[image: image1.png]The basic single-cycle MIPS implementation in Figure 4.2 can only implement
some instructions. New instructions can be added to an existing ISA, but the
decision whether or not to do that depends, among other things, on the cost and
complexity such an addition introduces into the processor datapath and control.
The first three problems in this exercise refer to this new instruction:

a. | add3 Rd.Rs.Rt.Rx Regl[RdJ=Reg[RsJ+Req[Rt 1+Reg[Rx]
b. | s11 Rt.Rd.Shift Reg[Rd]= Reg[Rt] << Shift (shiftleft by Shift bits)

4.2.1 [10] <4.1> Which existing blocks (if any) can be used for this instruction?

4.2.2 [10] <4.1> Which new functional blocks (if any) do we need for this
instruction?

4.2.3 [10] <4.1> What new signals do we need (if any) from the control unit to
support this instruction?

[image: image2.png]In this exercise we examine the operation of the single-cycle datapath for a particu-
lar instruction. Problems in this exercise refer to the following MIPS instruction:

a | 1w $1.40086)
b. | Label: bne $1,52,Label

4.9.1 [10] <4.4> What is the value of the instruction word?

4.9.2 [10] <4.4> What is the register number supplied to the register file’s “Read
register 1” input? s this register actually read? How about “Read register 2”2

4.9.3 [10] <4.4> What is the register number supplied to the register file’s “Write
register” input? Is this register actually written?

[image: image3.png]In this exercise we examine in detail how an instruction is executed in a single-cycle
datapath. Problems in this exercise refer to a clock cycle in which the processor
fetches the following instruction word:

a. 10001100010000110000000000010000

b, 00010000001000110000000000001100

4.11.1 [5] <4.4>Whataretheoutputsof the sign-extend and the jump “Shiftleft 2”
unit (in the upper left of Figure 4.24) for this instruction word?

4.11.2 [10] <4.4> What are the values of ALU control unit’s inputs for this instruction?

4.11.3 [10] <4.4> What is the new PC address after this instruction is executed?
Highlight the path through which this value is determined.

[image: image4.png]_ Branch

N
M
— u
x
U
ALUGperation
L pata ‘
¢+ Register # MemWite
PC | Address Instruction (4| Rogistors | >ALU Lol Address
$+ Register # Zero pata
Instruction ull joma
— | “memory -1 Register & equiic F x
PE yemRead
N
Control |

FIGURE 4.2 The basic implementation of the MIPS subset, including the necessary multiplexors and control lines.
‘The top multiplexor (“Mux”) controls what value replaces the PC (PC +4 or the branch destination address); the multiplexor is controlled
by the gate that “ANDs” together the Zero output of the ALU and a control signal that indicates that the instruction is a branch. The middle
‘multiplexor, whose output returns to the registe file, s used to steer the output of the ALU (in the case of an arithmetic-logical instruction)
or the output of the data memory (in the case of load) for writing into the register file. Finally, the botiommost multiplexor is used to
determine whether the second ALU input i from the registers (for an arithmetic-logical instruction OR a branch) or from the offset fild of
the instruction (for a load or store). The added control lines are straightforward and determine the operation performed at the ALU, whether
the data memory should read or write, and whether the registers should perform a write operation. The control lines are shown in color to
‘make them easier to see.

