
The University of Texas at Arlington

Lecture 6
PIC Programming in C

CSE 3442/5442
Embedded Systems 1

Based heavily on slides by Dr. Gergely Záruba and Dr. Roger Walker

Code Space Limitations

• On a general purpose PC, we don’t
usually care about our program’s size

• MB/GB/TB range for general purpose PCs
– Ex: 1300 line .C file 50 KB  40 KB .hex file

• 2MB max in PIC18’s Program ROM
• For our PIC18F452  Only 32KB

– See datasheet
2

http://omega.uta.edu/%7Enbb0130/misc_files/PIC18FXX2%20Data%20Sheet.pdf

Why C over ASM?

• While Assembly Language produces a
much smaller .HEX file than C…
– More human-readable in C

• Easier to write and less time consuming
– C is easier to modify and update

• Don’t care about absolute ROM locations
– Access to many C function libraries
– C code is portable and can be used on other

microcontrollers with little or no modification
3

C Integer Data Types
(Generic)

4

C Integer Data Types
(C18 Compiler)

5

6

C Integer Data Types
(XC8 Compiler)

6

Unsigned char
(0 to 255)

• PIC18 is 8-bit architecture, char type (8 bits) is the
most natural choice

• C compilers use signed char (-128 to +127) by
default unless we put “unsigned”
– char == signed char

7

Unsigned char array
(0 to 255)

8

Unsigned char array
(0 to 255)

9

Unsigned char array
(0 to 255)

z = 0
PORTB = ‘0’ (in code)
PORTB = 0x30 = 48 (actual)

PORTB = 0b 0011 0000 (pins) 10

Unsigned char array
(0 to 255)

z = 0
PORTB = ‘0’ (in code)
PORTB = 0x30 = 48 (actual)

PORTB = 0b 0011 0000 (pins)

Direction
(TRISB)
0
0
0
0
0
0
0
0

Pin Value
(PORTB)

0
0
1
1
0
0
0
0

PINS

11

Unsigned char array
(0 to 255)

z = 1
PORTB = ‘1’ (in code)
PORTB = 0x31 = 49 (actual)

PORTB = 0b 0011 0001 (pins) 12

Unsigned char array
(0 to 255)

z = 6
PORTB = ‘A’ (in code)
PORTB = 0x41 = 65 (actual)

PORTB = 0b 0100 0001 (pins) 13

Signed char
(-128 to +127)

• Still 8-bit data type but MSB is sign value

14

Unsigned int
(0 to 65,535)

• PIC18 is 8-bit architecture, int type (16 bits) takes
two bytes of RAM (only use when necessary)

• C compilers use signed int (-32,768 to +32,767) by
default unless we put “unsigned”
– int == signed int

15

Larger Integer Types
(short, long, short long)

16

Floating-Point Data Types

• Can store and calculate numbers with
decimals (precision)

• Always signed, can’t be unsigned
2.5, 32.05898, -1.00232, .2600313, 51156.01, etc.

• Further info: Text and Video Explanation 17

http://microchipdeveloper.com/c:understanding-floating-point-representations
https://www.youtube.com/watch?v=pQs_wx8eoQ8

Modulus

• In C can use % to perform a modulus of
two numbers (find the whole number
remainder from a “repeated subtraction”)

• 25 % 5 = 0
• 25 % 7 = 4
• 25 % 10 = 5
• 428 % 100 = 28
• 1568 % 10 = 8 18

Casting to Prevent Data Loss

?

?
19

Casting to Prevent Data Loss

20

Time Delay

• Want to have exact time differences or
spacing between certain instructions

• Three methods:
– Using a simple loop (for/while) (crude)
– Using PIC18 timer peripheral (later)
– Built-in delay functions (reliable and accurate)

21

Two Factors for
Delay Accuracy in C

1. The crystal’s frequency (int. or ext.)
– Duration of clock period for instruction cycle

2. The compiler used for the C program
– In ASM, we control the exact instructions
– Different compilers produce different ASM code

22

Time Delay Example

FOSC = 10 MHz = 10,000,000 cycles/sec

Each instruction takes 4 clock cycles (ticks)

FCY = Instruction Cycle Frequency
= 10𝑀𝑀𝑀𝑀𝑀𝑀

4
= 2.5MHz = 2,500,000 Ins/sec

TCY = Instruction Cycle Time
= 1 / 2.5MHz = 0.0000004 sec per Ins

= 0.0004 ms = 0.4 µs

How many IC (instructions) fit into 1ms?
1ms / 0.0004ms = 2,500

 2,500 Instruction Cycles take place in 1ms
 2,500 Instructions can complete in 1ms23

Instruction Cycle
FOSC = Oscillator Frequency

= 10 MHz = 10,000,000 cycles/sec

Each instruction takes 4 clock cycles (ticks)

FCY = Instruction Cycle Frequency
= FOSC

4
= 10𝑀𝑀𝑀𝑀𝑀𝑀

4
= 2.5MHz = 2,500,000 Ins/sec

TCY = Instruction Cycle Time
= 1

FCY
= 1

2.5MHz = 0.0000004 sec per Ins
= 0.0004 ms = 0.4 µs

How many IC (instructions) fit into 1ms?
1ms / 0.0004ms = 2,500

 2,500 Instruction Cycles take place in 1ms
 2,500 Instructions can complete in 1ms (generalizing since most instructions only take 1 Ins. Cycle)

FOSC

FCY

24

Delay Functions in the
XC8 Compiler

1. Include the “xc.h” header file
2. Define your crystal’s frequency

• _XTAL_FREQ
3. Can now use these 2 delay functions:

– __delay_us(x); //unsigned long (0 - 4294967295)

– __delay_ms(x); //unsigned long (0 - 4294967295)

25

26

PORT I/O Programming in C

• Btye-Size Register Access
– Labels still the same
– PORTA – PORTD
– TRISA – TRISD
– INTCON

• Bit-Addressable Register Access
– PORTBbits.RB3
– TRISCbits.RC7 or TRISCbits.TRISC7
– INTCONbits.RBIE

27

PORT I/O Programming in C

28

PORTxbits.Rxy

29

PORT I/O Programming in C

30

31

.ASM Generated from C

32

Header Files

• Remember that certain register/variable
names are not native C keywords

• They are PIC-specific
– PORTB, TRISA, TMR0H, PRODL, etc.

• Defined and mapped in header file
– Using regular data types (char, int, struct, etc.)

• Regular P18Fxxx.h (device) header files
– C:\Program Files (x86)\Microchip\xc8\v1.20\include

33

Header Files

• Other functional headers are available
– adc.h
– delays.h
– i2c.h
– pwm.h
– timers.h
– usart.h

• Peripheral library Header Files
– C:\Program Files (x86)\Microchip\xc8\v1.20\include\plib
– C:\Program Files (x86)\Microchip\xc8\v1.20\sources\pic18\plib

34

Logic Operations in C

• Bit-Wise Operators

• Bit-Wise Shift Operators
– Can shift right/left by X bits

Shift right >>
Shift left << 35

Logic Operations in C

36

Binary (hex) to Decimal and
ASCII Conversion

• Sometimes we can’t handle multiple-digit
decimals natively in C for display purposes

• printf() is standard for generic C but
requires more memory space than a
PIC18 is willing to sacrifice

• Best to build your own “custom” print or
display functions in C

37

Extract Single Decimal Digits

• Want each digit of 253 (0b11111101, 0xFD)
and convert to ASCII for displaying

38

Extract Single Decimal Digits

• Want each digit of 253 (0b11111101, 0xFD)
and convert to ASCII for displaying

39

Extract Single Decimal Digits

• Want each digit of 253 (0b11111101, 0xFD)
and convert to ASCII for displaying

40

Extract Single Decimal Digits

• Want each digit of 253 (0b11111101, 0xFD)
and convert to ASCII for displaying

41

#define Directive

• Can associate labels with numbers or
registers as a constant

#define LED_OUTPUT PORTBbits.RB2
#define MAX_USERS 50

42

Questions?

• For PIC C Programming
– Textbook Ch. 7 for more details

• Start looking over Arithmetic/Logic
– Textbook Ch. 5

43

	Lecture 6�PIC Programming in C
	Code Space Limitations
	Why C over ASM?
	C Integer Data Types�(Generic)
	C Integer Data Types�(C18 Compiler)
	C Integer Data Types�(XC8 Compiler)
	Unsigned char�(0 to 255)
	Unsigned char array�(0 to 255)
	Unsigned char array�(0 to 255)
	Unsigned char array�(0 to 255)
	Unsigned char array�(0 to 255)
	Unsigned char array�(0 to 255)
	Unsigned char array�(0 to 255)
	Signed char�(-128 to +127)
	Unsigned int�(0 to 65,535)
	Larger Integer Types�(short, long, short long)
	Floating-Point Data Types
	Modulus
	Casting to Prevent Data Loss
	Casting to Prevent Data Loss
	Time Delay
	Two Factors for �Delay Accuracy in C
	Time Delay Example�
	Instruction Cycle
	Delay Functions in the �XC8 Compiler
	Slide Number 26
	PORT I/O Programming in C
	PORT I/O Programming in C
	PORTxbits.Rxy
	PORT I/O Programming in C
	Slide Number 31
	.ASM Generated from C
	Header Files
	Header Files
	Logic Operations in C
	Logic Operations in C
	Binary (hex) to Decimal and ASCII Conversion
	Extract Single Decimal Digits
	Extract Single Decimal Digits
	Extract Single Decimal Digits
	Extract Single Decimal Digits
	#define Directive
	Questions?

