Lab 1 - Miscellaneous Components

CSE 3323 - Electronics for Computer Engineering

In this lab, we will build a variety of simple circuits to help illustrate the basic functionality of common electronic components. This will include: Voltage Regulators, Photoresistors, mechanical switches, and proper power supply usage.

Students work in pairs (except one group of 3) during lab time.
Each student will submit a PDF lab report (due by one week) regarding the lab measurements and the circuits built.

What you specifically should include in your lab report is indicated in RED throughout this document. You should also elaborate to discuss the procedure of each individual circuit AND discuss your results/measurements/thoughts.

Lab reports are individual work but include your lab partner's name in your report.
Tools Used:

- Digital Multimeters
o Thsinde 18B+ (yellow)
o Mastech MS8268 (green)
- Current-Limited Power Supplies
o DC Power Supply, Yihua YH-302D
o DC Regulated Power Supply, Tekpower TP3005T
- Digital Oscilloscope
o Siglent SDS 1202X-E, 200MHz
- Signal Generator
o Siglent SDG1025, 25MHz, $125 \mathrm{MSa} / \mathrm{s}$
- IDL-800 Digital Lab
- Wire cutters/strippers, probes, banana connectors, alligator clips, jumper wires, solderless breadboards, etc.

Components Used:

- Note: You can go to Mouser.com and search these part numbers (below) to find their specific specs and datasheets or just click their hyperlink to find their product page
- Resistors, potentiometers, capacitors, and LEDs (various values)
- Linear Voltage Regulator: 511-L7805CV
- Photoresistor: GM5539
- SPST Push Button Switch: 506-FSM4JH
- SPDT Slide Switch: 612-EG1218

NOTE: For all Vout (voltage output) mentions below, implies using your Multimeter to measure the Vout directly. We will not use the oscilloscope to measure any voltages today.

Directed Part of Lab:

1. Linear Voltage Regulator (regulated 5.0V output)

NOTE: For this part, set your Power Supply's current limit to 50 mA
a. Build this circuit with the Linear Voltage Regulator, find the Voltage Regulator's datasheet with the part number/link above to learn its pinout

b. After the circuit is fully built, incrementally increase the power supply voltage Vin from 1.0 V to 8.0 V (in 0.5 V increments), stopping to measure both the input voltage and output voltage of the linear regulator (record all Vin and Vout values in a table)
c. What is the minimum Vin value when the Vout "levels off" at the desired 5.0 V output and remains constant? (make fine power supply voltage adjustments to find this value)
i. How does this measured value compare to the datasheet's specs?
d. Keeping your input at the minimum Vin you found, attach a resistive load (470Ω resistor) to the Vout and GROUND.
i. Is the Vout still a steady 5.0 V ?
ii. With the load still attached, find the new Vin minimum
iii. How does this measured value compare to the datasheet's specs?
2. Photoresistor (or Light-Dependent Resistor, LDR, or Photo-Conductive Cell) NOTE: For this part, no power supply is needed, only your Multimeter
a. A Photoresistor is a 2-lead component that acts as a light-controlled variable resistor
b. Normally behaves as such:
i. More Light (less dark) \rightarrow Smaller Resistance
ii. More Dark (less light) \rightarrow Higher Resistance
c. Measure and record the resistance of the Photoresistor in 3 situations:
i. Complete Darkness
ii. Normal Lab Light
iii. Bright Flashlight Pointed Directly at the Photoresistor

Individual Part of Lab:

3. Photoresistor continued

NOTE: For this part, set your Power Supply's current limit to 20 mA
a. Use a 5 V supply, 1 Photoresistor, and 1 normal resistor (you decide upon the most appropriate Ω value to give you the widest range of voltage output) to construct two simple circuits to accomplish the following:
i. More light input \rightarrow More voltage output (Vout)
ii. More light input \rightarrow Less voltage output (Vout)
iii. Draw both of these circuits in your reports and record some of your Vout readings under different lighting conditions
b. Replace the normal resistor with a $100 \mathrm{k} \Omega$ Potentiometer. Use it as a variable resistor to "set" the Vout to 2.5 V under "normal lab light" conditions. So now if the circuit is darkened, the Vout drops below 2.5V. If the circuit is illuminated more brightly, the Vout goes above 2.5 V .
i. Draw this circuit in your report and record some of your Vout readings under different light conditions
ii. Also record what Ω value the POT was set to in order to achieve the "normal" 2.5 V output
iii. Demo to the TA or Instructor

4. Switch Basics

a. SPDT (Single Pole, Double Throw)
i. A SPDT mechanical switch has 3 leads, the middle lead is always connected to one of the other two outer leads. But it can only be connected to either once at a time. It can "throw" itself to two possible connections (double throw). It holds its state, not momentary.
ii. Only two possible states:

1. $\mathbf{L} \mathbf{1}$ is connected to $\mathbf{C O M}$, and $\mathbf{L} 2$ is floating (not connected)
2. $\mathbf{L} \mathbf{2}$ is connected to $\mathbf{C O M}$, and $\mathbf{L} \mathbf{1}$ is floating (not connected)

iii. Use a 5 V supply with a current limit of 20 mA . Use two resistors, two LEDs, and one SPDT Slide Switch to make a circuit that only turns ON one LED at a time. Moving the switch alternates between the two. Pick resistor values so only about $\sim 5 \mathrm{~mA}$ are flowing through any one LED.
iv. Draw the circuit in your lab report and demo to the TA or Instructor
b. SPST (Single Pole, Single Throw)
i. A SPST mechanical switch has 2 true leads but the packaging might come with 4 lead connections available. Pressing or releasing the button simply connects or disconnects the 2 leads.
ii. The specific switch we are using is a "Momentary Tactile" switch, which means it does not hold the state once you release the button. It returns to its normal default state. This specific switch is a N.O. switch (Normally Open). Some are available as N.C. switches (Normally Closed).
iii. Only two possible states for our N.O. example:
3. Not Pressing Button: L1 and L2 are NOT connected (open)
4. Press Button: L1 and L2 are DIRECTLY connected (closed)

iv. Use a 5 V supply with a current limit of 10 mA . Use 1 Push Button Switch, and $110 \mathrm{k} \Omega$ resistor to construct two simple circuits to accomplish the following:
5. "Pull-Up Configuration"
a. Not Pressing Button \rightarrow Vout $=\sim 5 \mathrm{~V}$
b. Pressing Button \rightarrow Vout $=0 \mathrm{~V}$
6. "Pull-Down Configuration"
a. Not Pressing Button \rightarrow Vout $=0 \mathrm{~V}$
b. Pressing Button \rightarrow Vout $=\sim 5 \mathrm{~V}$
7. DOUBLE CHECK THAT YOU ARE NOT SHORT-CIRCUITING ANYTHING, MAKE SURE YOU HAVE A 10mA CURRENT LIMIT
8. Draw both of these circuits in your reports and record all of your Vout readings
9. Demo both circuits to the TA or Instructor

More information regarding all types of switches: $\underline{\text { SparkFun Tutorial }}$

