4/3/2008

CSE 3302 P
Programming Languages

Functional Programming Language:
Haskell

Chengkai Li
Fall 2007

Lecture 18 - Functional CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008 ©Chengkai Li, 2008

Yet Another Haskell Tutorial
http://www.cs.utah.edu/~hal/htut

Reading and ImplementationA

¢ WinHugs:
http://cvs.haskell.org/Hugs/pages/downloading.htm

Download file WinHugs-Sep2006.exe (14 MB):

Installation:
— Try to install outside of “Program Files”.
— May fail if you install inside.

Lecture 18 - Functional
Programming, Spring 2008 ©Chengkai Li, 2008

CSE3302 Programming Languages, UT-Arlington 2

Topics e

* Basics

e Types and classes

* Defining functions

e List comprehensions
e Recursive functions

e Higher-order functions

Lecture 18 - Functional CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008 ©Chengkai Li, 2008

You need to use script (module) files to define functions, and
use interactive environment to evaluate expressions
(functions)

Haskell is not free-format. It has certain layout rules.
General rules to follow when writing script files:

— Indent the same amount for definitions at the same level
— Don’t use tab

Lecture 18 - Functional
Programming, Spring 2008 ©Chengkai L, 2008

Notes e

A

CSE3302 Programming Languages, UT-Arlington a

Lecture 18 - Functional CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008 ©Chengkai Li, 2008

When Hugs is started it first loads the library file Prelude.hs, and then
repeatedly prompts the user for an expression to be evaluated.

For example:

Lecture 18 - Functional
Programming, Spring 2008 ©Chengkai L, 2008

The Standard Prelude 8

A

CSE3302 Programming Languages, UT-Arlington 6

4/3/2008

Function Application S A

. o _ The standard prelude also provides many useful functions that operate
In Haskell, function application is denoted using space on lists. For example:

f(a)]
Lecture 18 - Functional CSE3302 Programming Languages, UT-Arlington 7 Lecture 18 — Functional CSE3302 Programming Languages, UT-Arlington 8
Programming, Spring 2008 ©Chengkai Li, 2008 Programming, Spring 2008 ©Chengkai Li, 2008

e Examples e

Moreover, function application is assumed to have higher priority than all other
operators.

Mathematics Haskell

Means f(a) + b, rather than f (a + b).]
Lecture 18 - Functional CSE3302 Programming Languages, UT-Arlington 9 Lecture 18 — Functional CSE3302 Programming Languages, UT-Arlington 10
Programming, Spring 2008 ©Chengkai Li, 2008 Programming, Spring 2008 ©Chengkai Li, 2008

Operators v Script v

Operators are special binary functions. They are used in infix form:
When developing a Haskell script, it is useful to keep two windows open, one
running an editor for the script, and the other running Hugs.

Start an editor, type in the following two function definitions, and save the script
as Test.hs: (file name, without .hs, must match module name)

When enclosed in (), they are just like other functions

Lecture 18 - Functional CSE3302 Programming Languages, UT-Arlington 1 Lecture 18 - Functional CSE3302 Programming Languages, UT-Arlington 12

Programming, Spring 2008 ©Chengkai Li, 2008 Programming, Spring 2008 ©Chengkai Li, 2008

4/3/2008

Leaving the editor open, load the script:

File Test.hs must be in the right path. Use “File >> Options” to change the path

Now both Prelude.hs and Test.hs are loaded, and functions from both scripts
can be used:

Lecture 18 - Functional CSE3302 Programming Languages, UT-Arlington 13
Programming, Spring 2008 ©Chengkai Li, 2008

After a script is changed, it is automatically reloaded when you save the file. You
can also use a reload command:

Lecture 18 — Functional CSE3302 Programming Languages, UT-Arlington 14
Programming, Spring 2008 ©Chengkai Li, 2008

Types and Classes

Lecture 18 - Functional CSE3302 Programming Languages, UT-Arlington 15
Programming, Spring 2008 ©Chengkai Li, 2008

Types in Haskell

We use the notation e :: T to mean that evaluating the expression e will produce .
avalue of type T.

You can use :type to get the type of an expression

Lecture 18 - Functional CSE3302 Programming Languages, UT-Arlington 16
Programming, Spring 2008 ©Chengkai Li, 2008

Note:

% Every expression must have a valid type, which is calculated prior to
evaluating the expression by type inference;

% Haskell programs are type safe, because type errors can never occur
during evaluation;

Lecture 18 - Functional CSE3302 Programming Languages, UT-Arlington 17
Programming, Spring 2008 ©Chengkai Li, 2008

Type Inference: an Example

typing rule

Lecture 18 - Functional CSE3302 Programming Languages, UT-Arlington 18
Programming, Spring 2008 (©Chengkai Li, 2008

4/3/2008

Type Inference

The type is inferred automatically.

You can declare the type explicitly.
Error in the declaration would be caught. Thus a good debugging tool.

Try the following:

Lecture 18 - Functional CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008 ©Chengkai Li, 2008

Basic Types

Haskell has a number of basic types, including:

- Logical values
- Single characters

- Strings of characters

- integers

Lecture 18 - Functional CSE3302 Programming Languages, UT-Arlington 20
Programming, Spring 2008 ©Chengkai Li, 2008

List Types

Alist is sequence of values of the same type:

In general:

[T] is the type of lists with elements of type T.

Lecture 18 - Functional CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008 ©Chengkai Li, 2008

Tuple Types

Atuple is a sequence of values of different types:

In general:

(T1,T2,...,Tn) is the type of n-tuples whose ith components have type Ti
foranyiini...n.

Lecture 18 - Functional CSE3302 Programming Languages, UT-Arlington 22
Programming, Spring 2008 ©Chengkai Li, 2008

Function Types

A function is a mapping from values of one type to values of another type:

In general:

T1 —> T2 s the type of functions that map arguments of type T1 to
results of type T2.

Lecture 18 - Functional CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008 ©Chengkai Li, 2008

Note:

The argument and result types are unrestricted. For example, functions
with multiple arguments or results are possible using lists or tuples:

Lecture 18 - Functional CSE3302 Programming Languages, UT-Arlington 24
Programming, Spring 2008 ©Chengkai Li, 2008

4/3/2008

Curried Functions e

Functions with multiple arguments are also possible by returning functions as

results:

add’ takes an integer x and returns a function. In turn, this
function takes an integer y and returns the result x+y.

CSE3302 Programming Languages, UT-Arlington

Lecture 18 = Functional
©Chengkai Li, 2008

Programming, Spring 2008

Note:
ST

% add and add’ produce the same final result, but add takes its two arguments
at the same time, whereas add’ takes them one at a time:

% Functions that take their arguments one at a time are called curried
functions.

CSE3302 Programming Languages, UT-Arlington

Lecture 18 - Functional
©Chengkai Li, 2008

Programming, Spring 2008

S

Functions with more than two arguments can be curried by returning nested

functions:

mult takes an integer x and returns a function, which in turn takes an
integer y and returns a function, which finally takes an integer z and
returns the result x*y*z.

Curry Conventions v

To avoid excess parentheses when using curried functions, two simple
conventions are adopted:

e The arrow — associates to the right.

[Means Int —> (Int — (Int = Int)).]

CSE3302 Programming Languages, UT-Arlington

Lecture 18 - Functional
©Chengkai Li, 2008

Programming, Spring 2008

CSE3302 Programming Languages, UT-Arlington

Lecture 18 - Functional
©Chengkai Li, 2008

Programming, Spring 2008

S

¥ As a consequence, it is then natural for function application to associate to

the left.

Means ((mult x) y) z.

Unless tupling is explicitly required, all functions in Haskell are normally defined
in curried form.

CSE3302 Programming Languages, UT-Arlington

Lecture 18 - Functional
©Chengkai Li, 2008

Programming, Spring 2008

What’s the big deal? e

Why Currying?

CSE3302 Programming Languages, UT-Arlington

Lecture 18 - Functional
©Chengkai Li, 2008

Programming, Spring 2008

4/3/2008

Polymorphic Types S

The function length calculates the length of any list, irrespective of the type of
its elements.

Lecture 18 — Functional
Programming, Spring 2008

CSE3302 Programming Languages, UT-Arlington
Chengkai Li, 2008

ST

This idea is made precise in the type for length by the inclusion of a type
variable:

For any type a, length takes a list of values of type a and returns
an integer.

Atype with variables is called polymorphic.

Lecture 18 - Functional

. t CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008

Chengkai Li, 2008

Note:

ST

& Many of the functions defined in the standard prelude are polymorphic. For
example:

Lecture 18 - Functional
Programming, Spring 2008

CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

Overloaded Types e

The arithmetic operator + calculates the sum of any two numbers of numeric
type.

For example:

Lecture 18 - Functional

CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008

©Chengkai Li, 2008

This idea is made precise in the type for + by the inclusion of a class
constraint: 'ﬂf

() iiNma=a->asa
PN

For any type a in the class Num of numeric types, +
takes two values of type a and returns another.

Atype with constraints is called overloaded.

Lecture 18 - Functional

CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008

©Chengkai Li, 2008

Classes in Haskell e

Aclass is a collection of types that support certain operations, called the methods
of the class.

Ea)

Types whose values can be compared
for equality and difference using

==)::a—>a—> Bool
(/=) ::a—>a—>Bool

Lecture 18 - Functional

CSE3302 Programming Languages, UT-Arlington
Programming, Spring 2008

©Chengkai Li, 2008

4/3/2008

Example methods:

Lecture 18 — Functional
Programming, Spring 2008

CSE3302 Programming Languages, UT-Arlington
©Chengkai Li, 2008

Haskell has a number of basic classes, including:

Methods: (==) (/=)
Types: Bool, Char, String, Int,
list, tuple (with elements in Eq class)

- Equality types

- Ordered types Methods: (<) (<=) () (>=) min max
Types: Bool, Char, String, Int,
list, tuple (with elements in Ord class)

Showable types ~ Methods: show

Types: Bool, Char, String, Int,
list, tuple (with elements in Show class)

Methods: (+) (-) (*) negate abs signum

- Numeric types

Types: Int, ...
Lecture 18 — Functional CSE3302 Programming Languages, UT-Arlington 38
Programming, Spring 2008 ©Chengkai Li, 2008

