
Distributed Systems
Principles and Paradigms

Chapter 09
(version 27th November 2001)

Maarten van Steen

Vrije Universiteit Amsterdam, Faculty of Science
Dept. Mathematics and Computer Science

Room R4.20. Tel: (020) 444 7784
E-mail:steen@cs.vu.nl, URL: www.cs.vu.nl/ � steen/

01 Introduction
02 Communication
03 Processes
04 Naming
05 Synchronization
06 Consistency and Replication
07 Fault Tolerance
08 Security
09 Distributed Object-Based Systems
10 Distributed File Systems
11 Distributed Document-Based Systems
12 Distributed Coordination-Based Systems

00 – 1 /



Distributed Object-Based Systems

� CORBA

� DCOM

� Globe

09 – 1 Distributed Object-Based Systems/



CORBA

CORBA: Common Object Request Broker Architecture

Background:

� Developed by the Object Management Group
(OMG) in response to industrial demands for object-
based middleware

� Currently in version #2.4 with #3 (almost) done
� CORBA is a specification: different implementa-

tions of CORBA exist
� Very much the work of a committee: there are

over 800 members of the OMG and many of them
have a say in what CORBA should look like

Essence: CORBA provides a simple distributed-object
model, with specifications for many supporting ser-
vices � it may be here to stay (for a couple of years)

09 – 2 Distributed Object-Based Systems/9.1 CORBA



CORBA Overview (1/2)

Client application

Static
IDL

proxy

Dynamic
Invocation
Interface

Client ORB Server ORB

Skeleton Dynamic
Skeleton
Interface

Object
adapter

Object implementation

ORB
interface

ORB
interface

Local OS Local OS

Client machine Server machine

Network

Object Request Broker (ORB): CORBA’s object bro-
ker that connects clients, objects, and services

Proxy/Skeleton: Precompiled code that takes care
of (un)marshaling invocations and results

Dynamic Invocation/Skeleton Interface (DII/DSI): To
allow clients to “construct” invocation requests at
runtime instead of calling methods at a proxy, and
having the server-side “reconstruct” those request
into regular method invocations

Object adapter: Server-side code that handles incom-
ing invocation requests.

09 – 3 Distributed Object-Based Systems/9.1 CORBA



CORBA Overview (2/2)

Interface repository: Database containing interface
definitions and which can be queried at runtime

Implementation repository: Database containing the
implementation (code, and possibly also state) of
objects. Effectively: a server that can launch ob-
ject servers.

09 – 4 Distributed Object-Based Systems/9.1 CORBA



CORBA Object Model

Essence: CORBA has a “traditional” remote-object
model in which an object residing at an object server
is remote accessible through proxies

Observation: All CORBA specifications are given by
means of interface descriptions, expressed in an IDL.
CORBA follows an interface-based approach to ob-
jects:

� Not the objects, but interfaces are the really im-
portant entities

� An object may implement one or more interfaces

� Interface descriptions can be stored in an inter-
face repository, and looked up at runtime

� Mappings from IDL to specific programming are
part of the CORBA specification (languages in-
clude C, C++, Smalltalk, Cobol, Ada, and Java.

09 – 5 Distributed Object-Based Systems/9.1 CORBA



CORBA Services
Service Description
Collection Facilities for grouping objects into lists, queue, sets, etc.

Query Facilities for querying collections of objects in a declara-
tive manner

Concurrency Facilities to allow concurrent access to shared objects

Transaction Flat and nested transactions on method calls over multi-
ple objects

Event Facilities for asynchronous communication through
events

Notification Advanced facilities for event-based asynchronous com-
munication

Externalization Facilities for marshaling and unmarshaling of objects

Life cycle Facilities for creation, deletion, copying, and moving of
objects

Licensing Facilities for attaching a license to an object

Naming Facilities for systemwide naming of objects

Property Facilities for associating (attribute, value) pairs with ob-
jects

Trading Facilities to publish and find the services an object has
to offer

Persistence Facilities for persistently storing objects

Relationship Facilities for expressing relationships between objects

Security Mechanisms for secure channels, authorization, and au-
diting

Time Provides the current time within specified error margins

09 – 6 Distributed Object-Based Systems/9.1 CORBA



Communication Models (1/2)

Object invocations: CORBA distinguishes three dif-
ferent forms of direct invocations:

Request type Failure sem. Description

Synchronous At-most-once Caller blocks

One-way Unreliable Nonblocking call

Deferred syn-
chronous

At-most-once Nonblocking, but can pick-
up results later

Event communication: There are also additional fa-
cilities by means of event channels:

Event channel
Consumer

Consumer

Supplier

Supplier

Supplier

Push event to consumers

Event channel
Consumer

Consumer

Supplier

Supplier

Supplier

Ask suppliers for new event

09 – 7 Distributed Object-Based Systems/9.1 CORBA



Communication Models (2/2)

Messaging facilities: reliable asynchronous and per-
sistent method invocations:

Client
proxy

Callback
interface

Client
ORB

Client application

2. Request to server

4. Call by the ORB

1. Call by the
application

3. Response from server

Client
proxy

Polling
interface

Client
ORB

Client application

2. Request to server

1. Call by the
application

3. Response from server

4. Call by the
application

09 – 8 Distributed Object-Based Systems/9.1 CORBA



Processes

Most aspects of processes for in CORBA have been
discussed in previous classes. What remains is the
concept of interceptors:

Client
proxy

Client
ORB

Client application

Request-level
interceptor

Message-level
interceptor

To server

Local OS

Invocation request

Request-level: Allows you to modify invocation se-
mantics (e.g., multicasting)

Message-level: Allows you to control message-passing
between client and server (e.g., handle reliability
and fragmentation)

09 – 9 Distributed Object-Based Systems/9.1 CORBA



Naming

Important: In CORBA, it is essential to distinguish
specification-level and implementation-level object ref-
erences

Specification level: An object reference is considered
to be the same as a proxy for the referenced ob-
ject � having an object reference means you can
directly invoke methods; there is no separate client-
to-object binding phase

Implementation level: When a client gets an object
reference, the implementation ensures that, one
way or the other, a proxy for the referenced object
is placed in the client’s address space:

���������
	������������������������������
������������ ��� �"!$#%��&('*),+�-�.0/21 35476�-�8(9�-�8;:=<$/?>�'"6@/BADCE�

Conclusion: Object references in CORBA used to be
highly implementation dependent: different imple-
mentations of CORBA could normally not exchange
their references.
09 – 10 Distributed Object-Based Systems/9.1 CORBA



Interoperable Object References
(1/2)

Observation: Recognizing that object references are
implementation dependent, we need a separate refer-
encing mechanism to cross ORB boundaries

Solution: Object references passed from one ORB to
another are transformed by the bridge through which
they pass (different transformation schemes can be
implemented)

Observation: Passing an object reference ���
���

from
ORB A to ORB B circumventing the A-to-B bridge may
be useless if ORB B doesn’t understand ���

���

09 – 11 Distributed Object-Based Systems/9.1 CORBA



Interoperable Object References
(2/2)

Observation: To allow all kinds of different systems
to communicate, we standardize the reference that is
passed between bridges:

Repository
identifier

IIOP
version Host Port Object key Components

Profile
ID

Tagged Profile

Object
identifier

POA
identifier

Other server-
specific information

Profile

Interoperable Object Reference (IOR)

09 – 12 Distributed Object-Based Systems/9.1 CORBA



Naming Service

Essence: CORBA’s naming service allows servers to
associate a name to an object reference, and have
clients subsequently bind to that object by resolving
its name

Observation: In most CORBA implementations, ob-
ject references denote servers at specific hosts; nam-
ing makes it easier to relocate objects

Observation: In the naming graph all nodes are ob-
jects; there are no restrictions to binding names to ob-
jects � CORBA allows arbitrary naming graphs

Question: How do you imagine cyclic name resolu-
tion stops?

Observation: There is no single root; an initial con-
text node is returned through a special call to the ORB.
Also: the naming service can operate across different
ORBs � interoperable naming service
09 – 13 Distributed Object-Based Systems/9.1 CORBA



Fault Tolerance

Essence: Mask failures through replication, by putting
objects into object groups. Object groups are trans-
parent to clients: they appear as “normal” objects.
This approach requires a separate type of object ref-
erence: Interoperable Object Group Reference:

Repository
identifier

IIOP
ver.

IIOP
ver.Host-1 Host-NPort-1 Port-N

Object
key-1

Object
key-NComponents Components

Profile
ID

Profile
ID

TAG
PRIMARY

TAG
BACKUP

Other group-
specific information

Other group-
specific information

Profile-1 Profile-N

Interoperable Object Group Reference (IOGR)

Note: IOGRs have the same structure as IORs; the
main difference is that they are used differently. In
IORs an additional profile is used as an alternative; in
IOGR, it denotes another replica.

09 – 14 Distributed Object-Based Systems/9.1 CORBA



Security

Essence: Allow the client and object to be mostly un-
aware of all the security policies, except perhaps at
binding time; the ORB does the rest. Specific poli-
cies are passed to the ORB as (local) objects and are
invoked when necessary:

Client application Object implementation

Policy
object

Policy
object

Security
service

Security
service

Policy
object

Policy
object

Security
service

Security
service

Set of
client-specific
policy objects

Set of
object-specific
policy objects

Set of relevant
ORB security

servicesLocal OS Local OS

Client ORB Server ORB

Network
Invocation

Examples: Type of message protection, lists of trusted
parties.

09 – 15 Distributed Object-Based Systems/9.1 CORBA



Distributed COM

DCOM: Distributed Component Object Model

� Microsoft’s solution to establishing inter-process
communication, possibly across machine bound-
aries.

� Supports a primitive notion of distributed objects

� Evolved from early Windows versions to current
NT-based systems (including Windows 2000)

� Comparable to CORBA’s object request broker

09 – 16 Distributed Object-Based Systems/9.2 Distributed COM



DCOM Overview (1/2)

Somewhat confused? DCOM is related to many things
that have been introduced by Microsoft in the past
couple of years:

In-place
editing

Drag
and drop

Interprocess
data transfer

Persistent
storage

Persistent
references

Document
linking

Object
activation

ScriptingGrouping
(Controls)Documents

Core COM library

Embedding

COM

OLE

ActiveX

DCOM: Adds facilities to communicate across pro-
cess and machine boundaries.

09 – 17 Distributed Object-Based Systems/9.2 Distributed COM



DCOM Overview (2/2)

Class
object ObjectSCM SCM

Microsoft RPC

Client
proxy

Object
stub

Proxy
marshaler

Proxy
marshaler

Client application

COM COM

Local OS Local OS

Network

Client machine Object server

Registry Registry

SCM: Service Control Manager, responsible for ac-
tivating objects (cf., to CORBA’s implementation
repository).

Proxy marshaler: handles the way that object refer-
ences are passed between different machines

09 – 18 Distributed Object-Based Systems/9.2 Distributed COM



COM Object Model

� An interface is a collection of semantically related
operations

� Each interface is typed, and therefore has a glob-
ally unique interface identifier

� A client always requests an implementation of an
interface:

– Locate a class that implements the interface

– Instantiate that class, i.e., create an object

– Throw the object away when the client is done

09 – 19 Distributed Object-Based Systems/9.2 Distributed COM



DCOM Services
CORBA DCOM/COM+ Windows 2000
Collection ActiveX Data Objects –
Query None –
Concurrency Thread concurrency –
Transaction COM+ Automatic

Transactions
Distributed Transac-
tion Coordinator

Event COM+ Events –
Notification COM+ Events –
Externalization Marshaling utilities –
Life cycle Class factories, JIT

activation
–

Licensing Special class facto-
ries

–

Naming Monikers Active Directory
Property None Active Directory
Trading None Active Directory
Persistence Structured storage Database access
Relationship None Database access
Security Authorization SSL, Kerberos
Time None None

Note: COM+ is effectively COM plus services that
were previously available in an ad-hoc fashion

09 – 20 Distributed Object-Based Systems/9.2 Distributed COM



Communication Models

Object invocations: Synchronous remote-method calls
with at-most-once semantics. Asynchronous invoca-
tions are supported through a polling model, as in
CORBA.

Event communication: Similar to CORBA’s push-
style model:

Supplier Consumer

Consumer

Event class
object

Event
object

m_event

m_event

Event
store

Interface
containing
m_event

Invocation
is stored

Invocation
is passed

to consumer

Object
implementing

m_event

Messaging: Completely analogous to CORBA mes-
saging.

09 – 21 Distributed Object-Based Systems/9.2 Distributed COM



Processes: Passing Object
References

Observation: Objects are referenced by means of
a local interface pointer. The question is how such
pointers can be passed between different machines:

Client
proxy

Client
proxy

Proxy
(un)marshaler

Proxy
(un)marshaler

Process A Process B

Client application Client application
Marshaled
client proxy

Object
stub

Object

Object server

Binding information Same binding
information

Question: Where does the proxy marshaler come
from? Do we always need it?

09 – 22 Distributed Object-Based Systems/9.2 Distributed COM



Naming: Monikers

Observation: DCOM can handle only objects as tem-
porary instances of a class. To accommodate objects
that can outlive their client, something else is needed.

Moniker: A hack to support real objects

� A moniker associates data (e.g., a file), with an
application or program

� Monikers can be stored
� A moniker can contain a binding protocol, spec-

ifying how the associated program should be
“launched” with respect to the data.

1 Client Calls BindMoniker at moniker
2 Moniker Lookup CLSID and tell SCM to create object
3 SCM Loads class object
4 Class object Creates object, returns int. pointer
5 Moniker Instructs object to load previously stored state
6 Object Loads its state from file
7 Moniker Returns interface pointer of object to client

09 – 23 Distributed Object-Based Systems/9.2 Distributed COM



Active Directory

Essence: a worldwide distributed directory service,
but one that does not provide location transparency.

Basics: Associate a directory service (called domain
controller) with each domain; look up the controller
using a normal DNS query:

DNS

Domain
controllerClient

1. Ask for host address
of domain controller
in a given domain

2. Requested address

3. LDAP query

4. LDAP reply

Note: Controller is implemented as an LDAP server

09 – 24 Distributed Object-Based Systems/9.2 Distributed COM



Fault Tolerance

Automatic transactions: Each class object (from which
objects are created), has a transaction attribute that
determines how its objects behave as part of a trans-
action:

Attr. value Description
REQUIRES NEW A new transaction is always started at

each invocation
REQUIRED A new transaction is started if not al-

ready done so
SUPPORTED Join a transaction only if caller is al-

ready part of one
NOT SUPPORTED Never join a transaction (no transaction

support)
DISABLED Never join a transaction, even if told to

do so

Note: Transactions are essentially executed at the
level of a method invocation.

09 – 25 Distributed Object-Based Systems/9.2 Distributed COM



Security (1/2)

Declarative security: Register per object what the
system should enforce with respect to authentication.
Authentication is associated with users and user groups.
There are different authentication levels:

Auth. level Description
NONE No authentication is required
CONNECT Authenticate client when first con-

nected to server
CALL Authenticate client at each invocation
PACKET Authenticate all data packets
PACKET INTEGRITY Authenticate data packets and do in-

tegrity check
PACKET PRIVACY Authenticate, integrity-check, and en-

crypt data packets

09 – 26 Distributed Object-Based Systems/9.2 Distributed COM



Security (2/2)

Delegation: A server can impersonate a client de-
pending on a level:

Impersonation Description
ANONYMOUS The client is completely anonymous to

the server
IDENTIFY The server knows the client and can do

access control checks
IMPERSONATE The server can invoke local objects on

behalf of the client
DELEGATE The server can invoke remote objects

on behalf of the client

Note: There is also support for programmatic secu-
rity by which security levels can be set by an appli-
cation, as well as the required security services (see
book).

09 – 27 Distributed Object-Based Systems/9.2 Distributed COM



Globe

� Experimental wide-area system currently being de-
veloped at Vrije Universiteit

� Unique for its focus on scalability by means of
truly distributed objects

� Prototype version up and running across multi-
ple machines distributed in NL and across Europe
and the US.

09 – 28 Distributed Object-Based Systems/Globe



Object Model (1/3)

Essence: A Globe object is a physically distributed
shared object: the object’s state may be physically
distributed across several machines

Local object

Distributed shared object

Process

Interface

Network

Local object: A nondistributed object residing a sin-
gle address space, often representing a distributed
shared object

Contact point: A point where clients can contact the
distributed object; each contact point is described
through a contact address

09 – 29 Distributed Object-Based Systems/Globe



Object Model (2/3)

Observation: Globe attempts to separate function-
ality from distribution by distinguishing different local
subobjects:

Control
subobject

Replication
subobject

Semantics
subobject

Communication
subobject

Communication
with other local

objects

Same interface as implemented
by semantics subobject

Semantics subobject: Contains the methods that im-
plement the functionality of the distributed shared
object

Communication subobject: Provides a (relatively sim-
ple), network-independent interface for communi-
cation between local objects

09 – 30 Distributed Object-Based Systems/Globe



Object Model (3/3)

Control
subobject

Replication
subobject

Semantics
subobject

Communication
subobject

Communication
with other local

objects

Same interface as implemented
by semantics subobject

Replication subobject: Contains the implementation
of an object-specific consistency protocol that
controls exactly when a method on the semantics
subobject may be invoked

Control subobject: Connects the user-defined inter-
faces of the semantics subobject to the generic,
predefined interfaces of the replication subobject

09 – 31 Distributed Object-Based Systems/Globe



Client-to-Object Binding

Client Naming service

Location service

1. Name

Object handle
2. Object handle

Addresses &
protocols

Register contact
address

Local object

5. Make contact

(Trusted)
class repository

Distributed shared object

Class object

4. Load & instantiate
class(es)

3. Select
address

Observation: Globe’s contact addresses correspond
to CORBA’s object references

09 – 32 Distributed Object-Based Systems/Globe



Globe Services
Service Possible implementation Av?
Collection Separate object that holds refer-

ences to other objects
No

Concurrency Each object implements its own
concurrency control strategy

No

Transaction Separate object representing a
transaction manager

No

Event/Notif. Separate object per group of
events (as in DCOM)

No

Externalization Each object implements its own
marshaling routines

Yes

Life cycle Separate class objects combined
with per-object implementations

Yes

Licensing Implemented by each object sepa-
rately

No

Naming Separate service, implemented by
a collection of naming objects

Yes

Property Separate service, implemented by
a collection of directory objects

No

Persistence Implemented on a per-object basis Yes
Security Implemented per object, combined

with (local) security services
Yes

Replication Implemented on a per-object basis Yes
Fault tolerance Implemented per object combined

with fault-tolerant servers
Yes

09 – 33 Distributed Object-Based Systems/Globe



Object References

Essence: Globe uses location-independent object han-
dles which are to be resolved to contact addresses
(which describes where and how an object can be
contacted):

� Associated with a contact point of the distributed
object

� Specifies (for example) a transport-level network
address to which the object will listen

� Contains an implementation handle, specifying
exactly what the client should implement if it wants
to communicate through the contact point:
–

����������� ���	��
�������
�

��

�
����������������� �������! "���#�$�%���&
'
'



'
'
(�*),+-�
� �'. +/�0)21 � �#+-�3)!�,4�) �

4&�#+5�6)21
�

879)

�

– “slave/master-slave/tcp/ip”

Observation: Objects in Globe have their own object-
specific implementations; there is no “standard” proxy
that is implemented for all clients

09 – 34 Distributed Object-Based Systems/Globe



Naming Objects

Observation: Globe separates naming from locating
objects (as described in Chapter 04). The current
naming service is based on DNS, using TXT records
for storing object handles

Observation: The location service is implemented as
a generic, hierarchical tree, similar to the approach
explained in Chapter 04.

09 – 35 Distributed Object-Based Systems/Globe



Caching and Replication

Observation: Here’s where Globe differs from many
other systems:

� The organization of a local object is such that
replication is inherently part of each distributed
shared object

� All replication subobjects have the same interface:

Method Description
� 	��0� 	

Called to synchronize replicas of the se-
mantics subobjects, obtain locks if neces-
sary, etc.

� ����!
Provide marshaled arguments of a specific
method, and pass invocation to local ob-
jects in other address spaces� �������E��!
Called after the control subobject has in-
voked a specific method at the semantics
subobject

� This approach allows to implement any object-
specific caching/replication strategy

09 – 36 Distributed Object-Based Systems/Globe



Security

Essence: Additional security subobject checks for au-
thorized communication, invocation, and parameter val-
ues. Globe can be integrated with existing security
services:

Kerberos

Process B

Process A

Local object A

Local object B

Principal object
of process B

Principal object
of process A

1 2

34

5

6

7

Security domain of B

Security domain of A

Distributed
shared
object

09 – 37 Distributed Object-Based Systems/Globe



Comparison

09 – 38 Distributed Object-Based Systems/Globe



Issue CORBA DCOM Globe
Design goals Interoperability Functionality Scalability
Object model Remote objects Remote objects Distributed objects
Services Many of its own From environment Few
Interfaces IDL based Binary Binary
Sync. communication Yes Yes Yes
Async. communication Yes Yes No
Callbacks Yes Yes No
Events Yes Yes No
Messaging Yes Yes No
Object server Flexible (POA) Hard-coded Object dependent
Directory service Yes Yes No
Trading service Yes No No
Naming service Yes Yes Yes
Location service No No Yes
Object reference Object’s location Interface pointer True identifier
Synchronization Transactions Transactions Only intra-object
Replication support Separate server None Separate subobject
Transactions Yes Yes No
Fault tolerance By replication By transactions By replication
Recovery support Yes By transactions No


