Combinational Logic Circuit Analysis (Class 3.1 – 9/11/12)

CSE 2441 – Introduction to Digital Logic Fall 2012 Instructor – Bill Carroll, Professor of CSE

Today's Topics

- Boolean algebra (continued)
 - Product of sums forms
 - Incompletely specified functions
- Combinational logic circuit analysis
- Timing diagrams
- Gate delay

Algebraic Forms of Switching Functions (5)

• A *maxterm* is a sum term in which all the variables appear exactly once either complemented or uncomplemented.

(2.7)

- Canonical Product of Sums (canonical POS):
 - Represented as a product of maxterms only.
 - **Example**: $f_2(A,B,C) = (A+B+C)(A+B+C')(A'+B+C)(A'+B+C')$
- Maxterms of three variables:

Maxterm	Maxterm Code	Maxterm Number
A+B+C	000	M_0
A+B+C'	001	M_1
A+B'+C	010	M_2
A+B'+C'	011	M_3
A'+B+C	100	M_4
A'+B+C'	101	M_5
A'+B'+C	110	<i>M</i> ₆
A'+B'+C'	111	<i>M</i> ₇

Algebraic Forms of Switching Functions (6)

•
$$f_2(A,B,C) = M_0 M_1 M_4 M_5$$
 (2.8)
= $\Pi M(0,1,4,5)$ (maxterm list form) (2.9)

• The truth table for $f_2(A,B,C)$:

Rwo No.	Inputs	M_0	M_1	M_4	M_5	Outputs
<i>(i)</i>	ABC	A+B+C	A+B+C'	A'+B+C	A'+B+C'	$f_2(A,B,C)$
0	000	0	1	1	1	0
1	001	1	0	1	1	0
2	010	1	1	1	1	1
3	011	1	1	1	1	1
4	100	1	1	0	1	0
5	101	1	1	1	0	0
6	110	1	1	1	1	1
7	111	1	1	1	1	1

Algebraic Forms of Switching Functions (7)

- Truth tables of $f_1(A,B,C)$ of Eq. (2.3) and $f_2(A,B,C)$ of Eq. (2.7) are identical.
- Hence, $f_1(A,B,C) = \Sigma m$ (2,3,6,7)

$$= f_2(A, B, C)$$

= $\Pi M(0, 1, 4, 5)$ (2.10)

- Example: Given f(A,B,C) = (A+B+C')(A+B'+C')(A'+B+C')(A'+B'+C'), construct the truth table and express in both maxterm and minterm form.
 - $f(A,B,C) = M_1 M_3 M_5 M_7 = \prod M(1,3,5,7) = \Sigma m (0,2,4,6)$

Row No.	Inputs	Outputs		
<i>(i)</i>	ABC	$f(A,B,C) = \prod M(1,3,5,7) = \Sigma m(0,2,4,6)$		
0	000	1 m_0		
1	001	$0 \leftarrow M_1$		
2	010	1 m_2		
3	011	$0 \leftarrow M_3$		
4	100	1 m_4		
5	101	$0 \leftarrow M_5$		
6	110	1 m_6		
7	111	$0 \leftarrow M_7$		

Algebraic Forms of Switching Functions (8)

- Relationship between minterm m_i and maxterm M_i :
 - For f(A,B,C), $(m_1)' = (A'B'C)' = A + B + C' = M_1$

- In general,
$$(m_i)' = M_i$$
 (2.11)

$$(Mi)' = ((m_i)')' = m_i$$
(2.12)

 Example: Relationship between the maxterms of a function and its complement. For f(A,B,C) = (A+B+C')(A+B'+C')(A'+B+C')(A'+B'+C'), the truth table is

Row No.	Inputs	Outputs	Outputs	
<i>(i)</i>	ABC	f(A,B,C)	$f'(A,B,C) = \prod M(0,2,4,6)$	
0	000	1	$0 \leftarrow M_0$	
1	001	0	1	
2	010	1	$0 \leftarrow M_2$	
3	011	0	1	
4	100	1	$0 \leftarrow M_4$	
5	101	0	1	
6	110	1	$0 \leftarrow M_6$	
7	111	0	1	

Algebraic Forms of Switching Functions (9)

(2.13)

From the truth table

 $f'(A,B,C) = \prod M(0,2,4,6)$ and $f(A,B,C) = \prod M(1,3,5,7)$

- Since
$$f(A,B,C) \cdot f'(A,B,C) = 0$$
,
 $(M_0 M_2 M_4 M_6)(M_1 M_3 M_5 M_7) = 0 \text{ or } \prod_{i=0}^{2^3 - 1} M_i = 0$

- In general, $\prod_{i=0}^{2^n-1} M_i = 0$
- Another observation from the truth table:

 $f(A,B,C) = \Sigma m (0,2,4,6) = \Pi M(1,3,5,7)$ $f'(A,B,C) = \Sigma m (1,3,5,7) = \Pi M(0,2,4,6)$

Derivation of Canonical Forms (1)

- Derive canonical SOP or POS forms using switching algebra.
- Theorem 10. Shannon's expansion theorem (a). $f(x_1, x_2, ..., x_n) = x_1 f(1, x_2, ..., x_n) + (x_1)' f(0, x_2, ..., x_n)$ (b). $f(x_1, x_2, ..., x_n) = [x_1 + f(0, x_2, ..., x_n)] [(x_1)' + f(1, x_2, ..., x_n)]$
- Example: f(A,B,C) = AB + AC' + A'C - f(A,B,C) = AB + AC' + A'C = A f(1,B,C) + A' f(0,B,C) $= A(1 \cdot B + 1 \cdot C' + 1' \cdot C) + A'(0 \cdot B + 0 \cdot C' + 0' \cdot C) = A(B + C') + A'C$ - f(A,B,C) = A(B + C') + A'C = B[A(1+C') + A'C] + B'[A(0 + C') + A'C] = B[A + A'C] + B'[AC' + A'C] = AB + A'BC + AB'C' + A'B'C - f(A,B,C) = AB + A'BC + AB'C' + A'B'C $= C[AB + A'B \cdot 1 + AB' \cdot 1' + A'B' \cdot 1] + C'[AB + A'B \cdot 0 + AB' \cdot 0' + A'B' \cdot 0]$ = ABC + A'BC + A'B'C + ABC' + AB'C'

Derivation of Canonical Forms (2)

- *Alternative:* Use Theorem 6 to add missing literals.
- **Example**: f(A,B,C) = AB + AC' + A'C to canonical SOP form.
 - $AB = ABC' + ABC = m_6 + m_7$
 - $AC' = AB'C' + ABC' = m_4 + m_6$
 - $A'C = A'B'C + A'BC = m_1 + m_3$
 - Therefore, $f(A,B,C) = (m_6 + m_7) + (m_4 + m_6) + (m_1 + m_3) = \Sigma m(1, 3, 4, 6, 7)$
- **Example**: f(A,B,C) = A(A + C') to canonical POS form.
 - A = (A+B')(A+B) = (A+B'+C')(A+B'+C)(A+B+C')(A+B+C) $= M_3M_2M_1M_0$
 - $(A+C') = (A+B'+C')(A+B+C') = M_3M_1$
 - Therefore,

 $f(A,B,C) = (M_3 M_2 M_1 M_0)(M_3 M_1) = \prod M(0, 1, 2, 3)$

Incompletely Specified Functions

- A switching function may be incompletely specified.
- Some minterms are omitted, which are called *don't-care minterms*.
- When maxterms are omitted, they are called *don't-care maxterms*.
- Don't cares arise in two ways:
 - Certain input combinations never occur.
 - Output is required to be 1 or 0 only for certain combinations.
- Don't care minterms: d_i Don't care maxterms: D_i
- **Example**: f(A,B,C) has minterms m_0 , m_3 , and m_7 and don't-cares d_4 and d_5 .
 - Minterm list is: $f(A,B,C) = \Sigma m(0,3,7) + d(4,5)$
 - Maxterm list is: $f(A,B,C) = \prod M(1,2,6) \cdot D(4,5)$
 - $f'(A,B,C) = \Sigma m(1,2,6) + d(4,5) = \Pi M(0,3,7) \cdot D(4,5)$
 - f(A,B,C) = A'B'C' + A'BC + ABC + d(AB'C' + AB'C)

= B'C' + BC (use d_4 and omit d_5)

Analysis of Combinational Circuits (1)

• Digital Circuit **Design**:

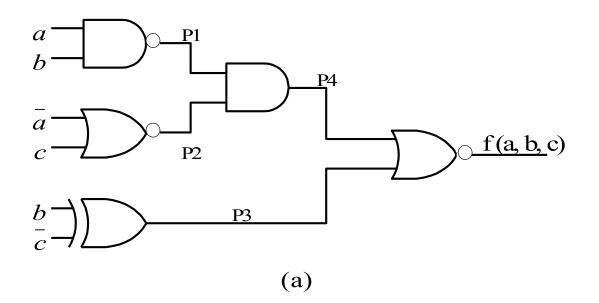
- Word description of a function
 - \Rightarrow a set of switching equations
 - \Rightarrow hardware realization (gates, programmable logic devices, etc.)

• Digital Circuit Analysis:

- Hardware realization
 - \Rightarrow switching expressions, truth tables, timing diagrams, etc.
- Analysis is used
 - To determine the behavior of the circuit
 - To verify the correctness of the circuit
 - To assist in converting the circuit to a different form.

Analysis of Combinational Circuits (2)

- *Algebraic Method*: Use switching algebra to derive a desired form.
- **Example 2.33**: Find a simplified switching expressions and logic circuit for the following circuit (Fig. 2.21a).



Analysis of Combinational Circuits (3)

• Write switching expression for each gate output:

$$P_1 = ab$$
, $P_2 = \overline{a+c}$, $P_3 = b \oplus \overline{c}$, $P_4 = P_1 \cdot P_2 = \overline{ab} \cdot \overline{(\overline{a}+c)}$

• The output is: $f(a,b,c) = \overline{P_3 + P_4} = (b \oplus \overline{c}) + \overline{ab} \cdot \overline{(\overline{a} + c)}$

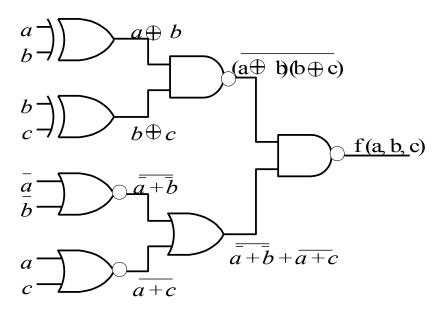
• Simplify the output function using switching algebra: $\overline{f}(a,b,c) = (b \oplus \overline{c}) + \overline{ab} \cdot \overline{\overline{a} + c}$ [Eq. 2.24] $= bc + \overline{b}\overline{c} + \overline{ab} \cdot \overline{\overline{a} + c}$ [T8] $= bc + \overline{b}\overline{c} + (\overline{a} + \overline{b})a\overline{c}$ [T8] $= bc + \overline{b}\overline{c}$ [T5(b)] $= bc + \overline{b}\overline{c}$ [T4(a)] $\overline{f}(a,b,c) = b \odot c$ [Eq. 2.32]

Therefore, $f(a,b,c) = (b \odot c)' = b \oplus c$

$$b \rightarrow c \rightarrow f(a, b, c)$$

Analysis of Combinational Circuits (4)

 Example 2.34: Find a simplified switching expression and logic network for the following logic circuit (Fig. 2.22).



Given circuit

Analysis of Combinational Circuits (5)

Derive the output expression:
 f(a,b,c)

 $(a \oplus b)(b \oplus c) \cdot (\overline{a} + \overline{b} + \overline{a + c})$ $(a \oplus b)(b \oplus c) + \overline{a} + \overline{b} + a + c)$ [T8(b)] = $(a \oplus b)(b \oplus c) + (\overline{a} + b)(a + c)$ [T8(a)] $(a\overline{b} + \overline{a}b)(b\overline{c} + \overline{b}c) + (\overline{a} + \overline{b})(a+c)$ [Eq. 2.24] = $a\overline{b}b\overline{c} + a\overline{b}\overline{b}c + \overline{a}bb\overline{c} + \overline{a}b\overline{b}c + \overline{a}a + \overline{a}c + a\overline{b} + \overline{b}c$ [P5(b)] = $a\overline{b}c + \overline{a}b\overline{c} + \overline{a}c + a\overline{b} + \overline{b}c$ [P6(b), T4(a)] = $\overline{a}b\overline{c} + \overline{a}c + a\overline{b} + \overline{b}c$ [T4(a)] $\overline{a}b\overline{c} + \overline{a}c + ab$ [T9(a)] = $\overline{a}b + \overline{a}c + a\overline{b}$ [T7(a)] $\overline{a}c + a \oplus b$ [Eq. 2.24] f<u>(a, b, c</u>)

Simplified circuit

Analysis of Combinational Circuits (6)

- *Truth Table Method*: Derive the truth table one gate at a time.
- The truth table for Example 2.34:

abc	$\overline{a}c$	$a \oplus b$	f(a,b,c)
000	0	0	0
001	1	0	1
010	0	1	1
011	1	1	1
100	0	1	1
101	0	1	1
110	0	0	0
111	0	0	0

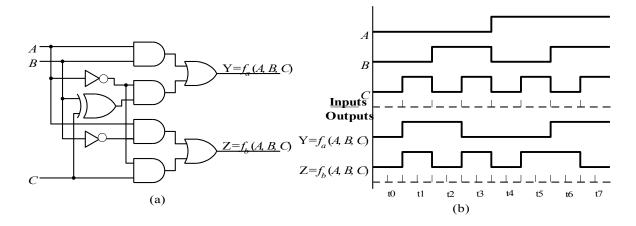
Analysis of Combinational Circuits (7)

• Analysis of Timing Diagrams

- The *Timing diagram* is a graphical representation of input and output signal relationships over time.
- Timing diagrams may show intermediate signals and propagation delays.

Analysis of Combinational Circuits (8)

• **Example 2.35**: Derivation of truth table from a timing diagram



	Inputs	Outputs		
Time	ABC	$f_{g}(A, B, C)$	$f_{b}(A, B, C)$	
t0	000	0	0	
t1	001	1	1	
t2	010	1	0	
ť3	011	0	1	
t4	100	0	0	
t5	101	0	1	
t6	110	1	1	
t7	111	1	0	

Analysis of Combinational Circuits (9)

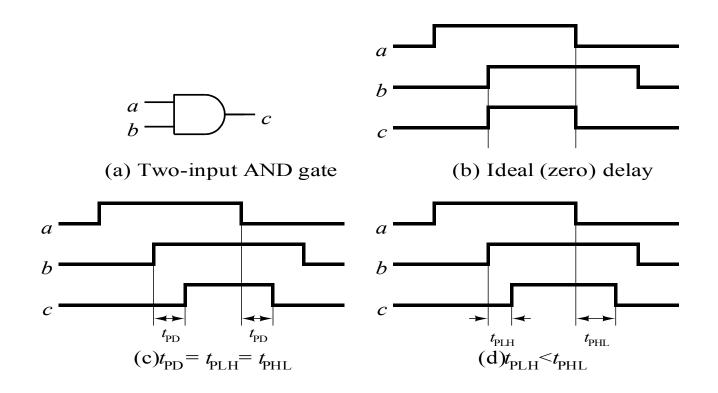
• Propagation Delay

- Physical characteristics of a logic circuit to be considered:
 - Propagation delays
 - Gate fan-in and fan-out restrictions
 - Power consumption
 - Size and weight
- Propagation delay: The delay between the time of an input change and the corresponding output change.
- Typical two propagation delay parameters:
 - t_{PLH} = propagation delay time, low-to-high-level output
 - t_{PHL} = propagation delay time, high-to-low-level output
- Approximation:

$$t_{PD} = \frac{t_{PLH} + t_{PHL}}{2}$$

Analysis of Combinational Circuits (10)

• Propagation delay through a logic gate



Analysis of Combinational Circuits (11)

• Power dissipation and propagation delays for several logic families (Table 2.7)

Logic	Propagation Delay	Power Dissipation	
Family	$t_{\rm PD}(\rm ns)$	Per Gate (mW)	Technology
7400	10	10	Standard TTL
74H00	6	22	High-speed TTL
74L00	33	1	Low-power TTL
74LS00	9.5	2	Low-power Schottky TTL
74S00	3	19	Schottky TTL
74ALS00	3.5	1.3	Advanced low-power
			Schottky TTL
74AS00	3	8	Advanced Schottky TTL
74HC00	8	0.17	High-speed CMOS

Analysis of Combinational Circuits (12)

• Propagation delays of primitive 74LS series gates (Table 2.8)

		t _{PLH}		t _{PHL}	
Chip	Function	Typical	Maximum	Typical	Maximum
74LS04	NOT	9	15	10	15
74LS00	NAND	9	15	10	15
74LS02	NOR	10	15	10	15
74LS08	AND	8	15	10	20
74LS32	OR	14	22	14	22