
The University of Texas at Arlington

Lecture 11
Interrupts

CSE 3442/5442
Embedded Systems 1

Based heavily on slides by Dr. Gergely Záruba and Dr. Roger Walker

External PIC Influence

• We don’t always just want data transfer from pin
connections (input or output)
– Regardless of the data’s value, the same actions are

performed
• Instead we can have the values on pin

connections influence or control which segments
of code/functions are used
– Based off input, we can handle things in a different

particular manner
• An Interrupt uses hardware to cause special

software execution
2

Polling vs. Interrupts

• Polling
– Continuously monitor the status of a device, bit, or pin
– When the condition is met, perform the service
– Wastes the PIC’s time and resources

• Only “looking” at a single location
– Can get stuck (infinite loop) if condition is never met
– Could miss other important input data or events

while(1)
{

if(PORTBbits.RB0 == 1)
break;

}
//or

while(PORTBbits.RB0 == 0); 3

Polling vs. Interrupts

• Interrupts
– Whenever a device (pin, peripheral) needs the PIC’s

service, it notifies by sending an interrupt signal
• Asynchronous (can happen at any time)

– When that signal is detected…
• PIC stops (pauses) its current actions
• Handles (serves) the source of the interrupt
• Returns exactly where the PIC left off (resumes)

– Doesn’t bog-down the PIC’s resources
– Can serve many devices (multiple interrupt sources)

• Each can get the PIC’s attention at any time
– Can assign priorities to each interrupt

• “Interrupt an interrupt”
– Can also ignore (mask) interrupt sources at any time
– When sleeping, they can wake up the microcontroller 4

Interrupt Handling

MOVLW 0x30

ADDLW 0x1F

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Main Program
(No Interrupts)

MOVLW 0x30

ADDLW 0x1F

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Main Program
(With Interrupts)

Interrupt Inst 1

Interrupt Inst 2

Interrupt Inst 3

return

Interrupt
Occurs

(pause)

Interrupt
Service
Routine

Main
Program

Continues
(resumes)

(serves)

…

5

Basic Example

• When PORTB pin B0 is brought HIGH (1)
– Go to function Input_Detected()

6

Basic Example
(No Interrupts)

void main()
{

int a, b, c = 0;
while(1)
{ //main program

…

if(PORTBbits.B0 == 1)
Input_Detected();

//main program continues
…
…

}
}
void Input_Detected()
{

printf(“Pin B0 is 1!!!\n”);
return;

}

OR

void main()
{

int a, b, c = 0;
while(1)
{ //main program

…

while(PORTBbits.B0 == 0);
//wait here until B0 is 1

Input_Detected();

//main program continues
…

}
}
void Input_Detected()
{

printf(“Pin B0 is 1!!!\n”);
return;

} 7

Basic Example
(With an Interrupt)

void main()
{

int a, b, c = 0;
//set up and enable Interrupts

while(1)
{ //main program

…
…

//main program continues
…
…

}
}
void Input_Detected()
{

printf(“Pin B0 is 1!!!\n”);
return;

}

void interrupt ISR_HIGH()
{

//Interrupt detected on pin B0
…
…

Input_Detected();
…
…

return;
}

• Can now detect B0 change at ANY POINT IN TIME
• Interrupts are detected “in the background”
• Essentially: Hardware-controlled function calling

8

Interrupt Service Routines

• Where to “jump” when an interrupt is triggered?
– Need a sub-routine to handle interrupts

• Interrupt Service Routines (ISR) serve that purpose
• The ISRs have a fixed location in Program ROM

– If multiple ISRs, the group of locations is the interrupt vector table
• PIC18 only has three locations to handle interrupts but we

only have control of two of them for “normal” interrupts
– Program ROM: 0x0008 – HIGH Priority
– Program ROM: 0x0018 – LOW Priority

9

As there is limited space at these
addresses it is a good idea to place
a GOTO instruction at the interrupt
vector jumping to a remote location

10

As there is limited space at these
addresses it is a good idea to place
a GOTO instruction at the interrupt
vector jumping to a remote location

ORG 0000H
GOTO MAIN

ORG 0008H
GOTO HP_ISR

ORG 0018H
GOTO LP_ISR

ORG 50H
HP_ISR …

ORG 150H
LP_ISR …

ORG 250H
MAIN …

11

As there is limited space at these
addresses it is a good idea to place
a GOTO instruction at the interrupt
vector jumping to a remote location

ORG 0000H
GOTO MAIN

ORG 0008H
GOTO HP_ISR

ORG 0018H
GOTO LP_ISR

ORG 50H
HP_ISR …

ORG 150H
LP_ISR …

ORG 250H
MAIN …

50H

150H

250H

HP_ISR

LP_ISR

MAIN

12

What Happens When an Interrupt Hits?

1. The current instruction’s execution is finished and
the next instruction’s address is pushed to the stack

– Interrupts are disabled for HP (GIE or GIEH or GIEL cleared)

2. The PC is loaded with the interrupt vector
– Jump to the ISR

3. The instructions in the ISR are executed until a
RETFIE instruction
– Return From Interrupt Exit

4. RETFIE will cause the microcontroller to pop the
PC from the stack and resume normal operations

– Interrupts are re-enabled (GIE or GIEH or GIEL set) 13

Sources of Interrupts

1. Timers
2. Hardware Interrupts (external pins, INT)

– PORTB: RB0, RB1, and RB2
3. Serial Communication

– Receive and Transmit
4. PORTB-Change
5. ADC
6. CCP/PWM

14

Simplified View of Interrupts

• We can easily think of an interrupt as two digital signals:
1. Enable bit can allow/disallow the actual interrupt from

happening (Enabled = Unmasked, Disabled = Masked)
2. Flag bit is set if interrupt should be invoked (something

happened)

15

Simplified View of Interrupts

• We can easily think of an interrupt as two digital signals:
1. Enable bit can allow/disallow the actual interrupt from

happening (Enabled = Unmasked, Disabled = Masked)
2. Flag bit is set if interrupt should be invoked (something

happened)
• To make things confusing, some peripherals can be masked

in a group by a PEIE mask

16

Masking Interrupts

• By default, all interrupts are masked (disabled)
– The PIC will not respond to any interrupts

• Up to the user to enable them if they are needed
• Enabling/disabling interrupts is done through

designated registers in the SFR:
– INTCON, INTCON2, INTCON3
– RCON
– PIR1, PIR2
– PIE1, PIE2
– IPR1, IPR2

• All interrupts can be masked by clearing the GIE
(Global Interrupt Enable) bit in INTCON (default) 17

Enabling Interrupts

1. Allow the specific interrupt to occur
– INTCONbits.TMR0IE = 1 (timer 0 can interrupt)
– INTCON3bits.INT1IE = 1 (INT 1 can interrupt)
– PIE1bits.ADIE = 1 (ADC can interrupt)
– …

2. If specific interrupt falls into Peripheral
category, must also enable another bit

– INTCONbits.PEIE = 1
3. Allow any interrupt to occur

– INTCONbits.GIE = 1
18

Two Levels of Priorities
RCONbits.IPEN

• The PIC18 has two levels of interrupts: HIGH and LOW
• By default (when reset) all interrupts are high priority (00008H)
• In RCON we can enable the two-level priority option

• Then we can assign low or high priority to interrupts by
setting/clearing an interrupt priority bit in the IPRx SFRs

• This means there really are three bits controlling each interrupt
– The INT0 (RB0) hardware interrupt can only be of high priority

• Most importantly: When handling a low priority interrupt,
high priority interrupts can steal the processor away 19

Logical View of High Priority Interrupts

20

Logical View of
All Interrupts

21

Logical View of
All Interrupts

1

0

22

What Happens to Other
Important Registers?

• What happens to other important registers (WREG,
Status, BSR) that may be impacted by an interrupt
– especially as they should be found the same way as they

were left when returning
• The solution lies in the ISR having to save these

registers at the beginning and restoring at the end
• High-Priority

– PIC18 automatically stores them in shadow registers
– To restore registers use RETFIE 1

• Low-Priority
– Programmer must store them manually 23

What Happens to Other Important
Registers? – Fast Context Switching

• There is a one-deep shadow register set for WREG,
Status, and BSR (similar to CALL and RETURN)

When jumping to
High-Priority ISR

When
returning

from High-
Priority ISR

24

Shadow Registers

MOVLW 0x30

ADDLW 0x1F

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Main Program
(With Interrupts)

Interrupt Inst 1

Interrupt Inst 2

Interrupt Inst 3

RETFIE 1

ISR

…

25

Shadow Registers

MOVLW 0x30

ADDLW 0x1F

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Main Program
(With Interrupts)

Interrupt Inst 1

Interrupt Inst 2

Interrupt Inst 3

RETFIE 1

…

ISR

26

Shadow Registers

MOVLW 0x30

ADDLW 0x1F

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Main Program
(With Interrupts)

Interrupt Inst 1

Interrupt Inst 2

Interrupt Inst 3

RETFIE 1

…

ISR

27

External INT Interrupts

• INT0, INT1, and INT2 are all interrupts assigned to
digital I/O pins
– To use them the corresponding TRISB bits have to be set

• INT interrupts are edge triggered (not level), thus a
change must happen on the pins to trigger an interrupt

• Whether rising (default) or falling edge triggers the
interrupt is software (INTCON2.INTEDGx bits) selectable

• When triggered (like many other flags) the ISR should
explicitly clear the INTxIF flag

• INT0 is always of high priority, the other two can be set

28

External PORTB Interrupts

• Changes on RB4:RB7 can also cause interrupts but
are on the group of the bits not individual
– Leaves B3 as the only PORTB pin without interrupt capability

• Interrupt priority can be set HIGH or LOW
• When handling interrupt, PORTB should be read and

INTCON.RBIF should be cleared
• Great for…

– keyboard interfacing
– grouped input
– parallel input

29

INTCON

30

INTCON2

31

INTCON3

32

PIR1

33

PIR2

34

PIE1

35

PIE2

36

IPR1

37

IPR2

38

RCON

39

Interrupt Programming from Assembly

• Really just a quasi-tedious job of setting the right bits in the
right registers and “org”-ing the code at the right place

ORG 0000H
GOTO MAIN

ORG 0008H
GOTO HP_ISR

ORG 00018H
GOTO LP_ISR

…
…
BSF INTCON, INT0IE
BCF INTCON2, INTEDG0
BSF INTCON, GIE

ORG 200H

HP_ISR BTFSS INTCON, INT0IF

RETFIE 1

BTG PORTB, 7

BCF INTCON, INT0IF

RETFIE 1

40

Interrupt Programming from C

• We need to define functions that are for high priority
and low priority ISRs

• We need to make sure that our ISRs are in the right
place

• We do not need to worry about context-switching,
the C compiler is going to make sure our registers are
properly handled and variables that need saving are
saved

• Interrupt handlers should start off with an “if” or a
“switch-case” complex to identify the source of the
interrupt

41

Defining ISRs in C18

• Defining functions that are for high priority
and low priority ISRs:
– At the beginning of the program, have a

prototype of all functions (including ISRs)

– Use #pragma interrupt function_name and
#pragma interruptlow function_name to tell
C18 compiler that a function is an interrupt
function (so it can use proper RETFIE returns
and fast context switching)

42

Placing ISRs in C18

• Make sure that our ISRs are in the right place
• At the beginning of the code insert goto

instructions to the interrupt vectors
• Use ASM to limit size and ensure it fits in ROM

#pragma code My_Hi_Priority_Int = 0x0008
void My_Hi_Priority_Int(void)
{

_asm
GOTO chk_isr

_endasm
}

43

Interrupt Handling in C18
#include <P18F452.h>

void My_ISR_High(void);
void My_ISR_Low(void);

#pragma code My_Hi_Priority_Int = 0x0008
void My_Hi_Priority_Int(void)
{

_asm
GOTO My_ISR_High

_endasm
}

#pragma code My_Lo_Priority_Int = 0x00018
void My_Lo_Priority_Int(void)
{

_asm
GOTO My_ISR_Low

_endasm
}

void main()
{

//main control code
//and Interrupt Settings
...

}

//other functions
...

#pragma interrupt My_ISR_High
void My_ISR_High(void)
{

//interrupt handling for HIGH
...

}

#pragma interruptlow My_ISR_Low
void My_ISR_Low(void)
{

//interrupt handling for LOW
...

}
44

Placing ISRs in XC8

• Much simpler in XC8 compiler
• Only need to know two keywords

– “interrupt” and “low_priority”

• High-Priority
void interrupt My_ISR_High(void)
{

//interrupt handling for HP
}

• Low-Priority
void interrupt low_priority My_ISR_Low(void)
{

//interrupt handling for LP
} 45

Interrupt Handling in XC8

#include <P18F452.h>

void My_ISR_High(void);
void My_ISR_Low(void);

void main()
{

//main control code
//and Interrupt Settings
...

}

//other functions
...

//placing of interrupt code at the
correct locations is automatically
handled by the XC8 compiler

void interrupt My_ISR_High(void)
{

//interrupt handling for HIGH
if(INT0IF == 1 && INT0IE == 1)

//INT0 interrupt tripped
if(TMR0IF == 1 && TMR0IE == 1)

//Timer 0 interrupt tripped
...

}

void interrupt low_priority My_ISR_Low(void)
{

//interrupt handling for LOW
if(ADIF == 1 && ADIE == 1)

//ADC conversion done
if(INT1IF == 1 && INT1IE == 1)

//INT1 interrupt tripped
if(RCIF == 1 && RCIE == 1)

//Serial reception occurred
...

} 46

ADC Interrupt Example
#include <P18F452.h>
void My_ISR_High(void);

void main()
{

ADCON1 = 0b11001110; //ADC settings
ADCON0 = 0b10000001;
PIR1bits.ADIF = 0; //Clear ADIF flag bit
IPR1bits.ADIP = 1; //ADC is HIGH Priority
PIE1bits.ADIE = 1; //Set ADIE enable bit
INTCONbits.PEIE = 1; //Set PEIE enable bit
INTCONbits.GIE = 1; //Set GIE enable bit

while(1)
{

ADCON0bits.GO = 1; //Start ADC
...// go on with other code
...

}
}

void interrupt My_ISR_High(void)
{

//interrupt handling for HIGH
if(INT0IF == 1 && INT0IE == 1)

//INT0 interrupt tripped
if(ADIF == 1 && ADIE == 1)
{

//ADC conversion done
//Get result from ADRESH/L
PIR1bits.ADIF = 0; //clear flag

}
}

47

Summary

• Interrupts are a great way to handle peripheral attention or
external happenings

• Some of the most used interrupts are timers (later),
external hardware, serial communications, and ADC ready

• All interrupts in the PIC18 can be masked in a group or
individually

• We can have two levels of priorities, with an almost fully
configurable what interrupt belong to what level
relationship

• Programming ISRs from C requires knowledge of how the
compiler is told about ISRs
– Consult the compiler’s user guide for specifics

48

	Lecture 11�Interrupts
	External PIC Influence
	Polling vs. Interrupts
	Polling vs. Interrupts
	Interrupt Handling
	Basic Example
	Basic Example�(No Interrupts)
	Basic Example�(With an Interrupt)
	Interrupt Service Routines
	Slide Number 10
	Slide Number 11
	Slide Number 12
	What Happens When an Interrupt Hits?
	Sources of Interrupts
	Simplified View of Interrupts
	Simplified View of Interrupts
	Masking Interrupts
	Enabling Interrupts
	Two Levels of Priorities�RCONbits.IPEN
	Logical View of High Priority Interrupts�
	Logical View of All Interrupts
	Logical View of All Interrupts
	What Happens to Other �Important Registers?
	What Happens to Other Important Registers? – Fast Context Switching
	Shadow Registers
	Shadow Registers
	Shadow Registers
	External INT Interrupts
	External PORTB Interrupts
	INTCON
	INTCON2
	INTCON3
	PIR1
	PIR2
	PIE1
	PIE2
	IPR1
	IPR2
	RCON
	Interrupt Programming from Assembly
	Interrupt Programming from C
	Defining ISRs in C18
	Placing ISRs in C18
	Interrupt Handling in C18
	Placing ISRs in XC8
	Interrupt Handling in XC8
	ADC Interrupt Example
	Summary

