

2 BACKGROUND AND RELATED WORK

2.1 In-Home Healthcare Monitoring and Smart Floors

Two prominent research projects regarding smart home environments for the elderly are

ongoing at the University of Missouri’s AgingMO Tiger Place [2] and Washington State

University’s Center for Advanced Studies in Adaptive Systems (CASAS) [3]. These two projects

have produced gait and activity studies collecting data via personal scoring, video analysis, image

processing, IR sensors, wearable sensors, motion sensors, and pressure floor mats [4] [5].

There are three main tools used to generate data for gait analysis: video recording, wearable

sensors, and floor sensors. Past studies have used shallow [6] and deep learning [1] [7] [8]

techniques to extract and learn gait parameters from one or a combination of these three data

collection methods. In particular, Support Vector Machines, Linear Discriminant Analysis,

Random Forest, Convolutional Neural Networks, Recurrent Neural Networks, Long Short-Term

Memory Networks, and Deep Belief Networks have been used in these prior projects. These papers

offer great insight into clever methods of fusing different data collection mediums to improve the

accuracy of their model’s output in detecting gait abnormalities and person identification.

There are three main technologies used for capturing walking data from a smart floor

environment: 1) optical and visual, 2) capacitive touch, and 3) pressure measurement. An optical

method such as GravitySpace extracts detailed location data and movements but does not provide

pressure information and thus cannot calculate weight or impact forces of a person’s walking

pattern [9]. While capacitive methods such as SensFloor provide accurate location data with simple

integration into existing flooring, it also suffers from the lack of pressure and weight sensing [10].

Pressure-based smart floors, such as the ASU Pressure Mat Floor, offer high-resolution 1cmx1cm

data [11]. While the sensing technology can provide detailed information of individual footfalls

5

and walking patterns, it is prohibitively expensive, non-scalable, susceptible to damage, and not

suitable for deployment over an entire home. A low-resolution pressure-sensitive smart floor such

as the EMFi floor provides a more reasonable cost by only having a resolution of 30cmx30cm [12]

[13]. However, due to the flooring structure above the sensing materials and how sensors interact,

the system cannot resolve center of pressure readings and therefore cannot provide reliable

measurements of gait and balance analysis. Using a rigid flooring surface can help resolve the need

for pressure distribution variations required to calculate center of pressures and walking profiles.

The uniqueness of the SmartCare project, in terms of the floor, is its size, coverage, rigid tile

surface, and low-cost. Other floor sensor projects either use off-the-shelf high-resolution mats or

small custom-built smart floors that only exist in labs. Deploying enough high-resolution mats to

cover the entire area of the SmartCare apartment is cost prohibitive. While the SmartCare floor

requires specialized knowledge and labor to create and install, the price tag is magnitudes cheaper

than purchasing enough high-resolution mats to cover an equal amount of space. Also, the large

sensor-array floor is deployed within an actual living environment, not just a lab solely used for

experiments. The smart floor captures real-time data of individuals living their normal lives within

a typical apartment. This helps eliminate or reduce the white coat hypertension effect someone

may experience if asked to walk on a floor subsection within a lab or health facility while being

analyzed.

Initial SmartCare floor research has already began with the works of Suhas Reddy [14] and

Oluwatosin Oluwadare [15]. Their work involved extracting gait parameters from the smart floor

for general health monitoring, person identification, and anomaly detection.

6

2.2 Gait Analysis

Human gait analysis is the study of how a person walks. The repetitive walking pattern a

person performs for locomotion is referred to as the gait cycle. The gait cycle consists of two

separate phases: the stance phase and the swing phase [16]. The stance phase contains five actions:

heel-strike, foot-flat, midstance, heel-off, and toe-off. The swing phase contains four actions: pre-

swing, initial swing, mid-swing, and terminal swing.

Figure 2.1: Gait Cycle Phases [17]

From a spatial point of view, gait parameters can be measured that relate to footfall

locations. A person’s left and right step length, step width, stride length, and foot/step angles can

be calculated. Also, parameters involving time can be learned such as step time, stride time, step

speed, and stride speed. These spatial parameters are not easily obtainable when observing a

person’s gait from the perspective shown in Figure 2.1. Therefore, some type of sensing mat or

floor is required to accurately capture these gait features.

7

Figure 2.2: Bird's Eye View of Footfalls for Gait Analysis [18]

2.3 Hierarchical Clustering Analysis

Hierarchical Clustering Analysis (HCA) is an unsupervised method of grouping data points

into a hierarchy of clusters [19]. HCA investigates the similarity of training samples and their

features. There are no labels associated with the sample data points and they can be of any

dimension. HCA is a great tool for inspecting unlabeled data and discovering similarity

relationships amongst data. An advantage of HCA over another popular clustering method, k-

means, is that it is not required to specify the number of clusters to be found.

There are two main strategies for HCA: agglomerative and divisive. Agglomerative is the

“bottom-up” approach where each data sample begins in its own cluster and throughout the

algorithm clusters are merged repeatedly until only a single large cluster remains. Divisive is the

“top-down” approach where all samples are grouped within a single cluster at the start and

throughout the process are split continually until every sample point belongs within its own unique

cluster. The results of HCA can be viewed in the form of a dendrogram to visually and analytically

evaluate how training sample points clustered together throughout the procedure.

8

 To determine the similarity between sample points or clusters, a distance metric must be

specified. Commonly used measures include Euclidean (l2 norm), Manhattan (l1 norm), and Cosine

distances [20].

Name Formula

Euclidean Distance 𝐷(𝐴, 𝐵) = √∑(𝑎𝑖 − 𝑏𝑖)
2

𝑖

Manhattan Distance 𝐷(𝐴, 𝐵) = ∑|𝑎𝑖 − 𝑏𝑖|

𝑖

Cosine Similarity 𝐷(𝐴, 𝐵) =
𝐴 ∙ 𝐵

||𝐴|| ||𝐵||

Table 2-1: Clustering Distance Metrics

Regardless of which distance metric is used to compare data points, a specific method must

be chosen of how to compare a set of points (cluster) to another, generally referred to as a linkage

type. Some of the most common methods are single linkage, average linkage, complete linkage,

and ward linkage [21]. When using single linkage, also called minimum linkage, the distance

between two clusters is the shortest distance between two data points from the clusters, one from

each. Using single linkage can result in the chaining of clustered data points. Depending on the

application, this chaining effect can be beneficial when dealing with sequential temporal data (i.e.

footstep data). With average linkage, the distance between two clusters is the unweighted mean

distance of every data point from one cluster to every data point of another. Complete linkage, also

called maximum linkage, defines the distance between two clusters as the longest distance between

any two data points in the clusters. Ward linkage aims to minimize the variance within each

cluster’s set of points; how much the set of points vary from the mean of the cluster.

9

Figure 2.3: Different HCA Linkage Criteria

 When HCA is performed, the entire linkage or distance matrix is computed. When viewing

the resulting hierarchy, it is up to the individual to decide how many clusters best represent the

desired result. When viewing the results through a dendrogram plot, a horizontal “cut” along the

tree can be made at any height giving a potential cluster range of n to 2. With agglomerative,

bottom-up clustering, any cluster merges above the cut line are ignored while only retaining the

clusters formed below. The decision of where to place this cut line can be handcrafted or based off

some strict automatic method. Since HCA is generally used for data exploration, there is not a

definitive method for deciding where the “best cut” should be placed. A common method, when

visualizing the linkage matrix as a dendrogram, is to find the max vertical distance between any

cluster merger throughout the entire hierarchy. The middle y-axis value is found within the vertical

distance span and becomes the final “best cut” line. Figure 2.4 contains a visual example.

A B

Single (minimum) Linkage

A B

Average Linkage

A B

Complete (maximum) Linkage

A B

Ward Linkage

Var(AB) vs Var(A) + Var(B)

10

Figure 2.4: Dendrogram Best Cut Line Resulting in 7 Clusters

Figure 2.5 shows a scatter plot of contact point walking data. The data is not clustered and

only contains the spatial features of x and y clearly showing six unique footsteps. Using the “best

cut” method described previously, Figure 2.6 andFigure 2.7 show the results of agglomerative

hierarchical clustering using the Euclidean distance metric on the x and y features with four

different linkage types: single, average, complete, and Ward. Average, complete, and Ward all

resulted in two final clusters. Single linkage, in this instance, resulted in the desired six clusters

due to the chaining effect of joining points and clusters of the shortest distance. If a time feature

was added for each contact point the single linkage method might perform even more reliably in

the case of a person walking back to the same location over time.

Threshold

Cutoff

Max Vertical

Distance Between

Any Merge

11

Figure 2.5: Scatter Plot of Raw Unclustered Contact Points

Figure 2.6: Scatter Plots of HCA Cluster Results of Different Linkage Types (color = label)

Figure 2.7: Dendrograms of HCA Cluster Results of Different Linkage Types (color = label)

Single Average

Complete Ward

Single Average

Complete Ward

12

2.4 Moving Average

Calculating the moving average of temporal data can help smooth out short-term

fluctuations, spikes, and valleys [22]. By removing this noise, the data’s general trend can be more

easily understood. Techniques differ in terms of weighting schemes, window size, and cumulative

contributions.

2.4.1 Simple Moving Average

A simple moving average (SMA) or sliding window average computes the unweighted

mean of n sequential samples, with n being the size of the window. Since all sample values are

unweighted, they each have an equal contribution to the SMA value. The window can be before,

after, or equally split about the central value in question.

1

𝑛
∑𝑥𝑖

𝑛−1

𝑖=0

2.4.2 Exponential Moving Average

An exponential moving average (EMA) applies a weighting factor and incorporates the

previously calculated EMA. The value of the weighting or smoothing factor α determines the

smoothness of the average trend and how much influence past averages have on the new

calculation. A higher α decreases past observation influence faster, while a lower α allows their

influence to linger longer and results in a smoother result. Also, a higher α can allow signal noise

to have a greater influence. The first EMA calculated is simply the first data sample’s value.

𝐸𝑀𝐴𝑡 ← {
𝑥0 𝑖𝑓 𝑡 = 0

𝛼𝑥𝑡 + (1 − 𝛼)𝐸𝑀𝐴𝑡−1 𝑖𝑓 𝑡 > 0

13

Figure 2.8: Different EMA Alpha Smoothing Factors Applied to Noisy Data

14

3 SMARTCARE APARTMENT INFRASTRUCTURE

3.1 Overview

The SmartCare apartment is located at Lakewood Village Retirement Community in Fort

Worth, Texas. The interior has the appearance of a normal apartment with the latest high-end

appliances and fixtures, but embedded under the floor, in the ceiling, and in the walls are various

sensing and automation technologies to provide 24/7 health monitoring for the elderly. It is a live-

in laboratory to run various experiments and gather short-term and long-term data. The apartment’s

unveiling was in May 2015.

The apartment infrastructure was designed and constructed under the supervision of Dr.

Záruba, Dr. Huber, and Dr. Daniel. Throughout this work, Nicholas Burns was instrumentally

involved in all aspects, including cleaning, construction, product research, hardware and sensor

installation, software design, and networking which made the smart apartment a reality.

From the recruitment efforts of Dr. Daniel, residents of the Lakewood Village Retirement

Community have volunteered to live in our SmartCare apartment. From May 2017 to May 2019

various single and coupled residents have stayed in our apartment for various lengths of time;

usually about one month. During these stays we have recorded 24/7 data from the smart floor, IR

sensors, door sensors, water usage, electricity activity, etc. This semi long-form data will hopefully

provide insight into building a model of a resident’s activities and learning health information. We

also had a resident stay twice at our apartment with a significant time gap in between, hopefully

this data can identify any differences this resident underwent over that period.

15

3.2 Embedded Technologies

The apartment’s technologies include a smart pressure-sensitive floor, Z-Wave sensors and

actuators, home automation devices, high-resolution bed mats, water/electricity monitoring and

control all fed to a computer system that runs custom-built software to manage the hundreds of

sensors and data collection. The hardware, software, visualization, and infrastructure details are

explained in our previous papers [23] [24]. The visualization in [24] was through the hard work of

Peter Sassaman.

Figure 3.1: SmartCare Apartment Interior, Visualization, System Architecture Overview, and Computer Room

16

3.3 Apartment Smart Floor

Figure 3.2: SmartCare Apartment Tile and Floor Sensor Layout

The physical construction of the apartment floor and the lab floor (described in Section 4)

was completed by Dr. Gergely Záruba, Dr. Manfred Huber, and Nicholas Burns. Embedded

circuitry, embedded software, middleware software, high-level software, and networking

connectivity were designed and built by Drs. Záruba and Huber.

Figure 3.3: Smart Floor Construction, Hardware, and Wiring

17

The entire SmartCare apartment is equipped with a pressure sensitive smart floor with a

resolution of about one pressure sensor per square foot. The choice for pressure sensors was the

Tekscan FlexiForce pressure sensor [25]. The floor is built on disc-like sensors with rubber

padding deployed in a 1-sqft square matrix configuration. On top of these sensors we have a click-

together ceramic tile rigid flooring structure that can bend along the tile lines. Thus, each single

tile is floating over four Tekscan sensors in the sensor-matrix. These tiles are rigid enough to

handle people and object weights usually encountered in a home by being supported only by their

corners. The floor is built in 4ft by 8ft sections with each having a custom designed acquisition

board using a PIC24FJ64GA004 microcontroller recording the readings of 32 sensors at 25Hz.

Data from the acquisition boards is relayed via BeagleBone Black computers (BBB) [26] deployed

in the walls of the apartment, which in turn preprocess and relay the data to the central server using

Ethernet. The central SmartCare server is responsible for ensuring that all smart floor acquisition

boards and their controlling BBBs are running correctly with the appropriate servers.

18

4 Floor Sensor Calibration

4.1 Introduction

The goal of sensor calibration is to have all sensors generate a consistent output regardless

of sensor differences, imperfections, tile coupling, and location. The calibration process is the same

for all sensors, but each sensor will have unique parameters learned from the process. Calibration

takes each sensor’s raw value and translates it to a known unit of weight measurement (lb or kg).

Having each sensor properly calibrated is crucial when a Convolutional Neural Network (CNN) is

applied across the entire floor for contact point separation since the CNN expects to treat every

subsection of the floor equally. A person’s weight and weight distribution should be interpreted

the same way no matter which part of the floor they are standing or walking on.

Traditional sensor calibration consists of taking direct measurements of the lone sensor

under known load conditions (i.e. known kg weights) and using this data to establish the load

curves for the specific sensor. However, this is difficult for this smart floor since the flooring

material produces and distributes loads among multiple sensors and makes it thus impossible to

produce specific known loads on individual sensors. Moreover, movement and shift in flooring

materials as well as sensor characteristics can lead to changes in the base values of unloaded

sensors and yield hysteresis effects where loading (or unloading) a sensor temporarily changes the

baseline for that sensor. A second problem that makes calibration in a live-in environment difficult

is shifting furniture and objects that can change the baseline when the floor is to be used for gait

parameter estimation.

To address these difficulties, an automatic calibration approach is needed that can estimate

sensor calibration values for the entire floor without the need for targeted single sensor calibration

actions but rather from common use data. Additionally, this approach should continuously readjust

19

zero load estimates to address sensor drift, hysteresis, and changes in passive (object) loads in the

environment. For this, an approach is proposed here that uses a person’s (or multiple persons’)

arbitrary walking data to estimate load and no-load conditions for sensors and subsequently

continuously re-estimates zero-load conditions and sensor sensitivity parameters.

4.2 Lab Smart Floor

A smaller version of the apartment’s smart floor was built in our ASSIST Lab (UTA – ERB

102) to locally run experiments and develop software. The lab floor was constructed using the

same hardware and methodology consisting of 128 Tekscan FlexiForce pressure sensors covering

a 16ft x 8ft area covered by 128 snap-in ceramic tiles (same as apartment). Each pressure sensor

has adhesive rubber padding on both sides placed under each intersection of four tile corners

(unless it is the bottom or right floor edge). The upper and left edges of the floor have sensorless

rubber strips for tile stability that is of the same thickness as the rubber applied to each sensor.

Figure 4.1: Lab Smart Floor for Experimentation

20

Figure 4.2: Lab Smart Floor Sensor Layout and Numbering Scheme

4.3 Calibration Notation, Model, and Sensor States

The following notation for key terms is used for the calibration process regarding the lab

floor’s specific layout and size:

• i sensor index: 0…127

• t time index

• si raw uncalibrated ADC value for sensor i: 0…1023

• zi zero offset term for sensor i: non-negative, variable over time

• ai calibration coefficient for sensor i: non-negative, constant over time

• wi calibrated weight value for sensor i in kilograms

Using a top-left origin approach, the sensor indexing i for the 128 sensors of the lab floor

begins at the top left corner and ends at the bottom right corner. The floor sensor’s data is collected

at 25Hz, therefore each time index t represents 1/25 of a second. The embedded circuity and

microcontroller samples each pressure sensor, performs a 10-bit analog-to-digital conversion

(ADC), and returns a whole number integer value ranging from 0 to 1023. This raw sensor value

𝑠𝑖
(𝑡)

 is what must be calibrated and translated to known weight units (kg). Through experimentation

21

the pressure sensor exhibited linear behavior when increasing, known weights were applied, and

outputted a value of 0 when no weight was applied (0 kg).

A traditional linear approach for converting/calibrating a value of unknown units to one of

known units (i.e. kg) is to use the linear equation of defining a line:

𝑦 = 𝑚𝑥 + 𝑏

Specifically converting ADC values (s) to weight in kg (w) for the lab floor:

𝑤 = 𝑎𝑠 + 𝑏

where the b offset could account for constant weight on the sensor (i.e. tiles or furniture)

and the a scalar explains the linear relationship between w and s. Simple linear regression

techniques such as ordinary least squares (OLS) could be used to calculate the a and b values with

only a few samples of ADC values s and known weights w.

Figure 4.3: Theoretical Example of Translating Sensor Values s to Weight Values w

While this approach is feasible for calibrating standalone sensors independently it is too

limited for an interconnected sensor grid underneath a shifting tile floor. The weight to be captured

on top of the floor spreads across multiple tiles and sensors. Also, the tile coupling, shifting, and

Constant

b offset

(tile weight)

w = 0.25s + 40

22

flexing over time in the x, y, or z directions can shift the constant tile weight offset b each sensor

experiences. Constant recalibration would have to be applied to find the new updated a and b

values to account for any day-to-day tile floor changes.

A more practical approach for this floor system would be to automatically remove the

constant non-human unloaded weight seen by the sensor so only a single term a is required to be

calculated. The term unloaded weight describes sources of weight we are not interested in knowing

or capturing. This ever-changing weight could be tile, furniture, or temporary non-human objects.

For example, if a 90 kg person’s whole home is fitted with this floor tile sensor system, standing

freely in the kitchen should yield the same weight calculation result as when they are sitting on a

couch in the living room. The constant weight of the couch should be filtered out so only the

person’s weight is captured and converted to kg. To achieve this, a z offset term needs to be

subtracted from the ADC sensor value s over time. This z value fluctuates to account for constant

weight being added or removed on or near the sensor in question. Once the sensor’s s value has

had its z offset removed, linear regression in the form of OLS can be applied to learn each sensor’s

a value. The calibrated weight w experienced by the single sensor i at time t is expressed as:

𝑤𝑖
(𝑡)
= 𝑎𝑖(𝑠𝑖

(𝑡)
− 𝑧𝑖

(𝑡)
)

Since no sensor is truly independent once it has been placed underneath the tile floor, the

calibrated weight experienced by the entire lab floor at time t is expressed as:

∑𝑤𝑖
(𝑡)

127

𝑖=0

= ∑𝑎𝑖(𝑠𝑖
(𝑡)
− 𝑧𝑖

(𝑡)
)

127

𝑖=0

= 𝑤𝑓𝑙𝑜𝑜𝑟
(𝑡)

23

Each sensor’s state at any time t can be categorized as one of the following:

𝑠𝑡𝑎𝑡𝑒𝑖
(𝑡) ← {

𝐿𝑜𝑎𝑑𝑒𝑑 + if sensor value is significantly 𝐚𝐛𝐨𝐯𝐞 current 𝑧 offset
𝑈𝑛𝑙𝑜𝑎𝑑𝑒𝑑 if sensor value is 𝐰𝐢𝐭𝐡𝐢𝐧 𝑧 offset threshold range
𝐿𝑜𝑎𝑑𝑒𝑑 − if sensor value is significantly 𝐛𝐞𝐥𝐨𝐰 current 𝑧 offset

The Unloaded state can be interpreted as no person is contributing to the weight observed

by the sensor, only static, non-human objects affect the sensor’s value. Loaded+ signifies a human

weight has caused an increase in the sensor value s and should not be filtered out or lumped

together with the z offset. Loaded- is a momentary state where the tile’s coupling and the elasticity

of the rubber surrounding the sensors causes the sensor to read a lower value than the current z

offset level. These are seen as brief negative weights due to the impact forces of a person walking

on the tile-covered smart floor. This state’s importance is to more accurately calculate the a scalar

during the linear regression process for each sensor during calibration and prevent under or over

shooting of the final weight value w.

24

4.4 Calibration Process Overview

The smart floor sensor calibration process consists of three main steps:

1. Find each sensor’s unloaded standard deviation σi used for removing zero offsets

and determining sensor states during training and testing

2. Find each sensor’s weight coefficient ai that performs the linear transformation

from undefined raw sensor values si to kg weight units

3. Use σi and ai with new incoming floor data to calibrate and translate sensor values

into wi units

Figure 4.4: High-Level View of Calibration Process

Training Testing

1-Find σi 2-Find a
i
 3-Calibrate New Data

HCA

Histogram

GMM

σi

EMA

Sensor States and zi

OLS

a
i

EMA

Sensor States and zi

w = a(s-z)

Calibrated

Sensor Values

wi

=

s
i
 s

i

s
i

25

4.5 Finding Each Sensor’s Unloaded Standard Deviation

The first step is to discover how each sensor behaves under unloaded conditions.

Specifically, how much does each sensor’s value s fluctuate under normal conditions when the

only present weight sources are the tile and non-human static objects on the floor. These

fluctuations in the sensor value could be due to ADC noise, resolution, temperature, or nearby

vibration. To describe this fluctuation range, each sensor’s unloaded standard deviation σi is

calculated. To find the σi for each sensor, a specific training dataset was recorded where a person

of known weight walked across the entire lab floor and where each sensor experienced equal

amounts of loaded and unloaded times.

4.5.1 Hierarchical Clustering Analysis

Hierarchical Clustering Analysis (HCA) was performed on all 128 sensors in order to split

data into two groups: Unloaded or Loaded. The groupings are not the same sensor states described

previously; those states will be calculated later. Unloaded refers to times when the sensor is under

normal conditions and is not experiencing any human influence. Loaded refers to a sensor that is

currently being influenced by human weight.

HCA in the form of Agglomerative Clustering was performed on each sensor’s raw 1D si

data with the parameters to find two clusters using ward linkage. Since the standard deviation of

sensors is the desired result, ward was chosen as the linkage criterion because it minimizes the

variance between data points when deciding whether they should be clustered. Of the two resulting

clusters, the cluster with the smaller si mean was labeled unloaded. Any of the few data points

incorrectly clustered, as evident in Figure 4.8, will be filtered out in the subsequent Gaussian

Mixture Model step.

26

Figure 4.5: Sample Sensor (X) Under Unloaded Condition (left) and Loaded Condition (right)

Sensor Colors: Green = Unloaded, Red = Loaded+, Blue = Loaded-

Figure 4.6: Sample Sensor Values Before Clustering

Figure 4.7: Zoomed Image to Show Zero-Line Shift After Human Presence

27

Figure 4.8: Sample Sensor Values After Clustering (cluster 1 - orange, cluster 2 - blue)

4.5.2 Gaussian Mixture Model

After experimentation and observation, an assumption was made that the unloaded sensor

readings are normally distributed, and fluctuations resemble a Gaussian distribution. However, a

single Gaussian cannot fully describe a sensor’s activity when no human weight is present since

the shifting tile and the addition of static weight might cause the zero-line to shift up or down. As

shown in Figure 4.7, the zero-line shifted down after a human walked over the sensor area. The

steady zero weight readings both before and after being loaded are valid and should be included

in finding the unloaded standard deviation σi, hence the unloaded sensor times are seen as a

mixture or combination of multiple Gaussian distributions when looking at the entire dataset.

To find the most common or frequent values each sensor outputs during unloaded times

histogram data was generated for the smaller mean unloaded cluster. To make the integer discrete

values of the histogram bin edges and values more continuous before performing a Gaussian

Mixture Model (GMM) operation, “mini-gaussians” were calculated for each histogram bin to

smooth out the data, essentially turning the stark histogram plot into a more continuous and

smoother scatter plot.

28

Figure 4.9: Histogram Data for Sample Sensor (Modes 4 and 8)

Using the perturbed histogram data, a GMM operation, using the Expectation-

Maximization algorithm, was performed with the covariance type parameter set to spherical since

each resulting Gaussian component’s variance is deemed independent [27]. The GMM was run

multiple times with different numbers of mixture components (1 through 5) to discover which

number of Gaussians best explain the unloaded data. The GMM run with the best Akaike

Information Criterion (AIC score) was deemed the best model [28].

Figure 4.10: GMM Output for Sample Sensor (5 found, 2 kept)

w1

σ1

w2

σ2

29

Within the final GMM model any of the mixture models that contributed less than 10% to

overall data were discarded. This removes outliers and any incorrectly labeled data points that

occurred during HCA. The remaining mixture components’ weights wn were rescaled to sum to

1.0 and multiplied by their own standard deviations σn to compute the final unloaded standard

deviation σi for every sensor.

𝜎𝑖 =∑𝑤𝑛 ∗ 𝜎𝑛

4.6 Determining Sensor State

Using the sensor calibration formula 𝑤𝑖
(𝑡)
= 𝑎𝑖(𝑠𝑖

(𝑡)
− 𝑧𝑖

(𝑡)
), each sensor’s zero offset term

zi needs to be continually updated to account for natural zero drift to ensure the proper amount of

static zero weight is removed from the si term before applying the calibration coefficient ai. The

role of each sensor’s unloaded standard deviation σi is to determine whether a potential new zi

value is likely a true unloaded moment or has deviated too far beyond normal zero ranges deeming

it a loaded event. Each sensor’s state over time 𝑠𝑡𝑎𝑡𝑒𝑖
(𝑡)

 must be determined using a moving

average of sensor values to help smooth out any unforeseen short-term fluctuations or outliers.

4.6.1 Exponential Moving Average

Within the Exponential Moving Average algorithm (EMA) the first sensor reading is

assumed Unloaded and is the initial starting point for the zero offset:

𝑧𝑖
(0)
← 𝑠𝑖

(0)

30

Every subsequent sensor value is compared using its own σi to determine the proper sensor

state. If the current value is larger than 4 standard deviations σi above the most recent zi, then this

𝑠𝑖
(𝑡)

value at time t is classified as Loaded+ and the new 𝑧𝑖
(𝑡)

 is just a copy of the previous 𝑧𝑖
(𝑡−1)

.

If the current value is smaller than 4 standard deviations σi below the most recent zi, then this

𝑠𝑖
(𝑡)

value at time t is classified as Loaded- and the new 𝑧𝑖
(𝑡)

 is also just a copy of the previous

𝑧𝑖
(𝑡−1)

. If the current value is less than 4 standard deviations σi from the most recent zi in any

direction, then this 𝑠𝑖
(𝑡)

 value at time t is classified as Unloaded and the new 𝑧𝑖
(𝑡)

 is updated using

the standard EMA formula with α = 0.1 (value found through experimentation).

𝑠𝑡𝑎𝑡𝑒𝑖
(𝑡) ← {

𝐿𝑜𝑎𝑑𝑒𝑑 + 𝑖𝑓(𝑠𝑖
(𝑡) > 𝑧𝑖

(𝑡−1) + 4 ∗ 𝜎𝑖)

𝐿𝑜𝑎𝑑𝑒𝑑 − 𝑒𝑙𝑖𝑓(𝑠𝑖
(𝑡) < 𝑧𝑖

(𝑡−1) − 4 ∗ 𝜎𝑖)

𝑈𝑛𝑙𝑜𝑎𝑑𝑒𝑑 𝑒𝑙𝑠𝑒

𝑧𝑖
(𝑡) ← {

𝑧𝑖
(𝑡−1) 𝑖𝑓 𝑠𝑡𝑎𝑡𝑒𝑖

(𝑡) = 𝐿𝑜𝑎𝑑𝑒𝑑 +

𝑧𝑖
(𝑡−1) 𝑖𝑓 𝑠𝑡𝑎𝑡𝑒𝑖

(𝑡) = 𝐿𝑜𝑎𝑑𝑒𝑑 −

𝛼 ∗ 𝑠𝑖
(𝑡) + (1 − 𝛼) ∗ 𝑧𝑖

(𝑡−1) 𝑖𝑓 𝑠𝑡𝑎𝑡𝑒𝑖
(𝑡) = 𝑈𝑛𝑙𝑜𝑎𝑑𝑒𝑑

Figure 4.11: Different α Smoothing Factors on Sensor Data Assuming All Data Points are in the Unloaded State

31

There is a pitfall to solely using the EMA technique; a sensor can become “stuck” and have

an incorrectly labeled state. The zero offset could naturally drift up or down over time and the

EMA’s smoothing effects might not catch it. After a person has walked on and left a sensor area,

the EMA might forever label the sensor as Loaded+/- when there is truly zero human weight and

it should be labeled as Unloaded. Below is an image of a stuck sensor condition, where the orange

line is the EMA calculated zero offset over time 𝑧𝑖
(𝑡)

. The spikes were Loaded+ times when a

person walked near the sensor and the blue raw sensor values were significantly shifted up after

the person left the area. The orange zero offset line never corrects and believes the sensor is

Loaded+ the remaining time when it should be classified as Unloaded.

Figure 4.12: Stuck Sensor Condition

To overcome the possibility of the EMA missing a zero offset shift due to natural drift or

tile coupling, a Simple Moving Average (SMA) operation is utilized within the larger calibration

algorithm. After the current 𝑧𝑖
(𝑡)

 is calculated using the EMA, a moving window of 2 seconds (50

samples) is slid across the most recent raw sensor readings. If all 50 readings were labeled as

Loaded+ or Loaded- with no Unloaded gaps, then this buffer’s standard deviation 𝜎𝑠𝑚𝑎_𝑖
(𝑡)

 is

zero-line shift

Labeled State: Loaded+

Correct State: Unloaded
Human Presence

Correctly Labeled State: Loaded+

32

calculated. If it is within 100% of this sensor’s zero weight standard deviation σi, its fluctuations

could be explained completely by sensor noise and thus no evidence of weight shift on the sensor

is detected. The algorithm uses this as an indication of the absence of a person and determines that

a zero-line shift has occurred and should be fixed.

𝑖𝑓 (|𝜎𝑖 − 𝜎𝑠𝑚𝑎𝑖
(𝑡) | ≤ 𝜎𝑖) 𝑡ℎ𝑒𝑛:

𝑧𝑖
(𝑡−1)

← 𝑏𝑢𝑓𝑓𝑒𝑟_𝑚𝑒𝑎𝑛𝑠𝑚𝑎𝑖
(𝑡)

Another problem arises when implementing this SMA fix. A person can stand still enough

to cause the sliding window’s standard deviation to be equal or even less than the sensor’s σi.

Figure 4.13 shows an example sensor reading profile of a person standing still being incorrectly

labeled as Unloaded (zero-line did not shift and should not be redefined).

Figure 4.13: Incorrect State Labeling of a Still Person

Loaded+ Unloaded

(correct) (incorrect)

Walking Standing Leaving

33

To overcome the possibility of a person standing perfectly still and this algorithm labeling

a Loaded time incorrectly as Unloaded, a threshold is applied within the SMA algorithm. The

rationale for this threshold is the observation that a person standing perfectly still will generally

need to be in a stable stance, applying significant weight on both feet, leading to high readings,

while a sensor drift will usually be of a lower magnitude. This threshold is of the uncalibrated units

of raw sensor values. After observing many cases of this error with people of different weights, a

vertical window threshold of 10 was picked. Based off future ai coefficient calculations, this raw

sensor value s=10 amounts to 2.72 kg maximum.

If the difference between the sliding window’s buffer mean and the current 𝑧𝑖
(𝑡)

 was greater

than 10 then the SMA fix was not applied. If the difference is within the threshold, a fix is deemed

necessary. Instead of correcting from this point t forward, the algorithm jumps back 50 time steps

(size of sliding window) to adjust the zero mean at that point 𝑧𝑖
(𝑡−50)

 and runs the entire EMA/SMA

algorithm again on those points so every sensor value within this SMA time window is labeled

correctly:

𝑖𝑓 (|𝑧𝑖
(𝑡) − 𝑏𝑢𝑓𝑓𝑒𝑟_𝑚𝑒𝑎𝑛𝑠𝑚𝑎𝑖

(𝑡) | ≤ 10) 𝑡ℎ𝑒𝑛:

𝑧𝑖
(𝑡−50) ← 𝑏𝑢𝑓𝑓𝑒𝑟_𝑚𝑒𝑎𝑛𝑠𝑚𝑎𝑖

(𝑡)

𝑎𝑛𝑑 𝑟𝑒𝑠𝑡𝑎𝑟𝑡 𝐸𝑀𝐴 𝑎𝑡 𝑡 − 50 𝑖𝑛𝑑𝑒𝑥

The resulting complete algorithm to determine the sensor load state and to dynamically

adjust each sensor’s zero load readings in shown in Algorithm 1.

34

Algorithm 1 Determine Sensor State Using EMA and SMA

input: set of raw sensor values S

 unloaded standard deviation σ

output: set of zero offsets Z

 set of sensor states States

α ← 0.1

t ← 0

while t < length(S) do

 flag_loaded ← false

 s ← S[t]

 if t = 0 then

 μ ← s

 States[t] ← unloaded

 else

 if s > μ + 4*σ then

 flag_loaded ← true

 States[t] ← loaded+

 else if s < u – 4*σ then

 flag_loaded ← true

 States[t] ← loaded-

 else

 μ ← (α*s) + (1 – α)*μ

 Z[t] ← μ

 if flag_loaded = true then

 if length(sma_buffer) = 50 then

delete oldest element of sma_buffer

 append s to sma_buffer

 σ_sma, μ_sma ← stdev(sma_buffer), mean(sma_buffer)

 if |σ_sma – σ| ≤ σ then

 if |μ_sma – μ| ≤ 10 then

 μ ← μ_sma

 clear sma_buffer

 t ← t – 50 – 1

 else

 append s to sma_buffer

 else

 clear sma_buffer

 t ← t + 1

return Z, states

35

4.7 Linear Regression to Find Calibration Term

After each sensor’s zero offset series is determined, simple Linear Regression is employed

to learn the coefficient term ai unique to each sensor. These values should not have to be relearned

for long periods of time since they are inherent parameters of the sensor and thus not directly

affected by the tile structure and static weights moved on top of the floor. To learn these

parameters, we utilize the fact that while a person is walking on the floor, the total weight attributed

to the person does not change. wfloor is a known person weight measured with two digital scales

prior to the smart floor training walking sequence (in our experiments 91kg). Due to the weight of

the person staying constant, the total floor weight measured from all sensors at each point in time

in the calibration sequence can be written as the following linear equation:

∑𝑎𝑖(𝑠𝑖
(𝑡)
− 𝑧𝑖

(𝑡)
)

127

𝑖=0

= 𝑤𝑓𝑙𝑜𝑜𝑟
(𝑡)

Ordinary Least Squares (OLS) is used to estimate the 128 ai parameters for the lab floor

with two alterations. If at time t a raw sensor value 𝑠𝑖
(𝑡)

 belongs to the Unloaded state (zero human

weight), then it does not contribute to the large P matrix, a 0.0 is placed instead. Also, if an entire

row in the large P matrix is only populated with zeros, the row is omitted. These alterations ensure

that only Loaded sensors contribute to the calculation of the ai parameters and efficiency is

increased. The matrix notation below uses k to indicate the length of the walking sequence; in

practice this value will be smaller than tmax - 1 after the alteration removes unnecessary rows, i.e.

t time steps with no person present, in the large P matrix. Below, an example known training

weight of 91 kg is used in place of 𝑤𝑓𝑙𝑜𝑜𝑟
(𝑡)

.

36

𝑃�⃗� = �⃗⃗⃗�

(

(𝑠0
(0) − 𝑧0

(0)) … (𝑠127
(0) − 𝑧127

(0))

… … …

(𝑠0
(𝑘−1)

− 𝑧0
(𝑘−1)) … (𝑠127

(𝑘−1) − 𝑧127
(𝑘−1)))

(

𝑎0
.

.

.

.

.

.

𝑎127)

 =

(

𝑤𝑓𝑙𝑜𝑜𝑟
(0)

.

.

.

.

.

.

𝑤𝑓𝑙𝑜𝑜𝑟
(𝑘−1)

)

 =

(

91.0

.

.

.

.

.

.

.

91.0)

After all the 128 ai and σi parameters are calculated, the training part of the calibration

process is complete. The calibration coefficient and zero weight standard deviation values are

stored in a separate .json file so future walking data does not need to perform these operations

again. All future testing data will import these variables for their respective sensors and undergo

the zero offset EMA/SMA process to classify each sensor’s state for all times t.

If a sensor at time t is labeled Loaded+ or Loaded-, its current zero offset 𝑧𝑖
(𝑡)

is subtracted

from its raw 𝑠𝑖
(𝑡)

 value and then multiplied by its ai coefficient to transform the raw sensor value

into a known weight measurement 𝑤𝑖
(𝑡)

 in kg. If a sensor at time t is labeled Unloaded, 𝑤𝑖
(𝑡)

 is

assigned a value of 0.0 kg human weight.

37

5 Contact Point Extraction

5.1 Overview of Model

Due to the low 1-sqft resolution of the smart floor, single contact point extraction of a

person’s footfalls cannot be achieved as straightforwardly as when using a sensor-dense high-

resolution floor or mat. To achieve this extraction while considering the non-linear coupling

properties of the floor, a Convolutional Autoencoder Neural Network model is used. The model’s

sequential design consists of 3 main steps:

1. Design and train the Decoder model which maps known location data and weight to a

4x4 square grid of calibrated sensor values in a supervised fashion. This can be thought

of as the Tile Model and is trained with a very specific training dataset.

2. Design and train the Convolutional Autoencoder (CAE) model that incorporates 128

copies of the pre-trained Decoder (transfer learning). The convolutional parts of the

model learn the non-linear relationships and interactions between sensors, tiles, and

how weight spreads on the smart floor. The CAE is trained in a semi-supervised

fashion and can be trained with a large amount of arbitrary calibrated walking data.

3. After the CAE is fully trained the frontend Encoder portion is extracted and becomes

the resulting final model used to translate regular calibrated walking data into a series

of individual contact points no longer limited by the low resolution of the smart floor.

Figure 5.1: High-Level View of Model Iterations

CAE Decoder

Encoder

1-Train

Copy

CAE

3-Extract 2-Train

…..

38

The rationale behind this approach to separately train the Decoder and Encoder components

addresses the requirement that we want to obtain contact location and weight data and thus the

hidden representation of the autoencoder architecture has to be of a specific type which can only

be achieved using some level of supervised data [29]. As opposed to supervised training of the

Encoder which performs the ultimate contact point extraction task, however, the only supervised

training performed here is of the Decoder, which requires significantly less and easier to obtain

data. This stems from the observation that sensor pressure values from multiple weights on the

floor combine purely additively and thus the sensor reading from multiple weights (contact points)

on the floor can be computed by adding the values for each sensor for the Decoders sharing this

sensor within their sensor region. This implies that it is possible to train the Decoder using only

single contact point calibrated data which is significantly simpler to obtain than multi-contact data.

The Encoder, on the other hand, has the task to split sensor readings into sets of contact

points, and thus requires multi-contact data. In the approach used here, the pre-training of the

Decoder with single contact point data makes it possible to train the Encoder using unlabeled

walking data which does not contain weight and contact point information and is thus significantly

simpler to obtain. In addition, this procedure enables one to train the Decoder on a smaller part of

the floor while training the encoder to capture the entire floor. Figure 5.1 shows the basic training

sequence proposed here.

39

5.2 Training Data

Single contact point training data was recorded with the help of Sami Arshad under the

supervision of Dr. Záruba and Dr. Huber. 1104 different location and weights were recorded on

the lab smart floor, as shown in Figure 5.2, using a 1-inch diameter standoff where a person of

known weight could steadily stand on to generate a single contact point pressure point. Locations

were chosen every 4 inches in both x y directions for the left half of the floor covering tile centers,

edges, and corners. For each data sample the absolute coordinates xa and ya were recorded along

with the person’s weight wp. This training set is used to train the Decoder model directly and to

aid in the CAE training as an auxiliary training target.

The main training dataset for the CAE requires no specific preprocessing or label creation

since the Autoencoder nature of the CAE simply learns how to reconstruct full smart floor walking

files (walking sequences). The only requirement is having the input and output walking data be

fully calibrated as described in Chapter 4.

Figure 5.2: Single Contact Point Training Data Locations in Red

40

5.3 Decoder

The Decoder model is a standard feedforward neural network created and trained using

Keras and Tensorflow [30] [31]. The architecture consists of 3 input nodes, 64 hidden nodes using

a sigmoid activation function, and 16 output nodes using a linear activation function resulting in a

total of 1,296 trainable weight and bias parameters. The standard mean squared error function was

used as the training loss function with the Adam optimizer.

The 3 inputs are the relative xp and yp coordinates of the single contact point’s location on a

tile and the known weight wp of the person generating the contact point’s pressure. The 16 outputs

represent the 4x4 calibrated sensor values w1 … w16 of the surrounding sensors of the tile in

question, shown in Figure 5.3. The size of this surrounding area was picked based off observations

which indicated that weights applied on a tile did not spread any further than this neighborhood.

Figure 5.3: Decoder Training Data - 4x4 Sensor Area for Single Contact Point (blue circle)

41

The single contact point’s absolute xa and ya coordinates (entire floor) are converted to the

relative xp and yp coordinates (single tile) according to the lab smart floor’s dimensions and layout.

The range of the xp and yp values is [0…1] and wp is also min-max normalized to the range [0…1].

When the tile ownership of a point comes into question as a contact point is on the edge of

multiple tiles, multiple samples are created to give all tiles involved a fair, unbiased data sample

during the Decoder’s training process. If a contact point lies on the edge of two tiles two sets of

relative points are created. Also, if a contact point lies on a corner four sets are created.

Figure 5.4: Decoder Model Input and Output

.

.

.

.

.

.

xp

yp

wp

w1

w2

…

w15

w16

(x
p
 y

p
 w

p)

Single Tile

Relative xy

x

y

3

64

16

.

.

.

.

.

.

xp

yp

wp

w1

w2

…

w15

w16

Surrounding Sensors

3x3 Tiles 4x4 Sensors

w
1

w
2

w
3

w
4

w
5

w
6

w
7

w
8

w
9

w
10

w
11

w
12

w
13

w
14

w
15

w
16

3

64

16

42

Figure 5.5 shows the learning curve for the training of the Decoder which resulted in the

following losses for the fully trained Decoder, illustrating the successful performance and

indication that the chosen architecture can accurately represent the sensor activations resulting

from the calibration weights without overfitting.

Figure 5.5: Decoder Training Losses Over Time

5.4 Convolutional Autoencoder

Once the Decoder is trained, it can be integrated into a Convolutional Autoencoder

architecture (CAE) while effectively serving as a distal teacher for the encoder portion [32]. The

CAE consists of two main parts: the convolutional Encoder portion and the 128 pretrained

Decoders, one for each tile. The overlapping Decoders’ outputs for each sensor are added,

effectively having the Decoders form a deconvolution transforming multiple contact points to

corresponding sensor readings. The weight and bias parameters for the 128 identical Decoder

models are frozen and untrainable during the CAE training process. The CAE’s input data and

output target data are entire floor snapshots of calibrated sensor data of various walking data from

• Training Data Loss: 1.5696e-04

• Validation Data Loss: 1.6106e-04

• Testing Data Loss: 1.5410e-04

43

different people. Since the CAE’s main goal is to reconstruct the input data as perfectly as possible,

the bottleneck between the two portions forces the CAE, during training, to learn an encoding that

adopts the contact point properties embedded within the Decoder.

The CAE slides or convolves 4x4 sensor (3x3 tile) kernels over the entire floor, as illustrated

in Figure 5.6, and learns how neighboring sections of the floor interact, couple, and affect one

another while also trying to recreate the same input pressure profile of the entire floor on its output

in adherence to the contact point profile learned in the Decoder’s training process. The stacking

with other convolutional layers with differing kernel sizes allows the CAE to see larger segments

of the floor and discover more complex non-linear relationships within the smart floor. In other

words, the CAE takes a single entire floor snapshot and the Encoder portion outputs an (xp yp wp)

for every tile with the wp serving as a probability of sorts. The complete CAE architecture used

here uses 3 convolutional layers and additional padding masks to account for the sensor-less edges

of the floor and is shown in Figure 5.7.

Figure 5.6: 4x4 Sensor Kernel Convolving Over the Entire Floor (hollow red circles are padding)

44

Figure 5.7: Detailed Architecture of the CAE

Concat with Mask

Zero Padding

4x4 Conv2D

50 Filters ReLU

1x1 Conv2D
50 Filters ReLU

Concat with Mask
Zero Padding

3x3 Conv2D
50 Filters ReLU

1x1 Conv2D
1 Filter Sigmoid

1x1 Conv2D
1 Filter ReLU

1x1 Conv2D
1 Filter Sigmoid

xp0 … xp127 yp0 … yp127

wp0 … wp127

xp0 yp0 wp0 xp127 yp127 wp127

… 128 Decoders …

…

……

…

……

Zero Pad according to tile location

Add and Crop for final floor image

… 128 4x4 Outputs …

(1 x 8 x 16)

(channels x rows x cols)

(2 x 11 x 19)

(50 x 8 x 16)

(50 x 8 x 16)

(51 x 10 x 18)

(50 x 8 x 16) (50 x 8 x 16)

(50 x 8 x 16)

Encoder

Decoder

(1 x 16) (1 x 16)

(4 x 4) (4 x 4)

(1 x 8 x 16)

Tile 0

Decoder

Tile 127

Decoder

CAE Input

CAE Output

45

The CAE architecture layers are as follows:

1. Single-channel input layer of 2D dimension 8x16

2. Concatenation with Binary Mask Channel and Zero-padding

3. Convolutional Layer: 4x4 kernel, 50 filters, ReLU activation

4. Convolutional Layer: 1x1 kernel, 50 filters, ReLU activation

5. Concatenation with Binary Mask Channel and Zero-padding

6. Convolutional Layer: 3x3 kernel, 50 filters, ReLU activation

7. Branch xp:

a. Convolutional Layer: 1x1 kernel, 1 filter, sigmoid activation

8. Branch yp:

a. Convolutional Layer: 1x1 kernel, 1 filter, sigmoid activation

9. Branch wp:

a. Convolutional Layer: 1x1 kernel, 1 filter, ReLU activation

10. Concatenation of the 3 branches

11. 3 Element Slice in the 3D axis for each of the 128 tiles

a. Auxiliary output layer for xp yp wp values

12. Flatten (end of Encoder portion)

13. 128 copies of the pre-trained Decoder model

14. Zero-padding and Add Layer

15. Single-channel output layer of 2D dimension 8x16 (same as input)

* all convolutional layers used a stride of (1,1) with valid padding

*Total Weight and Bias Parameters: 193,241

*Trainable Parameters: 27,353

*Non-trainable Parameters: 165,888 (128 frozen Decoder models)

The input training data and the output targets are the same since the role of an autoencoder

is to reconstruct data input and learn encodings. Each data sample was an 8x16 full floor snapshot

of 128 calibrated smart floor sensors taken from various files of different people walking over the

entire floor. All calibrated sensor values for the input and output were normalized to range [0…1]

but using the same min-max scaling factors established during Decoder training. The output

reconstruction loss function for the CAE was the standard mean squared error function with a

special condition to prevent zero weight biasing due to most sensors reading being ~0kg the

majority of the time. During training, if both the true and predicted values of a calibrated floor

sensor are within +/- 1kg around zero weight then its contribution to the mean squared error

46

function is reduced to 0.01%. The rationale here is that the CAE has already correctly converged

on predicting 0kg for that sensor and should amplify the error in predicting other sensors that

actually have significant weight.

Activity regularization was applied to the output of the wp branch convolutional layer to

encourage sparsity amongst the generated wp values in the aim of having fewer tiles explain the

pressure profile and data reconstruction (encourage single contact points over multiple points

spread across multiple tiles). The reason for this is that due to the linear combination of sensors, a

contact point on or close to a tile boundary can be represented either as a single contact point or as

the result of multiple contact points that are on the edges of adjacent tiles with minimal differences

in the sensor readings. In these situations, we would prefer the system to provide us with a single

contact point to explain the pressure readings. A regularization loss function utilizing the l0-norm

would have been ideal since it solely penalizes a higher count of non-zero values and therefore

minimizes the number of final contact points, but implementing a true l0-norm within the

Tensorflow framework proved too challenging. Instead the regularization loss function was the

mean of the l0.5-norm with a λ regularization factor of 3x10-5. The regularization factor was found

through experimentation to equally balance its contribution in comparison to the other losses.

λ ∗
1

128
(∑|𝑤𝑝 (𝑖)|

0.5
)

127

𝑖=0

2

To counteract the undesirable effect of the sparsity regularization driving all wp values to

0.0, the CAE model is reinforced with an auxiliary training target making the overall model single

input multiple output (SIMO). The large CAE training dataset of various walking files was

47

interlaced with the original single contact point data used in Decoder training. The output labels

xp, yp, and wp and their predicted values contributed to the overall loss with their own standard

mean squared error loss function with a weight factor of 0.2. The Encoder MSE loss only

contributes 20%, found through experimentation, to balance its contribution to the overall loss

function without overwhelming the CAE’s MSE loss. With wp being normalized in the same

fashion as before.

Figure 5.8: SIMO CAE Architecture with Regularization and Multiple Output Targets

λ ∗
1

128
(∑|𝑤𝑝 (𝑖)|

0.5
)

127

𝑖=0

2

Wp Activity

Regularization

Encoder

Output

(0.2*MSE)

CAE

Output

(MSE)

48

The SIMO CAE’s complete loss function is expressed as:

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 = 𝐶𝐴𝐸 𝐿𝑜𝑠𝑠 + 𝑊𝑝 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝐿𝑜𝑠𝑠

• 𝐶𝐴𝐸 𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸(𝑓𝑙𝑜𝑜𝑟_𝑡𝑟𝑢𝑒, 𝑓𝑙𝑜𝑜𝑟_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)

• 𝑊𝑝 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = (3 ∗ 10−5) ∗
1

128
(∑ |𝑤𝑝 (𝑖)|

0.5
)127

𝑖=0

2

• 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝐿𝑜𝑠𝑠 = 0.2 ∗ 𝑀𝑆𝐸(𝑥𝑦𝑤_𝑡𝑟𝑢𝑒, 𝑥𝑦𝑤_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛)

 To prevent zero-weight biasing, the CAE Loss single sensor contribution is reduced to

0.01% within the mean squared error function if both true and prediction weight targets are within

+/- 1kg of zero weight. The CAE Loss indicates how well the model can reconstruct the entire floor

weight. The Wp Regularization acts as a penalty to encourage more single contact point

explanations. The Encoder Loss signifies how well the model’s bottleneck can generate accurate

contact points per tile. Finally, the Total Loss describes how well the overall model is learning.

The behavior of the loss and regularization functions is shown in Figure 5.9 and resulted

in the following losses, illustrating the CAE’s ability to learn a good representation without

overfitting the training data.

Figure 5.9: SIMO CAE Training Losses Over Time

Training Data

Total Loss: 9.8480e-05

ENC Loss: 2.5524e-04

CAE Loss: 8.9388e-06

Validation Data

Total Loss: 1.0137e-04
ENC Loss: 2.6354e-04
CAE Loss: 8.6281e-06

49

In the loss function figure, we can see that all loss functions decrease rapidly initially and

then slowly converge to a minimum over the course of 300 epochs. It is important to note that

during training a tradeoff between the autoencoder loss and the regularization loss functions is

made, which results in the Encoder preferring to underestimate weights slightly which we correct

for when estimating a person’s weight.

5.5 Encoder

After the CAE is fully trained, the Encoder portion is kept as the final standalone model in

predicting individual contact points per tile and across the entire floor. When a series of entire

floor snapshots are given to the input of the Encoder, each output is of the shape (1 x 384) which

holds the (xp yp wp) values for each of the 128 tiles on the floor. If a tile’s wp value is close to 0kg

then that tile’s (xp yp wp) is discarded and only tiles with weight activity are kept. Each final contact

point is prepended with timestamp information given from the original series of input data

resulting in (t xp yp wp) to describe each contact point. The final Encoder model is shown below in

Figure 5.10.

Figure 5.10: Detailed Architecture of the Extracted Encoder Model

50

5.5.1 Converting Encoder Output to Contact Points

Once only relevant tile contact points remain, they must be converted from relative

coordinates to absolute floor coordinate units according to their tile’s location while retaining their

original timestamps t and weight values wp, (t xp yp wp) → (t xa ya wa). If there exist multiple contact

points at the same time t and if their Euclidean distance is less than 5cm then it is assumed the

Encoder incorrectly split contact points at tile boundaries and they should be recombined. The new

combined xa ya location is chosen based off each points wp weight value instead of merely splitting

the difference.

Figure 5.11: Merging Incorrectly Split Contact Points from Encoder

Figure 5.12 shows an example of the contact points predicted from a person walking across

the smart floor and the corresponding true footfall locations extracted with a high-resolution

pressure mat, described in Chapter 7, placed on top of the floor. This illustrates the approach’s

ability to successfully extract contact points even in multi-contact situations without the need for

any multi-contact training data.

51

Figure 5.12: Smart Floor vs High-Resolution Mat Contact Points

High-Res Mat

Smart Floor

Overlay

52

6 Clustering and Gait Analysis

6.1 Footfall Clustering

After the absolute contact points are successfully extracted using the Encoder model, they

are clustered to segment individual footfalls of a person while also removing outliers. A time series

of k contact points is expressed as CP = {cp(0), cp(1), … , cp(k-1)} where cpk = (tk, xk, yk, wk, β k):

• t = timestamp index of original walking data

• x = absolute floor coordinate along the x-axis in cm or ft

• y = absolute floor coordinate along the y-axis in cm or ft

• w = calibrated weight values of the contact point in kg

• β = stance type of contact point (1 = single, 2 = dual, ≥ 3 = dual+)

The 25Hz sample rate of the floor is fast enough to capture the moment two feet are in

contact with the floor at the same time even at a brisk walk. Stance type β is a variable to help

describe which support phase (single or double) a contact point belongs to when a person is

walking. Labeling contact points as dual stance type can also support segmenting and signifying

the start or end of an individual footfall. Contact point data of dual+ stance type was deemed

Encoder output outliers and were discarded before foot clustering began. Stance type was

determined by counting the number of shared contact points at timestamp t within the CP data.

Figure 6.1 below shows an entire walking sequence of multiple passes over the entire floor with

single stance points in black, dual in red, and dual+ in cyan while Figure 6.2 shows the same for a

single walking pass.

53

Figure 6.1: Unclustered Contact Points of an Entire Walking Sequence

Figure 6.2: Unclustered Contact Points of a Single Walking Pass

Single Stance Points

Dual Stance Points

Dual+ Stance Points

Single Stance Points

Dual Stance Points

54

6.1.1 Normalizing Contact Point Features

Before Hierarchical Clustering Analysis (HCA) is performed to determine the clusters

representing individual footfalls, contact point features are normalized. The stance type β is not

used for HCA and therefore not normalized here. The CP features t, x, and y are scaled according

to each feature’s median rate of change considering the time between two consecutive floor

samples taken at 25Hz (1/25Hz = 0.04sec). Additionally, location features x and y are jointly

normalized using the Euclidean distance of their sequential differences to avoid axis bias in case

one direction was spanned differently than the other during an entire walking sequence, as shown

in Figure 6.3. Weight feature w is normalized with the standard min-max method [0…1]. Below,

diff() represents finding the sequential n-th order discrete difference along the feature column.

Figure 6.3: Contact Point Span Across X and Y Axes

𝑡′ ←
𝑡

𝑚𝑒𝑑𝑖𝑎𝑛(𝑑𝑖𝑓𝑓(𝑡)) ∗ 25𝐻𝑧

𝑥′ ←
𝑥

𝑚𝑒𝑑𝑖𝑎𝑛(𝑑𝑖𝑓𝑓(𝑑𝑖𝑠𝑡𝐿2(𝑥, 𝑦))) ∗ 25𝐻𝑧

𝑦′ ←
𝑦

𝑚𝑒𝑑𝑖𝑎𝑛(𝑑𝑖𝑓𝑓(𝑑𝑖𝑠𝑡𝐿2(𝑥, 𝑦))) ∗ 25𝐻𝑧

𝑤′ ←
𝑤 − 𝑚𝑖𝑛(𝑤)

𝑚𝑎𝑥(𝑤) − 𝑚𝑖𝑛(𝑤)

55

6.1.2 Recursive Hierarchical Clustering Analysis

Using the normalized feature vectors of all contact points, HCA (agglomerative method)

is performed to segment and cluster points together into individual foot falls using minimum

linkage and Euclidean distance for the distance metric. When viewing the results of an HCA as a

dendrogram, the middle of the largest vertical distance between a cluster merge is picked as the

criterion to “best cut” the tree and decide how many clusters is optimal. In practice this is achieved

by finding the largest jump in the computed linkage matrix. Since a single global “best cut”

spanning the entire dendrogram does not guarantee finding each individual footfall cluster, local

“best cuts” must be found within groupings of groupings deep within the tree. The recursive

element of the HCA foot clustering algorithm will continue to further split clusters with the same

“best cut” method until the max Euclidean distance within a cluster is under a maximum “foot

length” threshold of 35.56 cm (14 in) while also discarding clusters that contain fewer than 5

individual contact points (single observations).

To illustrate the performance of this recursive hierarchical clustering approach, Figure 6.4

shows the contact points of a sample pass across the floor, Figure 6.5 shows the resulting

dendrogram as well as the first cutoff point, before Figure 6.6 shows the resulting final footfall

clusters.

56

Figure 6.4: Unclustered Contact Points of a Single Walking Pass

Figure 6.5: Dendrogram of HCA Results

Threshold

Cutoff

57

Figure 6.6: Footfall Clusters After HCA (7 Found)

6.1.3 Merging Dual Stance Contact Points

After a set of m foot clusters are found (FC = {fc(0), fc(1), … , fc(m-1)} where fcm = {cp(0),

cp(1), … , cp(n-1)} and cpn = (tn, xn, yn, wn, βn)), if there exists any dual stance points who’s pair is

within the same cluster they are merged together and become single stance type. If a dual stance

point’s pair belongs to another foot cluster they are left unchanged.

58

Figure 6.7: Merging Dual Stance Points within Single Footfall Clusters

Algorithm 2 shows a high-level view of the foot-cluster extraction process and Algorithm

3 shows in more detail the recursive hierarchical clustering approach.

Algorithm 2 High-Level Extraction of Foot Clusters

input: set of raw contact points CP_raw : {cp(0), … , cp(k-1)} where cpk = (tk, xk, yk, wk, β k)

output: set of foot clusters FC : {fc(0), … , fc(m-1)} where fcm = {cp(0), cp(1), … , cp(n-1)}

function extractFootClusters(CP_raw)

global foot_cluster_number ← 0

global max_foot_length_threshold ← 14 // inches

global FC ← empty set

for cp in CP_raw do

 cp.β ← count(cp.t = CP_raw.t) // determine stance type by

// counting common timestamps

HCA(CP_raw)

return FC

59

Algorithm 3 Recursive HCA

input: set of contact points CP : {cp(0), … , cp(k-1)} where cpk = (tk, xk, yk, wk, β k)

function HCA(CP)

for cp in CP do

cp.t ← cp.t / median(diff(CP.t))*25Hz // normalize features

cp.x ← cp.x / median(diff(distL2(CP.x,CP.y)))*25Hz

cp.y ← cp.y / median(diff(distL2(CP.x,CP.y)))*25Hz

cp.w ← (cp.w – min(CP.w)) / (max(CP.w) – min(CP.w))

linkage_matrix ← computeLinkageMatrix(CP, single_linkage, euclidean)

min_cutoff ← linkage_matrix[argmax(diff(linkage_matrix))]

max_cutoff ← linkage_matrix[argmax(diff(linkage_matrix)) + 1]

cutoff ← ((max_cutoff – min_cutoff) / 2) + min_cutoff

clusters ← agglomerativeClustering(CP, single_linkage, euclidean, cutoff)

clusters ← denormalizeFeatures(clusters) // revert to true xy coordinates

for cluster in clusters do

 if cluster.num_points > 5 then

 extreme_points[0] ← cluster[argmax(cluster.x)]

extreme_points[1] ← cluster[argmin(cluster.x)]

extreme_points[2] ← cluster[argmax(cluster.y)]

extreme_points[3] ← cluster[argmin(cluster.y)]

max_euc_dist ← 0

for point_1 in extreme_points do

 for point_2 in extreme_points do

 curr_euc_dist ← euclideanDistance(point_1, point_2)

 if curr_euc_dist > max_euc_dist then

 max_euc_dist ← curr_euc_dist

if max_euc_dist < max_foot_length_threshold then

 append cluster to FC with foot_cluster_number // valid foot cluster

 foot_cluster_number ← foot_cluster_number + 1

else

 HCA(cluster) // invalid foot cluster, recursive call

60

6.1.4 Segmenting into Gait Sequences

Once foot clusters are found, gait sequences can be constructed for follow-up gait

parameter extraction. For this, all foot clusters are sorted according to the mean t of each cluster’s

set of contact points. The entire set of foot clusters FC must be segmented into a set of gait

sequences where reliable gait parameters can be extracted. This involves separating gait sequences

if a person physically leaves the floor and returns and when a walking person is making a turn.

Extracting step, stride, and other gait parameters during a turning sequence is deemed unreliable

and only gait sequences where a person walks semi-straight are to be used.

If there exists a time gap of at least 1.5 secs in the sequential set of foot clusters, it is

assumed the person has left the smart floor and the foot clusters are separated into different gait

sequences. Within each gait sequence, a local line of progression (LOP) is calculated for each

stride using sets of 3 sequential footfalls fc(n-1), fc(n), and fc(n+1). The LOP vector is drawn between

the xy mean of the 1st and 3rd foot clusters as they should represent the same foot. The LOP angle

for the middle foot cluster fc(n) is calculated by applying the arctan2() function on the LOP vector.

The LOP angles for the first and last foot cluster within a gait sequence are merely the copy of the

closest neighbor since those feet do not exist within the “middle” of a complete stride. Figure 6.8

shows the LOP and foot angles for a sequence of 3 foot clusters.

𝐿𝑂𝑃 𝑉𝑒𝑐𝑡𝑜𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗(𝑛) ← ⟨
𝑥𝑚𝑒𝑎𝑛
(𝑛+1)

 − 𝑥𝑚𝑒𝑎𝑛
(𝑛−1)

𝑦𝑚𝑒𝑎𝑛
(𝑛+1)

 − 𝑦𝑚𝑒𝑎𝑛
(𝑛−1)⟩

𝐿𝑂𝑃 𝐴𝑛𝑔𝑙𝑒(𝑛) ← 𝑎𝑟𝑐𝑡𝑎𝑛2(𝐿𝑂𝑃 𝑉𝑒𝑐𝑡𝑜𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
�⃗�

(𝑛)
 , 𝐿𝑂𝑃 𝑉𝑒𝑐𝑡𝑜𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

�⃗�

(𝑛)
)

61

Figure 6.8: LOP Vector and Angle Visualization

The LOP angles of each foot cluster are used to determine whether a person is walking

semi-straight or turning on the smart floor. Iterating sequentially over the set of foot clusters in

pairs, if the absolute difference between each foot cluster’s LOP angle is greater than 10 degrees,

then the latter of the two is labeled a turn. This comparison is performed for all foot clusters and

the gait sequence is further split into more gait sequences wherever turns are found. The turn data

is not thrown out since it offers location data that could be useful for tracking, but they are not

used in the subsequent gait analysis. Figure 6.9 shows sample data of an initial lone gait sequence

split into two after turns were discovered within the walking path, indicated in red. During this

time and turn splitting process, if a resulting gait sequence contains less than 3 total foot clusters

then it is discarded since meaningful gait parameters require many sequential footfalls to calculate.

Figure 6.10 shows an example of the foot clusters of a person walking across the floor in

multiple passes with turns before gait sequence extraction and identification of turns. Based on

these clusters, Figure 6.11 shows the classification of foot clusters into straight and turn types,

clearly identifying the straight line passes and the separating turns between them.

62

Figure 6.9: Gait Sequence of Straight and Turn Data

Figure 6.10: Foot Clusters before Gait Sequence Segmentation

63

Figure 6.11: Walking Sequence after Gait Sequence Segmentation (green = kept, red = discarded turns)

After each gait sequence’s foot clusters are finalized, each foot cluster is labeled as right

or left. This process assumes the person is walking forward. Using sets of 3 sequential foot clusters

fc(n-1), fc(n), and fc(n+1) the middle foot cluster’s left/right foot type is determined by using the sign

of the cross product of the vectors from fc(n-1)
 to fc(n+1) and fc(n-1)

 to fc(n). The vectors span to the xy

mean of each foot cluster. Using known data and intuition, a positive sign indicated the middle

fc(n) is a right foot and negative indicated left. The small algorithm also labels fc(n-1)
 to fc(n+1) the

opposite of the found fc(n) label. This process iterates over the entire gait sequence until all foot

clusters are labeled with a foot type, resulting in the identification illustrated in Figure 6.12.

64

𝑓𝑜𝑜𝑡𝑇𝑦𝑝𝑒𝑛 ← {𝑟𝑖𝑔ℎ𝑡 𝑖𝑓((𝑓𝑐
𝑛−1𝑓𝑐𝑛+1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ × 𝑓𝑐𝑛−1𝑓𝑐𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗) > 0)

𝑙𝑒𝑓𝑡 𝑒𝑙𝑠𝑒

𝑓𝑜𝑜𝑡𝑇𝑦𝑝𝑒𝑛−1 ← {
𝑟𝑖𝑔ℎ𝑡 𝑖𝑓(𝑓𝑜𝑜𝑡𝑇𝑦𝑝𝑒𝑛 = 𝑙𝑒𝑓𝑡)
𝑙𝑒𝑓𝑡 𝑒𝑙𝑠𝑒

𝑓𝑜𝑜𝑡𝑇𝑦𝑝𝑒𝑛+1 ← {
𝑟𝑖𝑔ℎ𝑡 𝑖𝑓(𝑓𝑜𝑜𝑡𝑇𝑦𝑝𝑒𝑛 = 𝑙𝑒𝑓𝑡)
𝑙𝑒𝑓𝑡 𝑒𝑙𝑠𝑒

Figure 6.12: Person Walking Left to Right with Foot Type Labels

65

6.2 Gait Analysis

After each gait sequence only contains semi-straight walking segments without turns and

each foot cluster’s footType and LOP angle are calculated, gait analysis can be performed. Each

gait sequence will generate 20 total gait parameters (10 left, 10 right): foot weight, foot length,

foot angle, step length, stride length, step width, step time, step speed, stride time, and stride speed.

6.2.1 Foot Weight

Each foot cluster’s weight (kg) is calculated by finding the mean of the middle 50% of the

sorted single contact point calibrated weight values in kg. Only computing the mean weight on the

middle subset helps to exclude any valid dual stance points who usually exhibit a smaller weight

since they are paired with another contact point also in contact with the floor at the same time.

This also helps to remove heel strike and toe off moments where weight spikes might occur due to

downward forces while walking.

6.2.2 Foot Length

A cluster’s foot length (cm) is calculated by finding the maximum Euclidean distance

between the set of the most extreme xy points within the cluster.

6.2.3 Foot Angle

A cluster’s foot angle (degrees) is calculated using the LOP vector of the cluster and the

principal component of the contact points within the foot cluster. Principal Component Analysis

(PCA) is performed on the set of xy contact points minus any dual stance points detected at the

start or end of the foot cluster. These points are not included so the predominant contributing factor

66

to the principal component, and ultimately the foot angle, is the stable region during the mid-stance

portion of the gait cycle when the foot is most flat with the floor and gives the most accurate

description of direction and angle. After PCA is performed on the xy data, the unit vector of the

principal component PC1 is compared against the LOP vector to calculate the foot cluster’s angle.

𝑃𝐶1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 𝐴𝑛𝑔𝑙𝑒 ← 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑃𝐶1 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑦 , 𝑃𝐶1 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑥)

𝐿𝑂𝑃⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐴𝑛𝑔𝑙𝑒 ← 𝑎𝑟𝑐𝑡𝑎𝑛2(𝐿𝑂𝑃 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
𝑦 , 𝐿𝑂𝑃 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑥)

𝐹𝑜𝑜𝑡 𝐴𝑛𝑔𝑙𝑒 ← 𝑃𝐶1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 𝐴𝑛𝑔𝑙𝑒 − 𝐿𝑂𝑃⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ 𝐴𝑛𝑔𝑙𝑒

Figure 6.13: PCA and Foot Angle (theta) Calculations

Figure 6.14: Sequential Pressure Profile of a Foot Cluster's Contact Points over Time

67

6.2.4 Step Length

Two sequential foot clusters are required to calculate a step length (cm), fc(n) and fc(n+1).

The toe-off xy points of both clusters and the LOP vector from the second cluster are needed. The

toe-off points are determined to be the last xy coordinate in the time-sorted set of contact points

per foot cluster. Step length is not measured by absolute xy Euclidean distance of the two toe-off

points, it is measured along the line of progression (LOP) the person is walking. The toe-off points

of both clusters are projected on to the LOP line found using the LOP vector’s slope and y-

intercept. The LOP vector is found using cluster xy means, not toe-offs so both have to be

projected. The final step length is the Euclidean distance between the projected toe-off points of

both clusters. The step length’s left/right label matches the footType label of the fc(n+1)
 cluster, the

foot that travelled the distance to complete the step.

Figure 6.15: Step Length Calculation

fc(n+1)
fc

(n)

LOP

68

6.2.5 Stride Length

Two toe-off points of sequential foot clusters of the same type, left or right, are required to

calculate the stride length (cm), fc(n) and fc(n+2). The LOP vector of the middle cluster fc(n+1) is used

for projecting the toe-off points. With these values the stride length calculation follows the same

procedure as step length.

Figure 6.16: Stride Length Calculation

6.2.6 Step Width

Step widths (cm) are calculated by iterating over every foot cluster one-by-one excluding

the first and last. Each foot cluster’s xy mean point is projected onto its own LOP vector and the

projected point’s travel distance is the step width. The step width’s left/right label matches that of

the foot cluster in question.

fc(n+1)
fc

(n)

LOP

fc
(n+2)

69

6.2.7 Step Time

Step time (seconds) is calculated by using the same foot clusters for calculating step length.

The step time is merely the difference in timestamp t values between the two toe-off contact points

divided by the smart floor’s data sampling rate of 25Hz.

6.2.8 Step Speed

Step speed (cm per sec) is calculated by iterating over each step length and dividing by its

respective step time pair.

6.2.9 Stride Time

Stride time (seconds) is calculated by using the same foot clusters for calculating stride

length. The stride time is merely the difference in timestamp t values between the two toe-off

contact points divided by the smart floor’s data sampling rate of 25Hz.

6.2.10 Stride Speed

Stride speed (cm per sec) is calculated by iterating over each stride length and dividing by

its respective stride time pair.

6.2.11 Gait Parameter Means and Variances

If the walking sequence is sufficiently large means and variances over the entire dataset of

gait values are calculated. For each of the 20 gait features, the middle 50% of the sorted feature

vector is used to calculate the mean and variance to help remove any small or large outliers.

70

Figure 6.17 and Figure 6.18 show examples of the calculated gait features for a single pass

and a set of passes, respectively.

Figure 6.17: Single Pass Showing Gait Means

Figure 6.18: Entire Walking Sequence (with red turns removed) Showing Gait Means

71

6.3 Future Work

All the work described in this chapter is under the assumption that only a single person is

walking on the smart floor at any given time. While the recursive HCA foot clustering can

successfully segment different people’s footfalls, it does not possess the framework to account for

overlapping timestamps and assign footfalls and gait sequences to Person A, B, …, etc. A potential

method to successfully segment multiple people would involve tracking possibly in the form of a

Kalman Filter to track and anticipate where and when the next footfall of a person should take

place.

When multiple people are not only walking on the floor simultaneously but have very near

footfall locations special consideration to prevent incorrect footfall mergers needs to be accounted

for. If the pressure profiles of the first few steps can be established (time vs. weight of contact

points) then possibly Dynamic Time Warping (DTW) could be used to calculate a likelihood that

a new footfall belongs to Person A, Person B, etc. This research work is a crucial next step in order

to make this established work applicable to the SmartCare apartment’s smart floor.

Figure 6.19: Future Person Separation and Identification

Person A

Person B

Person C

72

7 High-Resolution Mat Study

7.1 Overview

Over the Summer of 2019, an IRB study (protocol number 2019-0291) was performed with

the lab’s smart floor and a high-resolution floor mat (ProtoKinetics 16ft. Zeno Walkway [33] and

PKMAS software [34]). The IRB protocol was titled A Smart Floor Study to Measure Weight, Gait,

and Activity. The study recruited 10 subjects to perform simple walking patterns across our smart

floor and the ProtoKinetics mat. Data was recorded simultaneously for the floor and mat. The

ProtoKinetics mat offers very high-resolution pressure data with sensors spaced 0.5in (1.27cm)

apart compared to our floor’s resolution of 1sqft. Each subject’s age, height, weight, gender, and

foot length were recorded prior to each session. Video footage was also recorded for reference

when examining walking data (no subject’s face will ever appear in any SmartCare publication).

The study’s motivation was to acquire ground truth walking data for comparison when

examining our smart floor’s data and writing software. The ProtoKinetics mat offers very fine

resolution location information and can extract individual footsteps which will be used to test the

contact point extraction software of our smart floor. The mat also calculates many gait parameters:

foot center and heel locations, step length, stride length and width, step time, stride time, stride

velocity, gait cycle time, center of pressure, center of mass, cadence, and foot fall counts.

Figure 7.1: ProtoKinetics Zeno Walkway Mat and PKMAS Software

73

7.2 Walking Procedure

The subjects performed a total of 6 walking sequences on various segments of the lab’s smart

floor. The final two taking place on the high-resolution mat placed on top of the smart floor. The

even numbered sequences in Figure 7.2 involved a ~5 second standing phase in the middle of the

floor before returning off the floor.

Figure 7.2: Walking Sequences on Smart Floor with Outline of High-Resolution Mat

Figure 7.3: Sample of Smart Floor vs High-Resolution Mat Contact Points and Foot Clusters

1 2

5 6

3 4

74

7.3 Results of High-Resolution Mat vs. Smart Floor

The PKMAS gait means in the tables below were computed using the clean first pass of

walking sequence 5 in Figure 7.2 without turns. Smart floor data in the tables shows both entire

walking sequence of the entire floor and trimmed data of sequence 5 to show a direct comparison

to the results of the high-resolution mat. Single pass data for the mat, the floor, and their

comparisons are shown in Table 7-1, Table 7-2, and Table 7-3, respectively, while equivalent data

for the floor and comparisons for all passes is shown in Table 7-5 and Table 7-6. While there are

11 columns of data below, only 10 people generated the data. A person walked twice on different

days; subjects 0 and 8 are the same person.

Table 7-1: PKMAS Mat Gait Means (single pass)

Subject: 0 1 2 3 4 5 6 7 8 9 10

LEFT - Foot Length (cm) 34.678 30.627 29.976 29.422 29.353 27.052 25.915 28.545 35.393 27.340 27.498

RIGHT - Foot Length (cm) 35.390 30.699 30.720 29.057 28.811 25.884 26.663 28.468 34.503 27.463 27.011

LEFT - Foot Angle (degrees) -0.528 4.943 0.828 6.514 5.245 5.887 10.976 0.680 2.218 -2.099 5.495

RIGHT - Foot Angle (degrees) -6.657 -8.095 -3.141 -18.034 -7.538 -0.198 -14.689 -2.095 -2.418 -2.526 -9.320

LEFT - Step Length (cm) 62.821 51.013 57.769 46.829 50.987 61.720 54.413 63.896 67.472 64.869 50.752

RIGHT - Step Length (cm) 69.092 58.431 57.158 55.000 51.862 61.817 55.260 71.665 73.972 65.090 50.933

LEFT - Stride Length (cm) 130.097 109.408 112.563 99.736 102.803 123.828 108.313 135.212 141.618 131.115 102.857

RIGHT - Stride Length (cm) 135.313 110.660 115.209 107.365 102.909 124.693 109.623 138.690 143.050 129.815 100.795

LEFT - Step Width (cm) 22.869 17.856 8.202 14.037 10.796 10.028 8.027 11.953 20.222 7.650 7.561

RIGHT - Step Width (cm) 21.586 17.771 6.240 9.829 10.543 10.239 8.340 9.637 20.733 7.810 8.294

LEFT - Step Time (secs) 0.889 0.591 0.689 0.748 0.911 0.567 0.683 0.596 0.754 0.667 0.628

RIGHT - Step Time (secs) 0.846 0.597 0.706 0.748 0.903 0.606 0.728 0.621 0.738 0.697 0.671

LEFT - Step Speed (cm/sec) 72.899 92.061 79.675 66.719 56.686 105.222 75.084 111.132 94.913 96.305 80.025

RIGHT - Step Speed (cm/sec) 77.902 87.856 82.667 70.927 55.457 102.024 77.689 108.362 92.664 92.970 76.238

LEFT - Stride Time (secs) 1.789 1.189 1.419 1.496 1.814 1.179 1.447 1.217 1.492 1.363 1.286

RIGHT - Stride Time (secs) 1.738 1.280 1.394 1.519 1.859 1.231 1.411 1.283 1.546 1.397 1.329

LEFT - Stride Speed (cm/sec) 72.899 92.061 79.675 66.719 56.686 105.222 75.084 111.132 94.913 96.305 80.025

RIGHT - Stride Speed (cm/sec) 77.902 87.856 82.667 70.927 55.457 102.024 77.689 108.362 92.664 92.970 76.238

PKMAS Mat - Means of 1st pass of Walking Sequence 5

75

Table 7-2: Smart Floor Gait Means (single pass)

Table 7-3: Absolute Errors Between PKMAS Mat and Smart Floor (single pass vs. single pass)

Subject: 0 1 2 3 4 5 6 7 8 9 10

LEFT - Foot Length (cm) 22.361 19.828 23.167 15.277 24.980 23.981 22.453 17.053 20.043 16.616 13.976

RIGHT - Foot Length (cm) 29.332 24.083 32.465 26.354 20.823 26.590 28.393 27.411 23.027 16.320 18.943

LEFT - Foot Angle (degrees) -0.346 0.996 4.864 -11.385 -3.785 -4.668 -15.935 -8.277 -3.444 2.612 0.706

RIGHT - Foot Angle (degrees) 0.274 8.799 7.476 7.663 1.198 -2.972 15.700 4.516 -5.787 0.310 8.056

LEFT - Step Length (cm) 52.600 56.933 52.396 49.662 51.141 63.066 49.968 71.022 65.052 65.611 50.133

RIGHT - Step Length (cm) 71.077 50.661 56.891 61.382 44.843 58.578 60.597 55.402 59.641 60.337 52.669

LEFT - Stride Length (cm) 127.025 103.771 109.425 109.852 94.443 111.716 108.411 131.142 130.148 121.621 102.145

RIGHT - Stride Length (cm) 131.545 107.034 107.147 103.864 92.018 122.700 105.889 126.518 135.651 132.149 99.750

LEFT - Step Width (cm) 24.266 21.818 10.432 20.783 14.901 10.561 13.370 12.703 22.072 5.130 13.121

RIGHT - Step Width (cm) 23.584 22.246 9.658 20.831 16.205 11.800 12.771 11.068 22.414 5.007 14.479

LEFT - Step Time (secs) 0.720 0.600 0.640 0.680 0.860 0.580 0.640 0.580 0.720 0.640 0.640

RIGHT - Step Time (secs) 0.840 0.520 0.680 0.740 0.940 0.520 0.700 0.600 0.640 0.640 0.680

LEFT - Step Speed (cm/sec) 72.992 91.985 76.983 72.460 55.938 103.951 74.859 111.102 85.096 92.391 74.717

RIGHT - Step Speed (cm/sec) 79.889 97.556 83.398 78.924 51.335 104.409 83.448 84.601 78.475 88.731 80.404

LEFT - Stride Time (secs) 1.580 1.140 1.300 1.420 1.720 1.060 1.340 1.240 1.480 1.360 1.240

RIGHT - Stride Time (secs) 1.720 1.140 1.300 1.420 1.800 1.140 1.340 1.180 1.360 1.240 1.300

LEFT - Stride Speed (cm/sec) 76.397 91.046 80.649 75.316 53.704 103.577 79.062 105.760 87.938 89.427 77.658

RIGHT - Stride Speed (cm/sec) 76.480 94.070 79.079 71.130 56.212 106.166 75.135 97.189 84.782 91.770 77.573

Smart Floor - Means of 1st pass of Walking Sequence 5

Subject: 0 1 2 3 4 5 6 7 8 9 10 Mean

LEFT - Foot Length (cm) 12.317 10.799 6.809 14.145 4.373 3.071 3.462 11.492 15.350 10.724 13.522 9.642

RIGHT - Foot Length (cm) 6.058 6.616 1.745 2.703 7.988 0.706 1.730 1.057 11.476 11.143 8.068 5.390

LEFT - Foot Angle (degrees) 0.182 3.947 4.036 17.899 9.030 10.555 26.911 8.957 5.662 4.711 4.789 8.789

RIGHT - Foot Angle (degrees) 6.931 16.894 10.617 25.697 8.736 2.775 30.389 6.611 3.369 2.836 17.376 12.021

LEFT - Step Length (cm) 10.221 5.920 5.373 2.833 0.154 1.347 4.445 7.127 2.420 0.742 0.619 3.745

RIGHT - Step Length (cm) 1.986 7.770 0.267 6.382 7.019 3.239 5.337 16.263 14.331 4.753 1.737 6.280

LEFT - Stride Length (cm) 3.072 5.637 3.138 10.117 8.360 12.112 0.098 4.070 11.470 9.494 0.712 6.207

RIGHT - Stride Length (cm) 3.768 3.626 8.062 3.501 10.891 1.993 3.734 12.172 7.398 2.334 1.045 5.320

LEFT - Step Width (cm) 1.397 3.962 2.230 6.746 4.105 0.534 5.343 0.750 1.850 2.520 5.560 3.181

RIGHT - Step Width (cm) 1.999 4.475 3.418 11.003 5.662 1.561 4.431 1.432 1.682 2.803 6.185 4.059

LEFT - Step Time (secs) 0.169 0.009 0.049 0.068 0.051 0.014 0.043 0.016 0.034 0.027 0.012 0.045

RIGHT - Step Time (secs) 0.005 0.077 0.026 0.008 0.037 0.086 0.028 0.021 0.098 0.057 0.009 0.041

LEFT - Step Speed (cm/sec) 0.093 0.076 2.692 5.741 0.748 1.271 0.225 0.029 9.816 3.914 5.308 2.720

RIGHT - Step Speed (cm/sec) 1.987 9.700 0.731 7.997 4.122 2.385 5.759 23.761 14.189 4.239 4.166 7.185

LEFT - Stride Time (secs) 0.209 0.049 0.119 0.076 0.094 0.119 0.107 0.024 0.012 0.002 0.046 0.078

RIGHT - Stride Time (secs) 0.017 0.140 0.094 0.099 0.059 0.091 0.071 0.103 0.186 0.157 0.029 0.095

LEFT - Stride Speed (cm/sec) 3.498 1.015 0.974 8.597 2.982 1.644 3.978 5.372 6.974 6.878 2.367 4.025

RIGHT - Stride Speed (cm/sec) 1.422 6.214 3.588 0.203 0.755 4.142 2.554 11.173 7.882 1.200 1.335 3.679

4.584

Absolute Errors of Means of 1st pass of Walking Sequence 5 for PKMAS Mat and Smart Floor

76

Table 7-4: Average MAE for Each Gait Parameter (single pass vs. single pass)

As shown in Table 7-4 above, using only the exact same trimmed walking sequence for the

high-resolution mat and smart floor, across all subjects, step and stride times were the most similar

with a maximum MAE of 0.095 seconds. Foot angles were the most dissimilar with the right foot

angle’s MAE being 12.021 degrees. This is possibly due to using different methods for calculating

the foot angle between the PKMAS software and our method described in 6.2.3.

Table 7-5: Smart Floor Gait Means (entire floor)

MAE MAE

RIGHT - Foot Angle (degrees) 12.021 LEFT - Stride Speed (cm/sec) 4.025

LEFT - Foot Length (cm) 9.642 LEFT - Step Length (cm) 3.745

LEFT - Foot Angle (degrees) 8.789 RIGHT - Stride Speed (cm/sec) 3.679

RIGHT - Step Speed (cm/sec) 7.185 LEFT - Step Width (cm) 3.181

RIGHT - Step Length (cm) 6.280 LEFT - Step Speed (cm/sec) 2.720

LEFT - Stride Length (cm) 6.207 RIGHT - Stride Time (secs) 0.095

RIGHT - Foot Length (cm) 5.390 LEFT - Stride Time (secs) 0.078

RIGHT - Stride Length (cm) 5.320 LEFT - Step Time (secs) 0.045

RIGHT - Step Width (cm) 4.059 RIGHT - Step Time (secs) 0.041

Subject: 0 1 2 3 4 5 6 7 8 9 10

LEFT - Foot Length (cm) 23.528 19.556 21.396 20.758 21.307 25.200 17.503 20.038 19.659 19.286 18.340

RIGHT - Foot Length (cm) 23.491 24.126 24.629 27.106 23.210 26.481 22.204 21.259 22.380 16.895 23.569

LEFT - Foot Angle (degrees) 3.381 -0.143 4.287 -11.122 0.340 -3.114 -7.703 -0.832 -0.013 0.974 0.207

RIGHT - Foot Angle (degrees) 2.798 -0.164 3.868 4.518 0.622 -1.831 10.681 4.383 5.609 -0.630 2.509

LEFT - Step Length (cm) 58.208 48.824 58.795 55.290 49.124 59.358 51.023 63.498 66.068 62.989 46.445

RIGHT - Step Length (cm) 65.811 57.957 58.597 59.420 51.526 62.290 56.461 66.657 71.360 62.957 47.510

LEFT - Stride Length (cm) 125.136 109.416 118.043 110.543 98.259 121.204 105.127 133.048 141.361 125.301 95.334

RIGHT - Stride Length (cm) 128.741 107.002 111.407 112.200 98.910 122.653 108.437 129.961 139.094 122.750 97.058

LEFT - Step Width (cm) 22.330 22.149 7.612 19.756 15.041 12.515 11.350 10.479 21.462 6.863 11.616

RIGHT - Step Width (cm) 21.470 21.674 7.809 20.411 15.809 11.638 10.947 10.725 19.845 6.460 12.061

LEFT - Step Time (secs) 0.831 0.620 0.664 0.750 0.840 0.590 0.723 0.630 0.740 0.667 0.643

RIGHT - Step Time (secs) 0.800 0.617 0.672 0.772 0.885 0.585 0.710 0.610 0.760 0.653 0.689

LEFT - Step Speed (cm/sec) 69.540 79.473 86.935 72.129 57.171 98.678 70.206 101.105 84.622 93.558 72.729

RIGHT - Step Speed (cm/sec) 80.932 94.383 85.164 74.115 56.576 104.601 77.241 106.997 90.419 95.299 72.059

LEFT - Stride Time (secs) 1.605 1.204 1.320 1.515 1.713 1.160 1.408 1.247 1.486 1.320 1.309

RIGHT - Stride Time (secs) 1.669 1.228 1.325 1.540 1.733 1.180 1.392 1.227 1.533 1.280 1.356

LEFT - Stride Speed (cm/sec) 76.837 91.409 88.855 74.434 57.855 103.345 73.978 106.121 90.688 94.970 72.907

RIGHT - Stride Speed (cm/sec) 77.195 87.077 83.134 70.984 57.858 105.441 76.332 105.369 88.431 94.298 72.083

Smart Floor - Means of Entire Walking Sequence

77

Table 7-6: Absolute Errors Between PKMAS Mat and Smart Floor (single pass vs. entire floor)

Table 7-7: Average MAE for Each Gait Parameter (single pass vs. entire floor)

As shown in Table 7-7 above, when using the entire floor’s walking sequence captured by

the smart floor in comparison to the single pass data of the high-resolution mat, MAE differences

were similar to Table 7-4Table 7-3 and followed the same general trend. However, there is an

overall lower MAE when using the semi-long form data for smart floor gait calculations. By

capturing more footfalls and gait segments on the smart floor, a clearer picture of a person’s

walking style appeared. The gait calculations appear to be closer to the “ground truth” data

gathered by the high-resolution mat. Table 7-8 and Table 7-9 show the variances of the extracted

Subject: 0 1 2 3 4 5 6 7 8 9 10 Mean

LEFT - Foot Length (cm) 11.150 11.071 8.580 8.664 8.046 1.852 8.412 8.507 15.734 8.054 9.158 9.021

RIGHT - Foot Length (cm) 11.899 6.573 6.091 1.951 5.601 0.597 4.459 7.209 12.123 10.568 3.442 6.410

LEFT - Foot Angle (degrees) 3.909 5.086 3.459 17.636 4.905 9.001 18.679 1.512 2.231 3.073 5.288 6.798

RIGHT - Foot Angle (degrees) 9.455 7.931 7.009 22.552 8.160 1.634 25.370 6.478 8.027 1.896 11.829 10.031

LEFT - Step Length (cm) 4.613 2.189 1.026 8.461 1.863 2.362 3.390 0.398 1.404 1.880 4.307 2.899

RIGHT - Step Length (cm) 3.280 0.474 1.439 4.420 0.336 0.473 1.201 5.008 2.611 2.133 3.423 2.254

LEFT - Stride Length (cm) 4.961 0.008 5.480 10.808 4.544 2.624 3.186 2.164 0.257 5.814 7.523 4.306

RIGHT - Stride Length (cm) 6.572 3.658 3.802 4.836 3.999 2.040 1.186 8.729 3.956 7.065 3.737 4.507

LEFT - Step Width (cm) 0.539 4.293 0.590 5.719 4.245 2.488 3.323 1.474 1.240 0.787 4.055 2.614

RIGHT - Step Width (cm) 0.116 3.903 1.569 10.583 5.266 1.399 2.607 1.089 0.888 1.350 3.767 2.958

LEFT - Step Time (secs) 0.058 0.029 0.025 0.002 0.071 0.024 0.040 0.034 0.014 0.000 0.015 0.028

RIGHT - Step Time (secs) 0.045 0.020 0.034 0.024 0.018 0.021 0.018 0.011 0.023 0.044 0.018 0.025

LEFT - Step Speed (cm/sec) 3.359 12.588 7.260 5.410 0.485 6.543 4.878 10.027 10.291 2.747 7.296 6.444

RIGHT - Step Speed (cm/sec) 3.030 6.527 2.497 3.188 1.119 2.577 0.448 1.365 2.245 2.329 4.179 2.682

LEFT - Stride Time (secs) 0.184 0.015 0.099 0.019 0.101 0.019 0.039 0.031 0.006 0.042 0.023 0.053

RIGHT - Stride Time (secs) 0.068 0.052 0.069 0.021 0.126 0.051 0.019 0.056 0.013 0.117 0.027 0.056

LEFT - Stride Speed (cm/sec) 3.938 0.652 9.180 7.715 1.169 1.876 1.106 5.011 4.224 1.335 7.118 3.939

RIGHT - Stride Speed (cm/sec) 0.707 0.779 0.467 0.057 2.401 3.417 1.357 2.993 4.233 1.328 4.155 1.990

3.723

Absolute Errors of Means of 1st pass of Walking Sequence 5 for PKMAS Mat and Entire Walking Sequence for Smart Floor

MAE MAE

RIGHT - Foot Angle (degrees) 10.031 LEFT - Step Length (cm) 2.899

LEFT - Foot Length (cm) 9.021 RIGHT - Step Speed (cm/sec) 2.682

LEFT - Foot Angle (degrees) 6.798 LEFT - Step Width (cm) 2.614

LEFT - Step Speed (cm/sec) 6.444 RIGHT - Step Length (cm) 2.254

RIGHT - Foot Length (cm) 6.410 RIGHT - Stride Speed (cm/sec) 1.990

RIGHT - Stride Length (cm) 4.507 RIGHT - Stride Time (secs) 0.056

LEFT - Stride Length (cm) 4.306 LEFT - Stride Time (secs) 0.053

LEFT - Stride Speed (cm/sec) 3.939 LEFT - Step Time (secs) 0.028

RIGHT - Step Width (cm) 2.958 RIGHT - Step Time (secs) 0.025

78

parameters from the smart floor for the single pass and multiple pass scenarios. When calculating

the variances over the full walking sequence across the entire smart floor, step and stride times

varied the least and were the most consistent gait parameter of all the subjects. Step speeds, foot

angles, foot lengths, step lengths, and stride lengths varied the most.

Table 7-8: Smart Floor Gait Variances (single pass only)

Table 7-9: Smart Floor Gait Variances (entire floor)

Subject: 0 1 2 3 4 5 6 7 8 9 10

LEFT - Foot Length (cm) 0.025 0.047 49.136 0.108 38.173 4.969 17.643 1.727 8.277 4.427 0.642

RIGHT - Foot Length (cm) 0.006 3.856 0.032 2.742 29.931 3.220 2.642 1.074 13.504 0.035 2.637

LEFT - Foot Angle (degrees) 0.227 0.504 1.657 81.072 6.639 0.713 0.269 17.406 0.071 5.328 0.028

RIGHT - Foot Angle (degrees) 1.625 9.077 5.349 34.484 29.908 50.395 1.165 0.448 0.199 102.674 37.207

LEFT - Step Length (cm) 39.100 1.386 98.635 3.829 22.978 6.825 13.555 9.630 60.381 17.652 13.369

RIGHT - Step Length (cm) 5.215 9.049 2.992 5.794 2.515 8.280 0.007 3.599 0.000 0.000 0.179

LEFT - Stride Length (cm) 69.858 0.372 61.155 16.669 1.348 82.556 2.833 0.000 0.000 0.000 0.422

RIGHT - Stride Length (cm) 0.000 3.013 97.755 53.595 22.070 45.191 51.811 0.867 0.000 0.000 8.451

LEFT - Step Width (cm) 0.637 0.009 0.705 0.098 1.372 4.318 4.090 0.000 0.000 0.000 0.034

RIGHT - Step Width (cm) 0.000 2.120 0.054 0.279 3.753 1.998 0.019 0.080 0.000 0.000 0.104

LEFT - Step Time (secs) 0.006 0.000 0.002 0.002 0.000 0.000 0.006 0.000 0.000 0.002 0.000

RIGHT - Step Time (secs) 0.006 0.002 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.002

LEFT - Step Speed (cm/sec) 0.330 23.679 38.551 38.472 5.417 10.205 60.779 4.389 30.675 4.335 4.393

RIGHT - Step Speed (cm/sec) 0.022 2.957 7.796 8.910 0.756 7.334 33.520 313.981 0.000 0.000 6.509

LEFT - Stride Time (secs) 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.014

RIGHT - Stride Time (secs) 0.000 0.004 0.004 0.004 0.014 0.000 0.010 0.000 0.000 0.000 0.004

LEFT - Stride Speed (cm/sec) 0.108 1.128 1.613 3.480 3.535 23.956 48.285 0.000 0.000 0.000 4.301

RIGHT - Stride Speed (cm/sec) 0.000 11.753 0.415 0.020 17.940 6.839 19.848 122.659 0.000 0.000 10.869

Smart Floor - Variances of 1st pass of Walking Sequence 5

Subject: 0 1 2 3 4 5 6 7 8 9 10

LEFT - Foot Length (cm) 18.906 17.066 24.879 20.923 9.693 4.857 8.725 13.684 7.703 2.805 20.095

RIGHT - Foot Length (cm) 12.889 12.379 12.144 4.476 25.933 6.245 12.545 7.590 2.748 2.605 23.833

LEFT - Foot Angle (degrees) 23.319 16.827 38.300 59.209 7.746 18.270 63.056 7.324 16.446 7.015 7.285

RIGHT - Foot Angle (degrees) 17.771 22.981 11.501 68.792 15.353 8.466 51.216 6.247 24.778 5.500 50.816

LEFT - Step Length (cm) 23.743 56.882 6.431 9.064 22.845 2.626 25.267 6.103 9.367 14.272 22.320

RIGHT - Step Length (cm) 5.939 13.791 3.579 8.318 12.966 2.491 13.258 19.055 18.279 6.024 19.870

LEFT - Stride Length (cm) 7.034 22.930 12.491 32.011 17.007 3.834 20.505 36.123 31.911 15.680 24.152

RIGHT - Stride Length (cm) 31.361 100.145 45.747 24.392 20.199 3.217 40.393 16.960 4.137 16.291 9.299

LEFT - Step Width (cm) 3.729 3.832 1.579 1.415 2.139 0.797 1.542 2.019 2.710 2.683 1.380

RIGHT - Step Width (cm) 2.578 1.338 1.799 1.909 0.528 1.787 2.088 1.321 2.794 0.746 1.624

LEFT - Step Time (secs) 0.002 0.001 0.000 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001

RIGHT - Step Time (secs) 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.000 0.001

LEFT - Step Speed (cm/sec) 45.212 60.698 11.207 10.684 14.600 24.406 73.287 39.151 29.704 18.347 31.248

RIGHT - Step Speed (cm/sec) 22.064 79.699 20.909 29.781 10.081 8.038 25.517 22.980 39.731 29.868 47.820

LEFT - Stride Time (secs) 0.002 0.002 0.001 0.001 0.002 0.000 0.001 0.001 0.003 0.002 0.002

RIGHT - Stride Time (secs) 0.003 0.002 0.001 0.000 0.006 0.000 0.001 0.001 0.008 0.001 0.001

LEFT - Stride Speed (cm/sec) 6.248 7.192 4.369 1.981 8.099 13.656 21.860 30.894 30.090 7.033 25.172

RIGHT - Stride Speed (cm/sec) 7.540 68.825 7.586 1.850 8.060 4.403 35.146 9.250 26.149 2.401 8.245

Smart Floor - Variances of Entire Walking Sequence

79

7.4 Preliminary Person Identification

Another experiment was performed to evaluate the utility of the extracted gait parameters

and their ability to distinguish different gait patterns. In particular, a person identification classifier

was trained using only the extracted gait parameters from the smart floor data. For this, k-nearest

neighbors (k-NN) classification was applied to the smart floor’s gait parameter calculations from

the subjects’ data in the walking study. This preliminary effort of person identification based solely

off gait parameters used standard k-NN techniques without special weighting schemes.

Each of the 10 unique individuals generated 4 to 13 valid gait segments during their full

walking sequence across the entire floor. A total of 70 valid gait segments across all subjects were

generated. A valid gait segment contains at least four footfalls after gait segmentation due to turns

and leaving the floor. The minimum requirement of four footfalls ensures that every gait parameter

has enough data for a calculation (i.e. left and right strides). The feature space for each sample is

the 20 gait parameter means from each valid gait segment.

Note that previously established subject 0 is the same person as subject 8, and the two

datasets have been combined and labeled solely as 8. The k-NN class labels are the 10 subject

numbers (IDs).

Table 7-10: k-NN Data Samples and Labels

10 Subjects 70 Total Gait Segments

1 9

2 6

3 6

4 4

5 6

6 8

7 6

8 13

9 6

10 6

80

Figure 7.4 shows the 20-dimensional feature space of each gait segment sample reduced

to 2 dimensions using t-distributed stochastic neighbor embedding (t-SNE). It is purely for

visualizing the high-dimensional data and is not used in the k-NN algorithm. A perplexity of 5

was used for the t-SNE plot.

Figure 7.4: t-SNE Plot of k-NN Training Samples with Subject ID Labels

For each subject, 1 of their gait segments was randomly selected as holdout test data and

the remaining were used as the larger training set resulting in a training sample size of 60 gait

segments with class labels (subject IDs) and a test set of 10. The classification was run 1000

times for each k ranging from 1 to 29 to generate an average classification accuracy on the

holdout test data. The score metric is the mean accuracy of all 10 test data samples with 1.0

being the best and 0.0 the worst. The entire training and testing runs were performed 3 times

using different data scaling methods: raw features, min-max scaling 0 to 1, and standardization.

81

With a training sample size of 60 with 10 different class labels a maximum accuracy of

0.87 was achieved. The optimal k-neighbors value was 5 across all feature scaling methods.

Table 7-11 below shows the accuracy results omitting k values above 15 since accuracy only

decreased as k grew larger as illustrated in Figure 7.5.

Table 7-11: k-NN Classification Results

Figure 7.5: k-NN Classification Results Graph

k Raw Data MinMax Scaler Std Scaler

1 0.81 0.77 0.75

2 0.76 0.80 0.75

3 0.78 0.84 0.79

4 0.81 0.84 0.83

5 0.84 0.87 0.85

6 0.83 0.80 0.79

7 0.78 0.77 0.77

8 0.70 0.75 0.77

9 0.64 0.70 0.71

10 0.64 0.68 0.65

11 0.61 0.63 0.63

12 0.60 0.59 0.60

13 0.55 0.58 0.57

14 0.50 0.56 0.56

15 0.47 0.53 0.55

82

8 Conclusions and Future Work

8.1 Summary

This dissertation has developed methods for extracting meaningful walking data from a

custom-built smart floor using automatic calibration, machine learning, and clustering techniques.

The following sections review the contributions of this research and propose future work and

applications.

8.2 Automatic Floor Sensor Calibration

Having a specialized automatic method for calibrating the smart floor over time is critical

when the sensors are no longer directly and independently accessible after being deployed under

the tile surface. The calibration algorithm described in Chapter 4 allows sensors to be jointly

calibrated and converted to kg units while accounting for static tile weight. By learning how each

sensor behaves when experiencing no human activity, the algorithm also accounts for and removes

any source of static weight which is useful for a smart floor within a person’s home containing

furniture and other household objects.

The calibration process does not require any specialized hardware or obtrusive techniques,

merely the known weight of the person/resident is required and different sensors can be targeted

and calibrated over time by simply walking over the smart floor in a normal fashion.

8.3 Contact Point Extraction using Machine Learning Techniques

To overcome the low 1-sqft resolution of the smart floor and capture meaningful single

contact points of a person’s footfalls, a three-step process of building and training neural network

models is detailed in Chapter 5. Using a specific training set of known single contact point location

83

and weight labels paired with calibrated sensor values, a mapping and pressure profile is learned

that can be applied over the entire smart floor.

Using this learned model of how a tile subsection responds to a single contact point of

weight, it can be used with generic walking data in a larger convolutional model that learns the

larger non-linear relationships of how the entire floor disperses and responds to weight. The

convolutional model, during training, learns how to account for physical differences in the tile

coupling, sensorless rubber edges, static weight, and other inconsistencies.

The encoder portion of this model can be extracted and used to predict a location and weight

value for every tile of the smart floor for every time sample. These predicted values are used as

single contact points of a person’s walking pattern over time. They can be used for tracking,

clustering, identification, deviation detection, and gait analysis.

8.4 Footfall Clustering and Gait Analysis

The extracted contact point features of time, location, and weight are used in a recursive

Hierarchical Clustering Analysis algorithm explained in Chapter 6 that determines which points

likely belong to which footfall. The unique recursive element of the method ensures that any

incorrectly grouped footfalls will be further split again and again until only single foot images

remain. The algorithm also automatically identifies and removes turning data so only semi-straight

reliable moments of a person’s walking sequence are used to generate gait measurements.

Once the set of footfalls is properly segmented, gait analysis can be performed to measure

how well a person is walking on the smart floor. A total of 20 gait parameter measurements can

currently be calculated on the smart floor walking data described in Section 6.2. The gait results

were comparable to those captured by a high-resolution gait mat. The smart floor’s gait analysis

84

can be performed on normal everyday in-home walking data of a person living within the

SmartCare apartment without the need for expensive high-resolution mats or the resident having

to visit a dedicated clinic and perform a specific routine.

In the future, this clustering algorithm should account of multiple people walking on the

floor simultaneously and near one another. Possible methods to explore would involve tracking

using a Kalman Filter and Dynamic Time Warping to learn a model or profile of an individual’s

footfalls.

8.5 Adapt Models for Apartment Floor Data

All smart floor methods described in this dissertation were constructed using a smaller

version of the floor within a laboratory setting. A critical next step is to adapt and apply the

calibration methods, models, and clustering techniques for application with the SmartCare

apartment’s larger smart floor. The general principles of these methods hold true for the apartment

floor, but special consideration would have to be taken into account for the larger number of

sensors, different spatial arrangement, and gaps of the apartment floor.

Semi-long form data from the apartment has already been collected from the volunteers

living in the apartment for different periods of time. The volunteers’ walking data is an abundant

source of new training data that will be used in calibration, model training, and clustering for the

apartment smart floor.

8.6 Incorporate Other Sensor Data from Apartment

The smart floor is not the only source of data collection within the SmartCare apartment.

Embedded sensing technologies also collect electricity usage, water usage, IR locations,

85

temperature, humidity, luminosity, and drawer/cabinet activity. These features could be used

separately or together with floor data to learn a resident’s daily activity and identify deviations and

irregularities. They could also be used to help label and separate different people to aid in tracking

if multiple people are living in the apartment.

86

9 References

[1] A. S. Alharthi, S. U. Ozanyan and K. B. Yunas, "Deep Learning for Monitoring of Human

Gait: A Review," IEEE Sensors Journal, vol. 19, no. 21, pp. 9575-9591, 2019.

[2] "AgingMO - Tiger Place," [Online]. Available: https://agingmo.com/tiger-place-institute/.

[3] "CASAS," [Online]. Available: http://casas.wsu.edu/about.

[4] "Tiger Place Research Projects," [Online]. Available: https://agingmo.com/research-

projects/aging-in-place/tigerplace/.

[5] "CASAS Research Projects," [Online]. Available: http://casas.wsu.edu/publications/.

[6] G. Qian, J. Zhan and A. Kidané, "People Identification Using Floor Pressure Sensing and

Analysis," IEEE Sensors Journal, vol. 10, no. 9, pp. 1447-1460, 2010.

[7] O. Costilla-Reyes, R. Vera-Rodriguez, P. Scully and K. B. Ozanyan, "Analysis of Spatio-

Temporal Representations for Robust Footstep Recognition with Deep Residual Neural

Networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no.

2, pp. 285-296, 2019.

[8] R. Vera-Rodriguez, J. S. D. Mason, J. Fierrez and J. Ortega-Garcia, "Comparative Analysis

and Fusion of Spatiotemporal Information for Footstep Recognition," IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 35, no. 4, pp. 823-834, 2013.

[9] A. Bränzel, C. Holz, D. Hoffmann, D. Schmidt, M. Knaust, P. Lühne and P. Baudisch,

"GravitySpace: tracking users and their poses in a smart room using a pressure-sensing

floor," in SIGCHI Conference on Human Factors in Computing Systems, 2013.

[10] A. Steinhage, C. Lauterbach and A. Techmer, "2-Large-Area Wireless Sensor System for

Ambient Assisted Living," in SENSOR 2013, 2013.

87

[11] P. Srinivasan, D. Birchfield, G. Qian and A. Kidane, "Design of a pressure sensitive floor

for multimodal sensing," in IEEE - Information Visualization, 2005.

[12] J. Suutala and J. Röning, "Towards the adaptive identification of walkers: Automated feature

selection of footsteps using distinction sensitive LVQ," in Workshop on Processing Sensory

Information for Proactive Systems, 2004.

[13] J. Suutala and J. Röning, "Methods for person identification on a pressure-sensitive floor:

Experiments with multiple classifiers and reject option," Information Fusion, no. 9, pp. 21-

40, 2008.

[14] S. Reddy, "Person Identification and Anomaly Detection using Gait Parameters Extracted

from Time Series Data," The University of Texas at Arlington, Arlington, 2017.

[15] O. Oluwadare, "Gait Analysis on a Smart Floor for Health Monitoring," The University of

Texas at Arlington, Arlington, 2015.

[16] A. Alamdari and V. Krovi, "A Review of Computational Musculoskeletal Analysis of

Human Lower Extremities," Human Modelling for Bio-Inspired Robotics, 2017.

[17] J. Perry and J. M. Burnfield, Gait Analysis: Normal and Pathological Function, New York:

Slack Inc, 2010.

[18] "The Gait Cycle: Phases, Parameters to Evaluate & Technology," Tekscan, Inc., [Online].

Available: https://www.tekscan.com/blog/medical/gait-cycle-phases-parameters-evaluate-

technology. [Accessed 2020].

[19] S. Raschka and V. Mirjalili, Python Machine Learning - Second Edition: Machine Learning

and Deep Learning with Python, scikit-learn, and TensorFlow, Birmingham: Packt

Publishing, 2017.

88

[20] scikit-learn, "Agglomerative Clustering Using sklearn," [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html.

[Accessed 2020].

[21] G. J. Szekely and M. L. Rizzo, "Hierarchical Clustering via Joint Between-Within Distances:

Extending Ward's Minimum Variance Method," Journal of Classification, no. 22, pp. 151-

183, 2005.

[22] A. Burkov, The Hundred-Page Machine Learning Book, Quebec City: Andriy Burkov, 2019.

[23] G. Záruba, M. Huber, K. Daniel and N. B. Burns, "SmartCare - An Introduction," in PerCom,

2017.

[24] K. Daniel, M. Huber, G. Záruba, N. B. Burns and P. Sassaman, "PESTO: Data Integration

for Visualization and Device Control in the SmartCare Project," in PerCom, 2016.

[25] "FlexiForce Load/Force Sensors and Systems," Tekscan, [Online]. Available:

https://www.tekscan.com/flexiforce-load-force-sensors-and-systems. [Accessed 2020].

[26] "BeagleBone Black," Texas Instruments, [Online]. Available: https://beagleboard.org/black.

[Accessed 2020].

[27] scikit-learn, "Gaussian Mixture Models," scikit-learn, [Online]. Available: https://scikit-

learn.org/stable/modules/mixture.html. [Accessed 2020].

[28] K. P. Burnham and D. R. Anderson, Model Selection and Multimodel Inference: A practical

information-theoretic approach, Springer-Verlag.

[29] A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools,

and Techniques to Build Intelligent Systems, Sebastopol: O'Reilly Media, 2017.

[30] Chollet, Francois and Others, "Keras," 2015. [Online]. Available: https://keras.io/.

89

[31] "TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems," 2015. [Online].

Available: http://tensorflow.org/.

[32] M. I. Jordan and D. E. Rumelhart, "Forward Models: Supervised Learning with a Distal

Teacher," Cognitive Science, no. 16, pp. 307-354, 1992.

[33] "ProtoKinetics," ProtoKinetics, LLC, [Online]. Available: https://www.protokinetics.com/.

[34] PKMAS: ProtoKinetics Motion Analysis Software User Guide, Peekskill, NY, USA:

Zenometrics, LLC, 2012.

