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Yet Another Haskell Tutorial
http://www.cs.utah.edu/~hal/htut

Reading and ImplementationA

¢ WinHugs:
http://cvs.haskell.org/Hugs/pages/downloading.htm

Download file WinHugs-Sep2006.exe (14 MB):

Installation:
— Try to install outside of “Program Files”.
— May fail if you install inside.
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Topics e

* Basics

e Types and classes

* Defining functions

e List comprehensions
e Recursive functions

e Higher-order functions
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You need to use script (module) files to define functions, and
use interactive environment to evaluate expressions
(functions)

Haskell is not free-format. It has certain layout rules.
General rules to follow when writing script files:

— Indent the same amount for definitions at the same level
— Don’t use tab
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Notes e

A
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When Hugs is started it first loads the library file Prelude.hs, and then
repeatedly prompts the user for an expression to be evaluated.

For example:
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The Standard Prelude 8

A
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Function Application S A

. o _ The standard prelude also provides many useful functions that operate
In Haskell, function application is denoted using space on lists. For example:

f(a) ]
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e Examples e

Moreover, function application is assumed to have higher priority than all other
operators.

Mathematics Haskell

Means f(a) + b, rather than f (a + b). ]
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Operators v Script v

Operators are special binary functions. They are used in infix form:
When developing a Haskell script, it is useful to keep two windows open, one
running an editor for the script, and the other running Hugs.

Start an editor, type in the following two function definitions, and save the script
as Test.hs: (file name, without .hs, must match module name)

When enclosed in (), they are just like other functions
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Leaving the editor open, load the script:

File Test.hs must be in the right path. Use “File >> Options” to change the path

Now both Prelude.hs and Test.hs are loaded, and functions from both scripts
can be used:
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After a script is changed, it is automatically reloaded when you save the file. You
can also use a reload command:
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Types and Classes
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Types in Haskell

We use the notation e :: T to mean that evaluating the expression e will produce .
avalue of type T.

You can use :type to get the type of an expression
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Note:

% Every expression must have a valid type, which is calculated prior to
evaluating the expression by type inference;

% Haskell programs are type safe, because type errors can never occur
during evaluation;
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Type Inference: an Example

typing rule
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Type Inference

The type is inferred automatically.

You can declare the type explicitly.
Error in the declaration would be caught. Thus a good debugging tool.

Try the following:
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Basic Types

Haskell has a number of basic types, including:

- Logical values
- Single characters

- Strings of characters

- integers
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List Types

Alist is sequence of values of the same type:

In general:

[T] is the type of lists with elements of type T.
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Tuple Types

Atuple is a sequence of values of different types:

In general:

(T1,T2,...,Tn) is the type of n-tuples whose ith components have type Ti
foranyiini...n.
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Function Types

A function is a mapping from values of one type to values of another type:

In general:

T1 —> T2 s the type of functions that map arguments of type T1 to
results of type T2.
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Note:

# The argument and result types are unrestricted. For example, functions
with multiple arguments or results are possible using lists or tuples:

Lecture 18 - Functional CSE3302 Programming Languages, UT-Arlington 24
Programming, Spring 2008 ©Chengkai Li, 2008




4/3/2008

Curried Functions e

Functions with multiple arguments are also possible by returning functions as

results:

add’ takes an integer x and returns a function. In turn, this
function takes an integer y and returns the result x+y.
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% add and add’ produce the same final result, but add takes its two arguments
at the same time, whereas add’ takes them one at a time:

% Functions that take their arguments one at a time are called curried
functions.
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# Functions with more than two arguments can be curried by returning nested

functions:

mult takes an integer x and returns a function, which in turn takes an
integer y and returns a function, which finally takes an integer z and
returns the result x*y*z.

Curry Conventions v

To avoid excess parentheses when using curried functions, two simple
conventions are adopted:

e The arrow — associates to the right.

[ Means Int —> (Int — (Int = Int)). ]
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¥ As a consequence, it is then natural for function application to associate to

the left.

Means ((mult x) y) z.

Unless tupling is explicitly required, all functions in Haskell are normally defined
in curried form.
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What’s the big deal? e

Why Currying?
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Polymorphic Types S

The function length calculates the length of any list, irrespective of the type of
its elements.
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This idea is made precise in the type for length by the inclusion of a type
variable:

For any type a, length takes a list of values of type a and returns
an integer.

Atype with variables is called polymorphic.
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Note:

ST

& Many of the functions defined in the standard prelude are polymorphic. For
example:
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Overloaded Types e

The arithmetic operator + calculates the sum of any two numbers of numeric
type.

For example:
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This idea is made precise in the type for + by the inclusion of a class
constraint: 'ﬂf

() iiNma=a->asa
PN

For any type a in the class Num of numeric types, +
takes two values of type a and returns another.

Atype with constraints is called overloaded.
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Classes in Haskell e

Aclass is a collection of types that support certain operations, called the methods
of the class.

Ea )

Types whose values can be compared
for equality and difference using

==)::a—>a—> Bool
(/=) ::a—>a—>Bool
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Example methods:
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Haskell has a number of basic classes, including:

Methods: (==) (/=)
Types: Bool, Char, String, Int,
list, tuple (with elements in Eq class)

- Equality types

- Ordered types Methods: (<) (<=) () (>=) min max
Types: Bool, Char, String, Int,
list, tuple (with elements in Ord class)

Showable types ~ Methods: show

Types: Bool, Char, String, Int,
list, tuple (with elements in Show class)

Methods: (+) (-) (*) negate abs signum

- Numeric types

Types: Int, ...
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