Introduction to Programmable

Logic Devices
(Class 7.2 —2/28/2013)

CSE 2441 - Introduction to Digital Logic
Spring 2013

Instructor — Bill Carroll, Professor of CSE

Today’s Topics

* Complexity issues
— Implementation
— Design
* Programmable logic devices

— Simple Programmable Logic Devices (SPLDs)
* Programmable Logic Arrays (PLAs)
* Programmable Array Logic (PALs)

— Programmable Read Only Memory (PROM)
— Complex Programmable Logic Devices (CPLDs)
— Field Programmable Logic Devices (FPGAs)

ssues In
Digital Circuit Implementation and Design

* Gates per integrated circuit
* Pin limitations

* Wiring complexity

e Speed

e Heat dissipation

* Design time

* More-complex functionality
e Testability

* Cost

Advances In
Digital Circuit Implementation and Design

* Higher levels of integration

* Larger packages

* More pins per package

* New and improved technologies
* Multilayer printed circuit boards
* Application Specific ICs (ASICS)

* Programmable logic

e CAD tools

* Automated testing

Basic Programmable Logic Array Organization

Feedback terms

-~ 0,

Fm
Fq
Y
|1 ‘[P P] S]
12 ’ > P, 2,
L[>o—> AND OR OUTPUT
array array options
Pn Sm
I [- > > -
Inputs Product Sum
terms terms

Outputs

Two-Level AND-OR Arrays

Realization of f(a,b,c) = abc’ + b’c

a

b

c

Figure 5.5

Multiple Functions Realized by an
AND-OR Array

o
>0 X
{>@)
[j kJ LJ f(ab,c)y=ab+c
i) 4 R
1 L/ _
(V\1‘2(a, b, c) =ab + bc
L
ab C be

Figure 5.6

PLA Design -- Example 5.1

* Design a PLA to realize the following 3 logic functions and show the
internal connections.

f,(A,B,C,D,E) = A’B’D’ + B'CD’ + A’BCDE’
f,(A,B,C,D,E) = A’BE + B'CD’E
f5(A,B,C,D,E) = A’B’D’ + B'C’'D’E + A’BCD

e Since there are 5 inputs, there must be at least 5 inputs to the PLA,
each of which must be both complemented and uncomplemented.

There are a total of 7 unique product terms in the preceding 3
expressions. So the PLA must generate at least 7 product terms.

Since 3 functions are being realized, there must be 3 sum (OR)
terms generated.

Example 5.1 (continued)

The PLA organization is shown in Fig. 5.7.

Table 5.1 shows the connections that must be made in the AND and OR
arrays. In the table, the product term numbers correspond to the AND
gate numbers in Fig. 5.7, each connected to one vertical product line, on
which a product term is generated.

In the AND array portion of the table

- a 0 indicates that the complement of the variable is connected to the
product line

- a 1 indicates the the uncomplemented input is connected to the product
line
- an x indicates that neither is connected to the product line

For the OR array, a 1 indicates a connection and a 0 indicates no
connection.

PLA for Example 5.1

vV Y|v|Y

UJoyguJuU

Programmable
OR array

P P, P; Py Ps Pe P,
ABD ‘ABCDE BCDE ABCD
BCD ABE BCDE

Figure 5.7

Table 5.1 -- PLA Table for Example 5.1

AND Array OR Array

Inputs Outputs
Product Term ABCDE f.fof3
1 ABD’ 00x0x 101
2 BCD’ x010x 100
3 A’BCDF’ 01110 100
4 A’BE 01x x1 010
5 B’CD,E x0101 010
6 B’C,D’E x0001 001

7

A’BCD 0111x 001

Basic Programmable Logic Array Organization

Feedback terms

-~ 0,

Fm
Fq
Y
|1 ‘[P P] S]
12 ’ > P, 2,
L[>o—> AND OR OUTPUT
array array options
Pn Sm
I [- > > -
Inputs Product Sum
terms terms

Outputs

Inputs

Output Polarity Options

Y

v |

U

i) Active high (H)

DO— Active low (L)

Active high| Complementary
& Active low [outputs (C)

P

Product
terms

P

i \ A\
) J/ D_ Programmable
polarity (P)
m
J_ Fuse
+V
@

Figure 5.11

Output Polarity Options(continued)

@?D 0=5 ‘D?)D— 0-5

c)

Figure 5.11

Implementation of SOP and POS Forms

,_.
v

I__
v

Figure 5.12

Bidirectional Pins and Feedback Lines

* A bidirectional pin is driven by a three-state driver, whose control line is
connected to one of the product terms.

* When the control line is 1, the driver is said to be enabled and functions as
a short circuit, as shown in Fig. 5.13b. In this case the sum term is driven
onto the pin, which therefore functions as an output. This value is fed back
to the AND array, where it can be used to form product terms.

* When the driver control line is O, the driver is disabled and functions as an
open circuit, as shown in Fig. 5.13c. This disconnects the sum term from
the pin, which, through the feedback line, now becomes an input to the
AND array.

Bidirectional Pins

Pl Pn Pn+
Feedback
i{) '£ 10,
S l/<\
m Three-state
driver
(a)

Figure 5.13

Bidirectional Pins(continued)

Feedback =S _ Feedback = 10
— —
S S
(output)

(b) (c)

Figure 5.13

Two-bit ripple-carry adder
Example 5.3

 Implement a 2-bit ripple-carry adder, as shown in Fig. 5.143, using a
programmable logic array having 4 dedicated input pins, 3 dedicated
output pins, and 3 bidirectional pins.

The standard logic equations for one state, i, of an n-bit full-adder are the
following:

S=ABC,+ABC +ABC +ABC,

Ci=AB+AC,+BC,
where A, and B, are the data inputs and C,, the carry input to stage i, S, is its
sum output and C, the carry output. For a ripple-carry adder, the carry-out

of one stage is connected to the carry input of the next stage, as shown in
Fig. 5.14a.

Example 5.3(continued)

* Figure 5.14b shows the PLA implementation of the block diagram in Fig.
5.14a.

Since the adder requires 5 inputs, and there are only 4 dedicated input
pins, bidirectional pin 5 is used as another input.

The driver of pin 5 is disabled by product line 16 by leaving all its fuses
intact.

Carry term C, is used to compute terms S; and C, through the feedback line
from pin 6, allowing C, to be combined with A; and B, by the preceding
equations.

Figure 5.14

Two-bit Ripple-carry Adder — Example 5.3

e L — A -

S
- e
=
e
T
o<
o<H
JUUUJUUUUUUUUUL r_\UQ
op

(b)

Programmable Read-only Memory

* A PROM comprises a fixed AND array and a programmable OR array, as
illustrated in Fig. 5.21.

The AND array generates all 2" possible minterm products of its n inputs
and therefore often referred to as an n-to-2" decoder.

The OR array allows any combination of product terms to be included in
each sum term. The canonical sum of products form of any function can
be realized directly from its truth table or minterm list.

* Figure 5.22 illustrates the organization of most typical commercial PROMs.

Programmable Read-only Memory (PROM)

| l l I l
| _[>C I Fixed
| —>o—¢ > gl;laty)/
= T 1T 1 :
JUUUJUUUUU
Y N
L O,
Programmable ™ o
OR array L/
S
] K

Figure 5.21

General Configuration of a Commercial PROM

Inputs
N
A > AND
array
Ana T
Product
Po Py« P2N'1}> terms
Y Y Y
OR
array
Output
— I drivers
CE <
Chip enable *
Y Y
O, O, Oy
Outputs

Figure 5.22

Realizing Logic Functions with PROMs

* Each output of a PROM is capable of realizing any arbitrary switching
function by connecting that output to the minterms of the function.

To realize a given switching function with a PROM, first express the
function in canonical SOP form or else derive the truth table of the
function.

Then, each of the minterms of the function is connected to the desired OR
term to produce the canonical SOP form.

* [t should be noted that the use of a commercially available PROM would
be very inefficient when only a small number of minterms is needed,
unless minimizing chip count is the primary goal.

PROM Realization -- Example 5.6

Realize the following 3 switching functions with a 3-input, 3-output PROM.
fi(A, B, C)=AB+B’C
f,(A, B C)=(A+B +C)A +B)
f3(A, B, C)=A+BC
First, convert each function to canonical SOP form.
f1(A, B, C) = ABC + ABC+A'B'C+ AB’C
=>m(1, 5,6, 7)
f,(A B C)=(A+B +C)(A’+B+C)A +B+C)
=[IM(2,4,5)=5m(0, 1, 3,6, 7)
f3(A, B, C) =AB’C’ + ABC’ + AB'C+ ABC + A’BC
=>m(3,4,5,6,7)

PROM Realization for Example 5.6

WA\

J L

J UL

)L

)L

J L

Figure 5.23

VYV

f1(A, B, C)

f2(A, B, C)

f3(A, B, C)

Lookup Tables (LUT)

A common application of PROMs is the lookup table, in which a
function is stored in tabular form with its arguments used as an index
into the table to retrieve the value of the function for those
arguments.

Since truth tables can be readily realized by PROMs, lookup tables are

implemented by writing them in truth table format and then realizing
the truth table with a PROM.

Programmable Array Logic (PAL)

A B ¢ D
) ixed
? ? §Z '_S% OR array
—r
Produc
\ Py
L/
\ Py
|
\ P3
|/ }
\ P
|
) Ps
|
\ 9 Psg
Programmak;eANDarray J Qj (j
04

Example 5.10 — PAL Design Example

Realize the following functions with a PAL
fABCD)=AB'D"+BCD’ + A’BCD
f4(A,B,C,D) = A’B + B'CD’
f(AB,CD)=AB’'D’+B’C’'D" + A'BCD

Example 5.10 -- PAL Realization

VRVIRVR Ve
. N
./
P) b—w\,&c/m
P3
: _/‘ /
by N
L/
P } D f,(A, B, C, D)
Ps }
)
. /)
’ J
‘.) ng(A,B,C,D)
Po ‘
/)

Complex Programmable Logic Devices (CPLDs)

-« «—»
> PAL-like PAL-like «—>

/0 Block Block . | /o
«—» «—»

—.. .
Interconnection Block
-« >
/0 1—- PAL-like PAL-like > /0

Summary of Programmable Logic Devices

PLA — AND array and OR array are programmable
PAL — AND array programmable, OR array fixed
PROM — AND array fixed, OR programmable
CPLD — programmable array of PALs

FPGA — programmable array of logic elements

Cyclone Il FPGA*

Figure 2-1. Cyclone Il EP2C20 Device Block Diagram

Embedded
Muitipliars
Logic Logic Logic Logic
e Array Array Array Array o
M4K Blocks " * M4K Blocks

LAB — Logic Array Block, PLL — Phase Locked Loop, IOEs — /O Elements

*From Cyclone Il Device Family Data Sheet

Cyclone Il FPGA Family Features*

Table 1-1. Cyclone Il FPGA Family Features

Feature EP2CS EP2C8 EP2C20 EP2C35 EP2C50 EP2CT0
LEs 4,608 8,256 18,752 33,216 50,628 68,416
M4K BAM blocks (4 Kbits 26 36 b2 105 129 250
plus 512 parity bits
Total RAM bits 119,808 165,888 239,616 483,840 504 432 1,152,000
Embedded multipliers (1) 13 18 26 35 86 150
PLLs 2 2 4 4 4 4
Maximum user I/O pins 158 182 315 475 450 622

Note to Table 1-1:

(1) This is the total number of 18 = 18 multipliers. For the total number of 9 x 9 multipliers per device, multiply the

total number of 18 x 18 multipliers by 2.

*From Cyclone Il Device Family Data Sheet

Cyclone Il Package Options*™

Table 1-2. Cyclone Il Package Options & Maximum User I/0 Pins Note (1)

. . | 256-Pin | 48a-Pin | P3P 1 670.pin | 896-Pin
Device :32;;;} F?'I!‘!]IEPP;SJ zguu':;" FineLine | FineLine Firl;lllailiiane FineLine | FineLine

' ' BGA BGA BGA BGA BGA

EP2C5 (6) 80 142 158 (5)

EP2CS (6) 85 138 182

EP2C20 (6) 142 152 315

EP2C35 (6) 322 322 475

EP2C50 (6) 294 204 450

EP2C70 (6) 422 622

*From Cyclone Il Device Family Data Sheet

Cyclone Il Device Resources™

Table 2-1. Cyclone Il Device Resources

MAK Memor Embedded
Device LAB Columns | LAB Rows LEs PLLs y Multiplier
Blocks
Blocks
EP2Cs5 24 13 4,608 2 26 13
EP2Cs8 30 18 8,256 2 36 18
EP2C20 48 26 18,752 4 52 26
EP2C35 60 35 33,216 4 105 35
EP2C50 74 43 50,528 4 129 86
EP2CT0 86 50 68,416 4 250 150

Cyclone Il Logic Element Architecture®

Figure 2-2. Cyclone Il LE

Registar Chain
Routing From
Previous LE
LAB-Wide Register Bypass
Synchronous g vpa
LARB Carmry-In
Load] Programmabia
LAB-Wida Packed Register
Synchronous Regisier Select
Claar “_/
Y Y Y /
datai e Row, Columin,
data? > LookUp | oo Synchronous R * : And Diract Link
data3 — Table Chain Load and @ a Routing
(LUT) Cleaar Logic o
datad > ’7 -
— | ENA
5';;"' - Row, Column,
. And Direct Link
il Routing
labcirt ——
tabcir2 — Asynchonous L
; Local Routi
Chip-Wide Clear Logic > o
Resat —m|
(DEV_CLRn)
----- — » Register Chai
Clock & Register 0?3,11 renan
Clock Enable Feedback
Salact :
labedkd T
labcik2 - _,,J
labclkanat T
labcikana2 > |
L= LAB Carry-Ciut

*From Cyclone Il Device Family Data Sheet

Cyclone Il Logic Element in Normal Mode*

Figure 2-3. LE in Normal Mode

sload sclear
(LAB Wide) (LAB Wide)

Packed Reagister Input
Register chain
connection
a Le—I! "1 _ Row, Column, and
data1 —) D —_ Direct Link Routing
data2 ;[a - ENA — Row, Column, and
data3) Four-Input CLEN ¢— | Direct Link Routing
cin (from cout 1_ LUT
of previous LE -)
P) — clock (LAB Wide) '_:1 j—v Local routing
datad ena (LAB Wide)
aclr (LAB Wide)
o
;"f
Register Feedback L, Register

chain output

*From Cyclone Il Device Family Data Sheet

Cyclone Il Logic Element in Arithmetic Mode*

Figure 2-4. LE in Arithmetic Mode

sload sclear
(LAB Wide) (LAB Wide)

']

W S WA
Reqister chain
connection
datai i \—“ i _\. —
data? Three-Input -+ Q [i Row, column, and
] LuT L= o - diract link routing
> [Row, column, and

aclr (LAB Wide)

= NSLFIN B diract link routing
cin (from cout Thriﬁﬂ?pm clock (LAB Wide) -
of previous LE X o —
.)) ‘ ena (LAB Wide)] L ocal routing

cout

_ Register
,«" " chain output

s
Register Fesdback

*From Cyclone Il Device Family Data Sheet

