
The University of Texas at Arlington

Lecture 5
PIC I/O and LCD Control

CSE 3442/5442
Embedded Systems I

Based heavily on slides by Dr. Gergely Záruba and Dr. Roger Walker

Digital Input/Output

• Only two states
– ON / OFF
– HIGH / LOW
– 1 / 0
– 5V / 0V
– 3.3V / 0V
– etc.

5V

0V

Output

Input

2

Chapter 4 – PIC I/O PORT
PROGRAMMING

• Ports are not only used for simple I/O, but
also can be used other functions
– ADC (analog-to-digital conversion)
– Timers
– Oscillator Input
– Interrupts
– Serial communication
– Capturing and Generating PWM Signals
– Programming the PIC

3

PIC18F452 Pin Diagram

4

Pin 5: RA3/AN3/Vref+

5

PIC18F452 (40 Pins) has 5 ports,
other Family Members Can Have

More or Less

6

PIC18F452 Pin Diagram
5 Ports

PORTA

PORTE

PORTC

PORTD

PORTB

7

Number of Individual Port Pins

• For example, the PIC18F452
– Port A has 7 pins
– Ports B, C, and D each have 8 pins
– Port E has only 3 pins
34 total digital IO pins

• Each port has three SFRs associated
– PORTx
– TRISx (TRIState)
– LATx (LATch)

8

SFRs in the File Registers

9

SFRs in the File Registers

RAM
FileReg

SFRs

10

SFRs in the File Registers

11

TRISx SFR

• Each of the Ports A-E in the PIC18F452 can
be used for input or output
– TRISx is used solely for the purpose of making a

given port an input or output port

• TRISx bit = 0  PORTx bit is an OUTPUT
– Can now write to the PORTx bit(s)

• TRISx bit = 1  PORTx bit is an INPUT
– Can now read in from the PORTx bit(s)

– Can set I/O bit-by-bit or whole TRIS byte at once12

PORTx and LATx SFRs

• PORTx
– For reading input coming into the PIC

• Digital High (1) or Low (0)
– For writing output from the PIC

• Writing a 1  pin is High, 0  pin is Low

• LATx
– For writing output from the PIC

• Writing a 1  pin is High, 0  pin is Low

• Point of the Latch??
13

PORTB Example

14

N and P Transistors
(MOSFET Logic)

5V

5V 5V

0V 0V

0V

15

N and P Transistors
(MOSFET Logic)

5V

5V 5V

0V 0V

0V 5V0V

16

N and P Transistors
(MOSFET Logic)

5V

5V 5V

0V 0V

0V 5V0V

17

Outputting a 0

18

MikroElektronika (img source)
http://learn.mikroe.com/ebooks/picbasicprogramming/chapter/input-output-ports/

19

MikroElektronika (img source)
http://learn.mikroe.com/ebooks/picbasicprogramming/chapter/input-output-ports/

20

PIC18F452 Pin Diagram
5 Ports

PORTA

PORTE

PORTC

PORTD

PORTB

21

PORT/TRIS Functionality is
Mapped to the SFRs

RAM
FileReg

SFRs

22

Addresses of SFR, PORTx, TRISx
(TRIState), and LATx (LATch)

23

Accessing SFRs in .ASM
PORTB as an OUTPUT

PORTB EQU 0XF81 ;in .H header file
TRISB EQU 0XF93 ;in .H header file

ORG 0x00

MOVLW 0 ;All 0’s to WREG
MOVWF TRISB ;All of PORTB is an OUTPUT

MOVLW B’10101010’
MOVWF PORTB ;Write 1/0 to PORTB pins

…

24

PORTB Example

Direction
(TRISB)
?
?
?
?
?
?
?
?

Pin Value
(PORTB)

?
?
?
?
?
?
?
?

25

Accessing SFRs in .ASM
PORTB as an OUTPUT

PORTB EQU 0XF81 ;in .H header file
TRISB EQU 0XF93 ;in .H header file

ORG 0x00

MOVLW 0 ;All 0’s to WREG
MOVWF TRISB ;PORTB is an OUTPUT

MOVLW B’10101010’
MOVWF PORTB ;Write 1/0 to PORTB pins

Direction
(TRISB)
?
?
?
?
?
?
?
?

Pin Value
(PORTB)

?
?
?
?
?
?
?
?

WREG = ?
TRISB = ?
PORTB = ?

26

Accessing SFRs in .ASM
PORTB as an OUTPUT

PORTB EQU 0XF81 ;in .H header file
TRISB EQU 0XF93 ;in .H header file

ORG 0x00

MOVLW 0 ;All 0’s to WREG
MOVWF TRISB ;PORTB is an OUTPUT

MOVLW B’10101010’
MOVWF PORTB ;Write 1/0 to PORTB pins

WREG = 0000 0000
TRISB = ?
PORTB = ?

Direction
(TRISB)
?
?
?
?
?
?
?
?

Pin Value
(PORTB)

?
?
?
?
?
?
?
?

27

Accessing SFRs in .ASM
PORTB as an OUTPUT

PORTB EQU 0XF81 ;in .H header file
TRISB EQU 0XF93 ;in .H header file

ORG 0x00

MOVLW 0 ;All 0’s to WREG
MOVWF TRISB ;PORTB is an OUTPUT

MOVLW B’10101010’
MOVWF PORTB ;Write 1/0 to PORTB pins

WREG = 0000 0000
TRISB = 0000 0000
PORTB = ?

Direction
(TRISB)
0
0
0
0
0
0
0
0

Pin Value
(PORTB)

?
?
?
?
?
?
?
?

28

Accessing SFRs in .ASM
PORTB as an OUTPUT

PORTB EQU 0XF81 ;in .H header file
TRISB EQU 0XF93 ;in .H header file

ORG 0x00

MOVLW 0 ;All 0’s to WREG
MOVWF TRISB ;PORTB is an OUTPUT

MOVLW B’10101010’
MOVWF PORTB ;Write 1/0 to PORTB pins

WREG = 1010 1010
TRISB = 0000 0000
PORTB = ?

Direction
(TRISB)
0
0
0
0
0
0
0
0

Pin Value
(PORTB)

?
?
?
?
?
?
?
?

29

Accessing SFRs in .ASM
PORTB as an OUTPUT

PORTB EQU 0XF81 ;in .H header file
TRISB EQU 0XF93 ;in .H header file

ORG 0x00

MOVLW 0 ;All 0’s to WREG
MOVWF TRISB ;PORTB is an OUTPUT

MOVLW B’10101010’
MOVWF PORTB ;Write 1/0 to PORTB pins

WREG = 1010 1010
TRISB = 0000 0000
PORTB = 1010 1010

Direction
(TRISB)
0
0
0
0
0
0
0
0

Pin Value
(PORTB)

1
0
1
0
1
0
1
0

30

Accessing SFRs in .ASM
PORTB as an OUTPUT

PORTB EQU 0XF81 ;in .H header file
TRISB EQU 0XF93 ;in .H header file

ORG 0x00

MOVLW 0 ;All 0’s to WREG
MOVWF TRISB ;PORTB is an OUTPUT

MOVLW B’10101010’
MOVWF PORTB ;Write 1/0 to PORTB pins

WREG = 1010 1010
TRISB = 0000 0000
PORTB = 1010 1010

Direction
(TRISB)
0
0
0
0
0
0
0
0

Pin Value
(PORTB)

1
0
1
0
1
0
1
0

31

Accessing SFRs in .ASM
PORTB as an OUTPUT

PORTB EQU 0XF81 ;in .H header file
TRISB EQU 0XF93 ;in .H header file

ORG 0x00

MOVLW 0 ;All 0’s to WREG
MOVWF TRISB ;PORTB is an OUTPUT

MOVLW B’10101010’
MOVWF PORTB ;Write 1/0 to PORTB pins

WREG = 1010 1010
TRISB = 0000 0000
PORTB = 1010 1010

Direction
(TRISB)
0
0
0
0
0
0
0
0

Pin Value
(PORTB)

1
0
1
0
1
0
1
0

32

PORTB as an INPUT

In order to make all the bits of PORTB an input, TRISB
must be programmed by writing 1 to all the bits. In the
code below, PORTB is configured first as an input port
by writing all 1s to register TRISB, and then data is
received from PORTB and saved in some RAM location
of the file registers:

MYREG EQU 0X20 ;Program location (RAM)

MOVLW B‘11111111’ ;All 1’s to WREG
MOVWF TRISB ;PORTB as INPUT port (1 for In)

MOVF PORTB, W ;move from filereg of PORTB to WREG
MOVWF MYREG ;save in fileReg of MYREG

33

Accessing SFRs in .ASM
PORTB as an INPUT

ORG 0x00

MYREG EQU 0X20 ;Program location (RAM)

MOVLW B‘11111111’ ;All 1’s to WREG
MOVWF TRISB ;PORTB as INPUT port

MOVF PORTB, W ;move from filereg of
PORTB to WREG

MOVWF MYREG ;save in fileReg of
MYREG

MYREG = ?
WREG = ?
TRISB = ?
PORTB = ?

Direction
(TRISB)
?
?
?
?
?
?
?
?

Pin Value
(PORTB)

?
?
?
?
?
?
?
?

5V
5V
5V
5V

0V
0V
0V
0V

34

Accessing SFRs in .ASM
PORTB as an INPUT

ORG 0x00

MYREG EQU 0X20 ;Program location (RAM)

MOVLW B‘11111111’ ;All 1’s to WREG
MOVWF TRISB ;PORTB as INPUT port

MOVF PORTB, W ;move from filereg of
PORTB to WREG

MOVWF MYREG ;save in fileReg of
MYREG

MYREG = 0000 0000 (at 0x20)
WREG = ?
TRISB = ?
PORTB = ?

Direction
(TRISB)
?
?
?
?
?
?
?
?

Pin Value
(PORTB)

?
?
?
?
?
?
?
?

5V
5V
5V
5V

0V
0V
0V
0V

35

Accessing SFRs in .ASM
PORTB as an INPUT

ORG 0x00

MYREG EQU 0X20 ;Program location (RAM)

MOVLW B‘11111111’ ;All 1’s to WREG
MOVWF TRISB ;PORTB as INPUT port

MOVF PORTB, W ;move from filereg of
PORTB to WREG

MOVWF MYREG ;save in fileReg of
MYREG

MYREG = 0000 0000 (at 0x20)
WREG = 1111 1111
TRISB = ?
PORTB = ?

Direction
(TRISB)
?
?
?
?
?
?
?
?

Pin Value
(PORTB)

?
?
?
?
?
?
?
?

5V
5V
5V
5V

0V
0V
0V
0V

36

Accessing SFRs in .ASM
PORTB as an INPUT

ORG 0x00

MYREG EQU 0X20 ;Program location (RAM)

MOVLW B‘11111111’ ;All 1’s to WREG
MOVWF TRISB ;PORTB as INPUT port

MOVF PORTB, W ;move from filereg of
PORTB to WREG

MOVWF MYREG ;save in fileReg of
MYREG

MYREG = 0000 0000 (at 0x20)
WREG = 1111 1111
TRISB = 1111 1111
PORTB = 1111 0000

Direction
(TRISB)
1
1
1
1
1
1
1
1

Pin Value
(PORTB)

1
1
1
1
0
0
0
0

5V
5V
5V
5V

0V
0V
0V
0V

37

Accessing SFRs in .ASM
PORTB as an INPUT

ORG 0x00

MYREG EQU 0X20 ;Program location (RAM)

MOVLW B‘11111111’ ;All 1’s to WREG
MOVWF TRISB ;PORTB as INPUT port

MOVF PORTB, W ;move from filereg of
PORTB to WREG

MOVWF MYREG ;save in fileReg of
MYREG

MYREG = 0000 0000 (at 0x20)
WREG = 1111 0000
TRISB = 1111 1111
PORTB = 1111 0000

Direction
(TRISB)
1
1
1
1
1
1
1
1

Pin Value
(PORTB)

1
1
1
1
0
0
0
0

5V
5V
5V
5V

0V
0V
0V
0V

38

Accessing SFRs in .ASM
PORTB as an INPUT

ORG 0x00

MYREG EQU 0X20 ;Program location (RAM)

MOVLW B‘11111111’ ;All 1’s to WREG
MOVWF TRISB ;PORTB as INPUT port

MOVF PORTB, W ;move from filereg of
PORTB to WREG

MOVWF MYREG ;save in fileReg of
MYREG

MYREG = 1111 0000 (at 0x20)
WREG = 1111 0000
TRISB = 1111 1111
PORTB = 1111 0000

Direction
(TRISB)
1
1
1
1
1
1
1
1

Pin Value
(PORTB)

1
1
1
1
0
0
0
0

5V
5V
5V
5V

0V
0V
0V
0V

39

40

Register bit manipulation

• Bit set flag
– BSF filereg, bit BSF TRISB, 4

• Bit clear flag
– BCF filereg, bit BCF PORTB, 2

• Bit toggle flag
– BTF filereg, bit

• Bit test filereg skip next instruction if clear (0)
– BTFSC filereg, bit

• Bit test filereg skip next instruction if set (1)
– BTFSS filereg, bit

MPLAB Example

• http://omega.uta.edu/~nbb0130/misc_files/
Main5_1.asm

41

http://omega.uta.edu/%7Enbb0130/misc_files/Main5_1.asm

42

Working with I/O Ports in C
Whole BYTES at a Time

#include <xc.h> //OLD  #include <p18F452.h>

void main(void)
{

unsigned char mybyte;
TRISC = 0b11111111; //PORTC is input
TRISB = 0b00000000; //PORTB is output
TRISD = 0b00000000; //PORTD is output

while(1)
{

mybyte = PORTC; //load the value of PORTC

if(mybyte < 100)
PORTB = mybyte; //send it to PORTB is it is less than 100

else
PORTD = mybyte; //otherwise, send to PORTD

}
}

43

Working with I/O Ports in C
Single BITS at a Time

#include <xc.h> //OLD  #include <p18F452.h>

void main(void)
{

unsigned char mybyte;
TRISC = 0b11111111; //PORTC is input
TRISB = 0b00000000; //PORTB is output
TRISBbits.RB4 = 1;
TRISD = 0b00000000; //PORTD is output

while(1)
{

mybyte = PORTC; //load the value of PORTC

if(mybyte < 100)
PORTB = mybyte; //send it to PORTB is it is less than 100

else
PORTD = mybyte; //otherwise, send to PORTD

mybyte = PORTCbits.RC1;
}

}

44

Fan-out

• Current can flow in (pin at 0 level) and out (pin at 1 level)
of port pins.

• This current is limited by the design of the IC.
• Fan-out is really the number of logic gates a pin can

drive but is closely connected to the total current of pins.
• Arguably, for microcontrollers it is more important to

remember the total current drawn (see LEDs driven in
QwikFlash)

45

Example of Interfacing PIC to
Components on QwikFlash

Push Button Switch

Potentiometer

LED’s

LCD

46

Example of Interfacing PIC to
Components on QwikFlash

47

Example: Parallel Digital Output
LCD Control

Driving LCD Controllers
(textbook chapter 12,
PICBook chapter 7)

48

LCDs

• Liquid Crystal Displays are frequently used with
microcontrollers and embedded devices

• Usually have their own controller for logic and
receiving commands

• Commonly have parallel digital inputs for interfacing
– Some have serial interfaces instead (SPI, I2C, etc.)

• LCD modules usually require an initialization
sequence when powered up before regular
commands can be sent
– So some small wait time should be expected (ms range)

Different LCD Types

49

Sample Image (not a PIC)

Image Source: http://www.gadgetronicx.com/lcd-interface-with-atmega32-avr/

Elon Musk has lost
his mind

50

http://www.gadgetronicx.com/lcd-interface-with-atmega32-avr/

LCD Controller

51

LCD Controller

52

53

LCD Common Pins

• Supply, “ground”, and LCD contrast voltage
• Register Select (RS)

– RS=0 for sending instructions (such as clear screen, or defining
characters)

– RS=1 for sending data to be displayed
• Enable (E)

– Essentially a clock input; a high-low transition will cause the LCD
to latch in the data on the data pins

• Data (D0-D7) or (D0-D3)
– The parallel interface pins (can use all 8 or just 4)

• Read/Write (R/W)
– Direction of I/O (if used only as a display, “grounding” this is

necessary)
Hitachi HD44780 LCD controllers are by far the most used

54

Connections to QwikFlash

LCD Module –
Hitachi HD44780
onboard controller

55

56

Typical LCD Timing for
Displaying (Write)

57

Example Initialization (Nibble
Interface)

1. Wait 100ms to make sure own initialization has
occurred

2. RS=0, (all commands)
3. 3 times: E=1,D=3,E=0, wait
4. 2 times: E=1,D=2,E=0, wait (set nibble iface)
5. E=1,D=8,E=0, wait, E=1,D=0,E=0 (two line display)
6. E=1,D=1,E=0, wait, E=1,D=0,E=0 (clear display)
7. E=1,D=0xC,E=0, wait, E=1,D=0,E=0 (Turn off cursor,

turn on display)
8. E=1,D=1,E=0, wait (auto cursor increment)

58

Cursor Positioning

• All commands (RS=0) where the MSB is
set are cursor positioning commands

• Row 1 begins with 0x80 (1000 0000)
• Row 2 begins with 0XC0 (1100 0000)
• Positions are counted left to right and auto

increment can be enabled (no need for
cursor positioning for short strings)

Hitachi HD44780 LCD controllers are by far the most used

59

Special Characters

• ASCII lower 128 characters are easy to display
(just send ASCII codes) with a few exceptions

• Japanese characters at codes 0xa0 to 0xff
• Eight user defined characters 0x0 to 0x7
• All command codes (RS=0) with MSBs ’01’ are

character generating commands
• 5x8 characters are then defined by sending their

bitmaps (sending 8 bytes where upper three bits
are always ignored)

Hitachi HD44780 LCD controllers are by far the most used

60

Debugging

• LCDs (as they are displays) are a great
tool for debugging embedded code

• Of course we need to assume that the
microcontroller works

• Displaying variables and port statuses can
be very helpful

Hitachi HD44780 LCD controllers are by far the most used

Questions?

• Textbook Ch. 4.1 and 4.2 for PIC IO examples
and more details

• Textbook Ch. 12.1 for LCD details
• LCD Videos

– https://www.youtube.com/watch?v=mo4_5vG8bbU
– https://www.youtube.com/watch?v=ZP0KxZl5N2o
– https://www.youtube.com/watch?v=85LvW1QDLLw

• Start reading Chapter 7
– PIC Programming in C

61

https://www.youtube.com/watch?v=mo4_5vG8bbU
https://www.youtube.com/watch?v=ZP0KxZl5N2o
https://www.youtube.com/watch?v=85LvW1QDLLw

	Lecture 5�PIC I/O and LCD Control
	Digital Input/Output
	Chapter 4 – PIC I/O PORT PROGRAMMING
	PIC18F452 Pin Diagram
	Pin 5: RA3/AN3/Vref+
	PIC18F452 (40 Pins) has 5 ports, other Family Members Can Have More or Less
	PIC18F452 Pin Diagram�5 Ports
	Number of Individual Port Pins
	SFRs in the File Registers
	SFRs in the File Registers
	SFRs in the File Registers
	TRISx SFR
	PORTx and LATx SFRs
	PORTB Example
	N and P Transistors�(MOSFET Logic)
	N and P Transistors�(MOSFET Logic)
	N and P Transistors�(MOSFET Logic)
	Outputting a 0
	MikroElektronika (img source)
	MikroElektronika (img source)
	PIC18F452 Pin Diagram�5 Ports
	PORT/TRIS Functionality is Mapped to the SFRs
	Addresses of SFR, PORTx, TRISx (TRIState), and LATx (LATch) �
	Accessing SFRs in .ASM�PORTB as an OUTPUT�
	PORTB Example
	Accessing SFRs in .ASM�PORTB as an OUTPUT
	Accessing SFRs in .ASM�PORTB as an OUTPUT
	Accessing SFRs in .ASM�PORTB as an OUTPUT
	Accessing SFRs in .ASM�PORTB as an OUTPUT
	Accessing SFRs in .ASM�PORTB as an OUTPUT
	Accessing SFRs in .ASM�PORTB as an OUTPUT
	Accessing SFRs in .ASM�PORTB as an OUTPUT
	PORTB as an INPUT
	Accessing SFRs in .ASM�PORTB as an INPUT
	Accessing SFRs in .ASM�PORTB as an INPUT
	Accessing SFRs in .ASM�PORTB as an INPUT
	Accessing SFRs in .ASM�PORTB as an INPUT
	Accessing SFRs in .ASM�PORTB as an INPUT
	Accessing SFRs in .ASM�PORTB as an INPUT
	Register bit manipulation
	MPLAB Example
	Working with I/O Ports in C�Whole BYTES at a Time
	Working with I/O Ports in C�Single BITS at a Time
	Fan-out
	Example of Interfacing PIC to Components on QwikFlash
	Example of Interfacing PIC to Components on QwikFlash
	Example: Parallel Digital Output�LCD Control
	LCDs
	Different LCD Types
	Sample Image (not a PIC)
	LCD Controller
	LCD Controller
	LCD Common Pins
	Connections to QwikFlash
	Slide Number 55
	Typical LCD Timing for Displaying (Write)
	Example Initialization (Nibble Interface)
	Cursor Positioning
	Special Characters
	Debugging
	Questions?

