[image: image1.png]Let’slook in more detail at multiplication. We will use the numbers in the following
table.

a 50 23

b, o6 04

[image: image2.png]3.4.2 [20] <3.3> Using a table similar to that shown in Figure 3.7, calculate the
product of the hexadecimal unsigned 8-bit integers A and B using the hardware
described in Figure 3.6. You should show the contents of each register on each
step.

[image: image3.png]Let’s look in more detail at division. We will use the octal numbers in the following
table.

50 23

[image: image4.png]3.7.2 [30] <3.4> Using a table similar to that shown in Figure 3.11, calculate A
divided by B using the hardware described in Figure 3.12. You should show the
contents of each register on each step. Assume A and B are unsigned 6-bit integers.
‘This algorithm requires a slightly different approach than that shown in Figure 3.10.
You will want to think hard about this, do an experiment or two, or else go to the
‘Web to figure out how to make this work correctly. (Hint: one possible solution
involves using the fact that Figure 3.12 implies the remainder register can be shifted

either direction).

[image: image5.png]Figure 3.10 describes a restoring division algorithm, because when subtracting the
divisor from the remainder produces a negative result, the divisor is added back to
the remainder (thus restoring the value). However, there are other algorithms that
have been developed that eliminate the extra addition. Many references to these
algorithms are easily found on the Web. We will explore these algorithms using the

pairs of octal numbers in the following table.

75

12

52

Ed

3.8.1 [30] <3.4> Using a table similar to that shown in Figure 3.11, calculate A
divided by B using nonrestoring division. You should show the contents of each
register on each step. Assume A and B are 6-bit unsigned integers.

[image: image6.png]Multiplicand
32 bits

Shift right
Wite

Product

64 bits

FIGURE 3.6 Refined version of the multiplication hardware. Compare with the first version in
Figure 3.4. The Multiplicand register, ALU, and Multiplier register are all 32 bits wide, with only the Product
register left at 64 bits. Now the product is shifted right. The separate Multiplier register also disappeared. The
multiplier is placed instead in the right half of the Product register. These changes are highlighted in color.
(The Product register should really be 65 bits to hold the carry out of the adder, but it's shown here as 64 bits
to highlight the evolution from Figure 3.4.)

[image: image7.png]Initial values 0011 0000 0010 0000 0000

1 a: 1= Prod = Prod + Mcand 0011 0000 0010 0000 0010
hift left Multiplicand 0011 0000 0100 0000 0010

: Shift right Multiplier 000D 0000 0100 0000 0010

2 : 1 = Prod = Prod + Mcand 0001 0000 0100 0000 0110
Shift left Mutiplicand 0001 0000 1000 0000 0110

: Shift right Multiplier 0000 0000 1000 0000 0110

3 = No operation 0000 0000 1000 0000 0110
2: shift left Multiplicand 0000 0001 0000 0000 0110

hift right Multiplier 0000 0001 0000 0000 0110

4 : 0 = No operation 0000 0001 0000 0000 0110
: Shift left Multiplicand 0000 0010 0000 0000 0110

3:_Shift right Multiplier 0000 0010 0000 0000 0110

FIGURE 3.7 Multiply example using algorithm in Figure 3.5. The bit examined to determine the
next step s circled in color.

[image: image8.png]Yes: 33 repatiions

FIGURE 3.10 A division algoritim, using tho hardwaro in Figuro 3.9. If the remainder is
positv, the divisor did g0 ino the dividend,so tep 20 generats 3 1 i he quotiet. A negtive remainder
e st 1 meansthat the divor did not g0 ino thedividend, o tep 20 generates 0 the quotint and
adds the divsor o the remainder therey foversing hesubtracion of sep 1. The final shifl,instep 3, lgns
the divisor properly,elative 0 the dividend for th nee feration. Thess seps are rpested 3 imes.

[image: image9.png]Inital values 0000 | 00100000 | 0000 0111
1 Rem = Rem - Div 0000 | 00100000 | (1100111
1 2b: Rem < 0 = +Div, sl Q. Q0 =0 0000 | 00100000 | 00000111
3 Shift Div ight 0000 | 00010000 | 00000111
1 Rem = Rem - Div 0000 | 00010000 | Giiioiii
2 2b: Rem < 0 = +Div, sl Q. Q0 =0 0000 | 00010000 | 00000111
3 Shift Div ight 0000 | 00001000 | 0000 0111
1+ Rem = Rem — Div 0000 | 00001000 | (iiiiiii
3 2b: Rem < 0 = +Div, Q. Q0 =0 0000 | 00001000 | 00000111
31 shift Div ight 0000 | 00000100 | 00000111
1: Rem = Rem - Div 0000 00000100 | @000 0011
4 2a: Rem=0=>5110,Q0 =1 0001 | 00000100 | 00000011
3 Shift Div ight 0001 | 00000010_| 00000011
1: Rem = Rem - Div 0001 | 00000010 | (0000 0001
5 201 Rem=0=>5110.Q0 =1 0011 | 00000010 | 00000001
3: Shift Div ight 0011 | 00000001 | 00000001

FIGURE 2.11 Division example using the algorithm in Figure 3.10. The bit examined to
determine the next step is circled in color.

Divisor
a2 bits

N~

-~
Shift rght
Remainder Shift left
Write

64 bits

f

FIGURE 3.12 An improved version of the division hardware. The Divisor register, ALU, and
Quotient register are all 32 bits wide, with only the Remainder register left at 64 bits. Compared to Figure 3.9,
the ALU and Divisor registers are halved and the remainder i shifted left. This version also combines the
Quotient register with the right half of the Remainder register. (As in Figure 3.6, the Remainder register
should really be 65 bits to make sure the carry out of the adder i not lost.)

