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External PIC Influence

• We don’t always just want data transfer from pin 
connections (input or output)
– Regardless of the data’s value, the same actions are 

performed
• Instead we can have the values on pin 

connections influence or control which segments 
of code/functions are used
– Based off input, we can handle things in a different 

particular manner
• An Interrupt uses hardware to cause special 

software execution
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Polling vs. Interrupts

• Polling
– Continuously monitor the status of a device, bit, or pin
– When the condition is met, perform the service
– Wastes the PIC’s time and resources

• Only “looking” at a single location
– Can get stuck (infinite loop) if condition is never met
– Could miss other important input data or events

while(1)
{

if(PORTBbits.RB0 == 1)
break;

}
//or

while(PORTBbits.RB0 == 0); 3



Polling vs. Interrupts

• Interrupts
– Whenever a device (pin, peripheral) needs the PIC’s 

service, it notifies by sending an interrupt signal
• Asynchronous (can happen at any time)

– When that signal is detected…
• PIC stops (pauses) its current actions
• Handles (serves) the source of the interrupt
• Returns exactly where the PIC left off (resumes)

– Doesn’t bog-down the PIC’s resources 
– Can serve many devices (multiple interrupt sources)

• Each can get the PIC’s attention at any time
– Can assign priorities to each interrupt

• “Interrupt an interrupt”
– Can also ignore (mask) interrupt sources at any time
– When sleeping, they can wake up the microcontroller 4



Interrupt Handling

MOVLW 0x30

ADDLW 0x1F
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Main Program
(No Interrupts)
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(With Interrupts)
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…
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Basic Example

• When PORTB pin B0 is brought HIGH (1)
– Go to function  Input_Detected()
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Basic Example
(No Interrupts)

void main()
{

int a, b, c = 0; 
while(1)
{      //main program 

…

if(PORTBbits.B0 == 1)
Input_Detected();

//main program continues
…
…

}
}
void Input_Detected()
{

printf(“Pin B0 is 1!!!\n”);
return;

}

OR

void main()
{

int a, b, c = 0; 
while(1)
{      //main program 

…

while(PORTBbits.B0 == 0);
//wait here until B0 is 1

Input_Detected();

//main program continues
…

}
}
void Input_Detected()
{

printf(“Pin B0 is 1!!!\n”);
return;

} 7



Basic Example
(With an Interrupt)

void main()
{

int a, b, c = 0; 
//set up and enable Interrupts

while(1)
{      //main program 

…
…

//main program continues
…
…

}
}
void Input_Detected()
{

printf(“Pin B0 is 1!!!\n”);
return;

}

void interrupt ISR_HIGH()
{

//Interrupt detected on pin B0
…
…

Input_Detected();
…
…

return;
}

• Can now detect B0 change at ANY POINT IN TIME 
• Interrupts are detected “in the background”
• Essentially: Hardware-controlled function calling
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Interrupt Service Routines

• Where to “jump” when an interrupt is triggered?
– Need a sub-routine to handle interrupts

• Interrupt Service Routines (ISR) serve that purpose
• The ISRs have a fixed location in Program ROM

– If multiple ISRs, the group of locations is the interrupt vector table
• PIC18 only has three locations to handle interrupts but we 

only have control of two of them for “normal” interrupts
– Program ROM: 0x0008 – HIGH Priority
– Program ROM: 0x0018 – LOW Priority
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As there is limited space at these 
addresses it is a good idea to place 
a GOTO instruction at the interrupt 
vector jumping to a remote location
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As there is limited space at these 
addresses it is a good idea to place 
a GOTO instruction at the interrupt 
vector jumping to a remote location

ORG 0000H
GOTO MAIN

ORG 0008H
GOTO HP_ISR

ORG 0018H
GOTO LP_ISR

ORG 50H
HP_ISR …

ORG 150H
LP_ISR …

ORG 250H
MAIN …
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As there is limited space at these 
addresses it is a good idea to place 
a GOTO instruction at the interrupt 
vector jumping to a remote location

ORG 0000H
GOTO MAIN

ORG 0008H
GOTO HP_ISR

ORG 0018H
GOTO LP_ISR

ORG 50H
HP_ISR …

ORG 150H
LP_ISR …

ORG 250H
MAIN …

50H

150H
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What Happens When an Interrupt Hits?

1. The current instruction’s execution is finished and 
the next instruction’s address is pushed to the stack

– Interrupts are disabled for HP (GIE or GIEH or GIEL cleared)

2. The PC is loaded with the interrupt vector 
– Jump to the ISR

3. The instructions in the ISR are executed until a 
RETFIE instruction 
– Return From Interrupt Exit

4. RETFIE will cause the microcontroller to pop the 
PC from the stack and resume normal operations

– Interrupts are re-enabled (GIE or GIEH or GIEL set) 13



Sources of Interrupts

1. Timers
2. Hardware Interrupts (external pins, INT)

– PORTB: RB0, RB1, and RB2
3. Serial Communication

– Receive and Transmit
4. PORTB-Change
5. ADC
6. CCP/PWM
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Simplified View of Interrupts

• We can easily think of an interrupt as two digital signals:
1. Enable bit can allow/disallow the actual interrupt from 

happening (Enabled = Unmasked, Disabled = Masked)
2. Flag bit is set if interrupt should be invoked (something 

happened)

15



Simplified View of Interrupts

• We can easily think of an interrupt as two digital signals:
1. Enable bit can allow/disallow the actual interrupt from 

happening (Enabled = Unmasked, Disabled = Masked)
2. Flag bit is set if interrupt should be invoked (something 

happened)
• To make things confusing, some peripherals can be masked 

in a group by a PEIE mask

16



Masking Interrupts

• By default, all interrupts are masked (disabled)
– The PIC will not respond to any interrupts

• Up to the user to enable them if they are needed
• Enabling/disabling interrupts is done through 

designated registers in the SFR:
– INTCON, INTCON2, INTCON3
– RCON
– PIR1, PIR2
– PIE1, PIE2
– IPR1, IPR2

• All interrupts can be masked by clearing the GIE
(Global Interrupt Enable) bit in INTCON (default) 17



Enabling Interrupts

1. Allow the specific interrupt to occur
– INTCONbits.TMR0IE = 1 (timer 0 can interrupt)
– INTCON3bits.INT1IE = 1 (INT 1 can interrupt)
– PIE1bits.ADIE = 1 (ADC can interrupt)
– …

2. If specific interrupt falls into Peripheral 
category, must also enable another bit

– INTCONbits.PEIE = 1 
3. Allow any interrupt to occur

– INTCONbits.GIE = 1
18



Two Levels of Priorities
RCONbits.IPEN

• The PIC18 has two levels of interrupts: HIGH and LOW
• By default (when reset) all interrupts are high priority (00008H)
• In RCON we can enable the two-level priority option 

• Then we can assign low or high priority to interrupts by 
setting/clearing an interrupt priority bit in the IPRx SFRs

• This means there really are three bits controlling each interrupt
– The INT0 (RB0) hardware interrupt can only be of high priority

• Most importantly: When handling a low priority interrupt, 
high priority interrupts can steal the processor away 19



Logical View of High Priority Interrupts
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Logical View of 
All Interrupts
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Logical View of 
All Interrupts

1

0
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What Happens to Other 
Important Registers?

• What happens to other important registers (WREG, 
Status, BSR) that may be impacted by an interrupt 
– especially as they should be found the same way as they 

were left when returning
• The solution lies in the ISR having to save these 

registers at the beginning and restoring at the end
• High-Priority

– PIC18 automatically stores them in shadow registers
– To restore registers use RETFIE 1

• Low-Priority
– Programmer must store them manually 23



What Happens to Other Important 
Registers? – Fast Context Switching

• There is a one-deep shadow register set for WREG, 
Status, and BSR (similar to CALL and RETURN)

When jumping to 
High-Priority ISR

When 
returning 

from High-
Priority ISR
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Shadow Registers

MOVLW 0x30

ADDLW 0x1F

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8
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(With Interrupts)
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Interrupt Inst 2

Interrupt Inst 3

RETFIE 1

ISR

…
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External INT Interrupts

• INT0, INT1, and INT2 are all interrupts assigned to 
digital I/O pins
– To use them the corresponding TRISB bits have to be set

• INT interrupts are edge triggered (not level), thus a 
change must happen on the pins to trigger an interrupt

• Whether rising (default) or falling edge triggers the 
interrupt is software (INTCON2.INTEDGx bits) selectable

• When triggered (like many other flags) the ISR should 
explicitly clear the INTxIF flag

• INT0 is always of high priority, the other two can be set
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External PORTB Interrupts

• Changes on RB4:RB7 can also cause interrupts but 
are on the group of the bits not individual
– Leaves B3 as the only PORTB pin without interrupt capability

• Interrupt priority can be set HIGH or LOW
• When handling interrupt, PORTB should be read and 

INTCON.RBIF should be cleared
• Great for…

– keyboard interfacing
– grouped input
– parallel input
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INTCON
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INTCON2
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INTCON3
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PIR1
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PIR2
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PIE1
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PIE2
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IPR1
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IPR2
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RCON
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Interrupt Programming from Assembly

• Really just a quasi-tedious job of setting the right bits in the 
right registers and “org”-ing the code at the right place

ORG 0000H
GOTO MAIN

ORG 0008H
GOTO HP_ISR

ORG 00018H
GOTO LP_ISR

…
…
BSF    INTCON, INT0IE
BCF    INTCON2, INTEDG0
BSF    INTCON, GIE

ORG 200H

HP_ISR BTFSS INTCON, INT0IF

RETFIE 1

BTG PORTB, 7

BCF INTCON, INT0IF

RETFIE 1 
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Interrupt Programming from C

• We need to define functions that are for high priority
and low priority ISRs

• We need to make sure that our ISRs are in the right 
place

• We do not need to worry about context-switching, 
the C compiler is going to make sure our registers are 
properly handled and variables that need saving are 
saved

• Interrupt handlers should start off with an “if” or a 
“switch-case” complex to identify the source of the 
interrupt

41



Defining ISRs in C18

• Defining functions that are for high priority 
and low priority ISRs:
– At the beginning of the program, have a 

prototype of all functions (including ISRs)

– Use #pragma interrupt function_name and 
#pragma interruptlow function_name to tell 
C18 compiler that a function is an interrupt 
function (so it can use proper RETFIE returns 
and fast context switching)
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Placing ISRs in C18

• Make sure that our ISRs are in the right place
• At the beginning of the code insert goto

instructions to the interrupt vectors
• Use ASM to limit size and ensure it fits in ROM

#pragma code My_Hi_Priority_Int = 0x0008
void My_Hi_Priority_Int(void)
{

_asm
GOTO chk_isr

_endasm
}
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Interrupt Handling in C18
#include <P18F452.h>

void My_ISR_High(void);
void My_ISR_Low(void);

#pragma code My_Hi_Priority_Int = 0x0008
void My_Hi_Priority_Int(void) 
{

_asm
GOTO My_ISR_High

_endasm
}

#pragma code My_Lo_Priority_Int = 0x00018
void My_Lo_Priority_Int(void) 
{

_asm
GOTO My_ISR_Low

_endasm
}

void main()
{

//main control code
//and Interrupt Settings
...

}

//other functions
...

#pragma interrupt My_ISR_High
void My_ISR_High(void)
{

//interrupt handling for HIGH
...

}

#pragma interruptlow My_ISR_Low
void My_ISR_Low(void)
{

//interrupt handling for LOW
...

}
44



Placing ISRs in XC8

• Much simpler in XC8 compiler
• Only need to know two keywords

– “interrupt” and “low_priority”

• High-Priority
void interrupt My_ISR_High(void)
{

//interrupt handling for HP
}

• Low-Priority
void interrupt low_priority My_ISR_Low(void)
{

//interrupt handling for LP
} 45



Interrupt Handling in XC8

#include <P18F452.h>

void My_ISR_High(void);
void My_ISR_Low(void);

void main()
{

//main control code
//and Interrupt Settings
...

}

//other functions
...

//placing of interrupt code at the
correct locations is automatically
handled by the XC8 compiler

void interrupt My_ISR_High(void)
{

//interrupt handling for HIGH
if(INT0IF == 1 && INT0IE == 1)

//INT0 interrupt tripped
if(TMR0IF == 1 && TMR0IE == 1)

//Timer 0 interrupt tripped
...

}

void interrupt low_priority My_ISR_Low(void)
{

//interrupt handling for LOW
if(ADIF == 1 && ADIE == 1)

//ADC conversion done
if(INT1IF == 1 && INT1IE == 1)

//INT1 interrupt tripped
if(RCIF == 1 && RCIE == 1)

//Serial reception occurred
...

} 46



ADC Interrupt Example
#include <P18F452.h>
void My_ISR_High(void);

void main()
{

ADCON1 = 0b11001110; //ADC settings
ADCON0 = 0b10000001;
PIR1bits.ADIF = 0; //Clear ADIF flag bit
IPR1bits.ADIP = 1; //ADC is HIGH Priority
PIE1bits.ADIE = 1; //Set ADIE enable bit
INTCONbits.PEIE = 1; //Set PEIE enable bit
INTCONbits.GIE = 1; //Set GIE enable bit

while(1)
{

ADCON0bits.GO = 1; //Start ADC
...// go on with other code
...

}
}

void interrupt My_ISR_High(void)
{

//interrupt handling for HIGH
if(INT0IF == 1 && INT0IE == 1)

//INT0 interrupt tripped
if(ADIF == 1 && ADIE == 1)
{

//ADC conversion done
//Get result from ADRESH/L
PIR1bits.ADIF = 0; //clear flag

}
}
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Summary

• Interrupts are a great way to handle peripheral attention or 
external happenings

• Some of the most used interrupts are timers (later), 
external hardware, serial communications, and ADC ready

• All interrupts in the PIC18 can be masked in a group or 
individually

• We can have two levels of priorities, with an almost fully 
configurable what interrupt belong to what level 
relationship

• Programming ISRs from C requires knowledge of how the 
compiler is told about ISRs
– Consult the compiler’s user guide for specifics
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