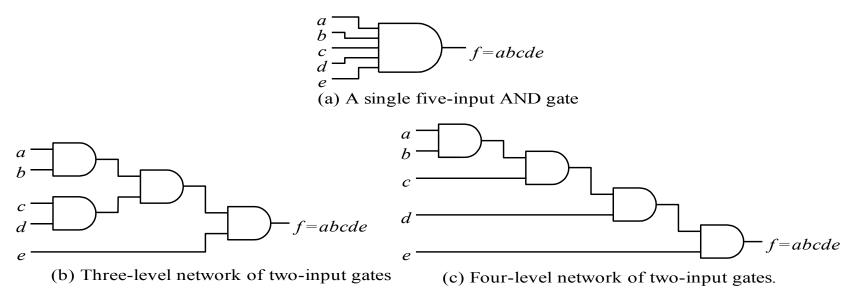
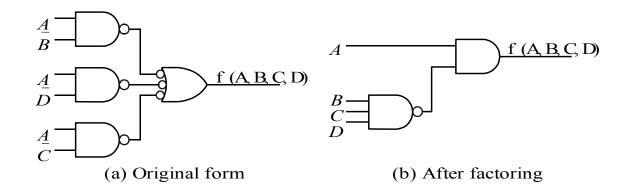
Multi-level circuits. Design Examples. (Class 5.1 – 2/12/2013)


CSE 2441 – Introduction to Digital Logic Spring 2013 Instructor – Bill Carroll, Professor of CSE

Today's Topics

- Multi-level circuits
 - Fan-in constraints
 - Factoring
- Design examples

Synthesis of Combinational Logic Circuits (11)


- Fan-in the number of gate input lines (ports)
- Circuits with more than two levels are often needed due to fan-in, i.e., max number of input nodes, constraints of gates.

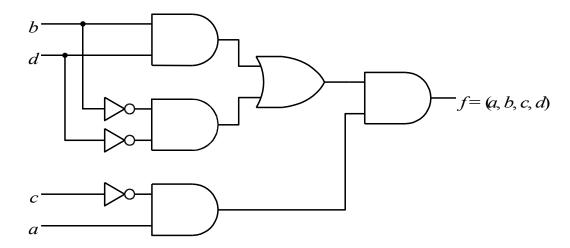
Synthesis of Combinational Logic Circuits (12)

• Factoring

- A technique to obtain higher-level forms of switching functions.
- Higher-level forms:
 - May need less hardware
 - May be used when there are fan-in constraints
 - More difficult to design
 - Slower
- **Example 2.39**: $f(A, B, C, D) = A\overline{B} + A\overline{D} + A\overline{C} = A(\overline{B} + \overline{D} + \overline{C}) = A(\overline{BCD})$

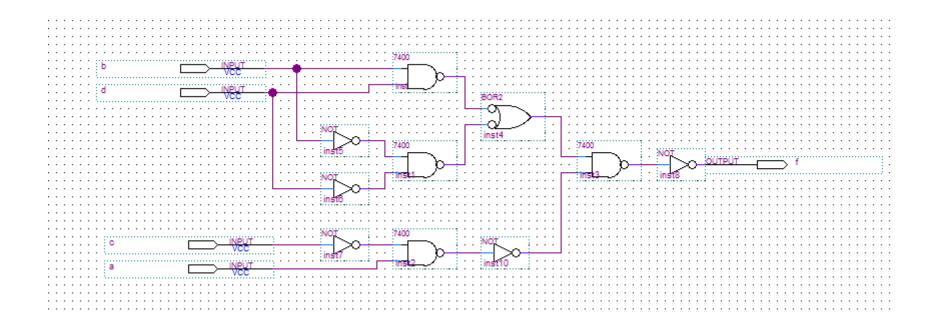
Synthesis of Combinational Logic Circuits (13)

Example 2.40: Implement $f(a,b,c,d) = \Sigma m(8,13)$ with only two-input AND and OR gates.


Write the canonical SOP form:

 $f(a,b,c,d) = \Sigma m(8,13) = ab'c'd' + abc'd$ (2.34)

Two four-input AND gates and one two-input OR gate are needed.

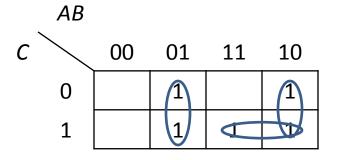

Apply factoring:

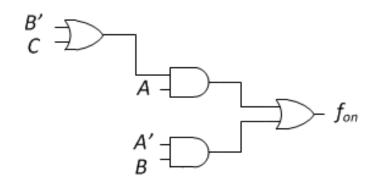
$$f(a,b,c,d) = a\overline{b}\,\overline{c}\,\overline{d} + ab\overline{c}\,d = (a\overline{c})(bd + \overline{b}\,\overline{d})$$
(2.35)

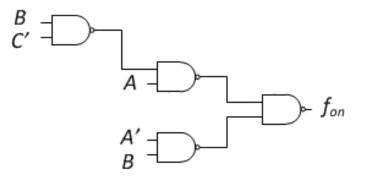
Synthesis of Combinational Logic Circuits (14)

• Convert the previous circuit to an all NAND realization.

Test Your Understanding


Implement the following function with only NAND2 gates.


 $f_{on}(A,B,C) = \sum m(2,3,4,5,7)$


Assume all literals are available as inputs.

Test Your Understanding – Self-Check

 $f_{on} (A,B,C) = \sum m(2,3,4,5,7)$ = A'B + AB' + AC= A'B + A(B' + C)

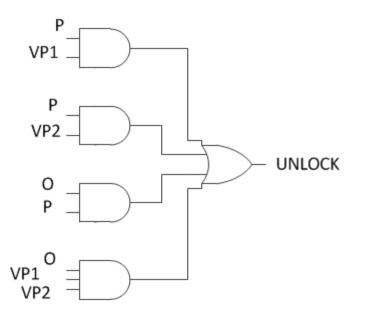
Design Example

The vault area of Unsecure Bank and Trust is secured by a lock that can be opened by bank officials according to the following protocol.

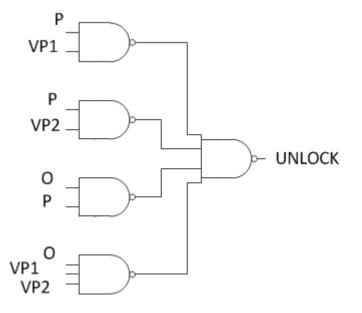
- During business hours the bank president (P) or both of the vice presidents (VP1, VP2).
- Off hours the president and either vice president.

Design a combinational logic circuit that will UNLOCK the lock when the appropriate combination of officials enter ID codes. Assume that logic 1 indicates that the proper code has been entered by the respective officer and that logic 0 means that the proper code was not entered. The variable OPEN=1 indicates that the bank is open for business.

Design Example – Develop a Truth Table


OPEN	Р	VP1	VP2	UNLOCK
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Design Example – Derive Logic Equations

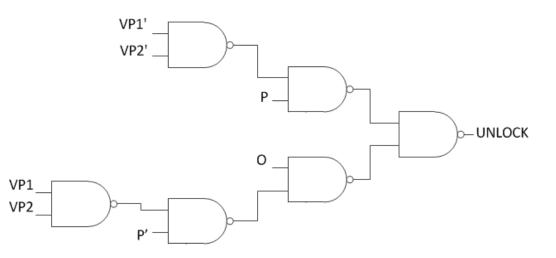

 $UNLOCK = \sum m(5,6,7,11,12,13,14,15)$ [Minterm list] $= O' \cdot P \cdot VP1' \cdot VP2 + O' \cdot P \cdot VP1 \cdot VP2' + O' \cdot P \cdot VP1 \cdot VP2 + O \cdot P \cdot VP1' \cdot VP2' + O \cdot P \cdot VP1' \cdot VP2' + O \cdot P \cdot VP1 \cdot VP2' + O \cdot P \cdot VP1 \cdot VP2'$ [CSP] $= P \cdot VP1 + P \cdot VP2 + O \cdot P + O \cdot VP1 \cdot VP2$ [MSP] $= P(VP1 + VP2) + O(P + VP1 \cdot VP2)$ [Factored MSP]

Design Example – Two-level Realizations

AND/OR circuit

• NAND/NAND circuit

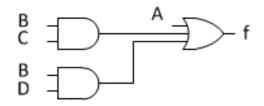
- Chips needed SN7408, SN7411, 3xSN7432.
- Chips needed SN7400, SN7420.

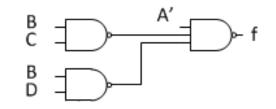

Maximum $t_{pd} = 2\Delta$ where Δ is the gate propagation delay.

Example – Multi-level Realizations

- AND, OR gates
 - Max $t_{pd} = 4\Delta$
 - Chips needed
 - SN7408
 - SN7432

- All NAND gates
 - Max $t_{pd} = 4\Delta$
 - Chips needed
 - 2xSN7400


Design a circuit to distinguish BCD digits \geq 5 from those < 5


-			ABCD	Minterm	f(A, B, C, D)
			0000	0	0
$\begin{array}{c} A \\ B \\ C \\ D \end{array}$	Logic circuit	▶ f	0001	1	0
			0010	2	0
			0011	3	0
			0100	4	0
			0101	5	1
			0110	6	1
			0111	7	1
			1000	8	1
			1001	9	1
	(a)		1010	10	d
			1011	11	d
			1100	12	d
			1101	13	d
			1110	14	d
			1111	15	d
				I	l

(b)

Design a circuit to distinguish BCD digits \geq 5 from those < 5 (con't)

$f(A,B,C,D) = \sum m(5,6,7,8,9) + d(10,11,12,13,14,15)$ = A + BC + BD

Design a circuit to distinguish BCD digits \geq 5 from those < 5 (con't)

f(A,B,C,D) = A + BC + BD= A + B(C + D)

