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Architectural styles (1/2)

Basic idea: Organize into logically different compo-
nents, and subsequently distribute those components
over the various machines.
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Observation: (a) Layered style is used for client-server
system; (b) object-based style for distributed object
systems.
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Architectural Styles (2/2)

Observation: Decoupling processes in space (“anony-
mous”) and also time (“asynchronous”) has led to al-

ternative styles:
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(a) Publish/subscribe and (b) Shared dataspace
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Centralized Architectures

Basic Client—Server Model: Characteristics:
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There are processes offering services (servers )
There are processes that use services (clients )
Clients and servers can be distributed across dif-
ferent machines

Clients follow request/reply model with respect to
using services

_ Wait for result
Client

Request

Provide service Time —>
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Application Layering (1/2)

Traditional three-layered view:

e User-interface layer contains units for an applica-
tion’s user interface

e Processing layer contains the functions of an ap-
plication, i.e. without specific data

e Data layer contains the data that a client wants to
manipulate through the application components

Observation: This layering is found in many distributed
information systems, using traditional database tech-
nology and accompanying applications.
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Application Layering (2/2)
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Multi-Tiered Architectures

Single-tiered: dumb terminal/mainframe configuration
Two-tiered: client/single server configuration

Three-tiered: each layer on separate machine

Traditional two-tiered configurations:

Client machine
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Decentralized Architectures

Observation: In the last couple of years we have
been seeing a tremendous growth in peer-to-peer sys-
tems:

e Structured P2P : nodes are organized following a
specific distributed data structure

e Unstructured P2P : nodes have randomly selected
neighbors

e Hybrid P2P : some nodes are appointed special
functions in a well-organized fashion

Note: In virtually all cases, we are dealing with over-
lay networks : data is routed over connections setup
between the nodes (cf. application-level multicasting).
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Structured P2P Systems (1/2)

Basic idea: Organize the nodes in a structured over-
lay network such as a logical ring, and make specific
nodes responsible for services based only on their ID:
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Note: The system provides an operation LOOKUP (key)
that will efficiently route the lookup request to the as-
sociated node.
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Structured P2P Systems (2/2)

Other example:

Organize nodes in a d-dimensional

space and let every node take the responsibility for
data in a specific region. When a node joins = split a

region.
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Unstructured P2P Systems

Observation: Many unstructured P2P systems at-
tempt to maintain a random graph :

Basic principle: Each node is required to be able to
contact a randomly selected other node:

e Let each peer maintain a partial view of the net-
work, consisting of ¢ other nodes

e Each node P periodically selects a node Q from
Its partial view

e P and Q exchange information and exchange mem-
bers from their respective partial views

Observation: It turns out that, depending on the ex-
change, randomness, but also robustness of the net-
work can be maintained.

02-11 Architectures/2.2 System Architectures



Topology Management of Overlay
Networks (1/2)

Basic idea: Distinguish two layers: (1) maintain ran-
dom partial views in lowest layer; (2) be selective on
who you keep in higher-layer partial view.

Protocol for | _—7 .
Structured specific — Is_ lneks f't(c) :)ct)r?grlonggc-les
overlay overlay Q beet

A
Random peer

Random Protocol for //,Jr Links to randomly

overlay randomized chosen other nodes

view Q:

Note: lower layer feeds upper layer with random nodes;
upper layer is selective when it comes to keeping ref-
erences.
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Topology Management of Overlay
Networks (2/2)

Example: Consider a N x N grid. Keep only refer-
ences to nearest neighbors:

ay,a) — (by,by) ||=dy +d

d; = min{N — |a; — b;|,|a; — b;|}

Result: a nice torus will appear after a while:
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Superpeers

Observation: Sometimes it helps to select a few nodes
to do specific work: superpeer

Regular peer

Superpeer

Superpeer
network

Examples:

e Peers maintaining an index (for search)
e Peers monitoring the state of the network
e Peers being able to setup connections
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Hybrid Architectures (1/2)

Observation: In many cases, client-server architec-
tures are combined with peer-to-peer solutions

Example: Edge-server architectures, which are often
used for Content Delivery Networks

] [ [ Client Content provider

Enterprise network
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Hybrid Architectures (2/2)

Example: Combining a P2P download protocol with
a client-server architecture for controlling the down-
loads: Bittorrent

Client node
P K out of N nodes
?Lookup(F) Node 1
\

A BitTorrent | .torrent file > List of nodes Node 2

Web page Ref. to for F Ref. to storing F

file tracker

Web server  server File server Tracker

Node N

Basic idea: Once a node has identified where to down-
load a file from, it joins a swarm of downloaders who
In parallel get file chunks from the source, but also
distribute these chunks amongst each other.
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Architectures versus Middleware

Problem: In many cases, distributed systems/applications
are developed according to a specific architectural style.
The chosen style may not be optimal in all cases =-
there is a need to (dynamically) adapt the behavior of

the middleware when needed.

Interceptors: Intercept the usual flow of control when
iInvoking a remote object:
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Adaptive Middleware

Separation of concerns : Try to separate extra func-
tionalities and later weave them together into a
single implementation =- only toy examples so
far.

Computational reflection : Let a program inspect it-
self at runtime and adapt/change its settings dy-
namically if necessary = mostly at language level
and applicability unclear.

Component-based design : Organize a distributed ap-
plication through components that can be dynam-
ically replaced when needed = highly complex,
also many intercomponent dependencies.

Observation: Do we need adaptive software at all,
or is the issue adaptive systems ?
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Self-managing Distributed
Systems

Observation: Distinction between system and soft-
ware architectures blurs when automatic adaptivity
needs to be taken into account:

e Self-configuration
e Self-managing

e Self-healing

e Self-optimizing

o Self-*

Note: There is a lot of hype going on in this field of
autonomic computing
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Feedback Control Model

Observation: In many cases, self-* systems are or-
ganized as a feedback control system

Uncontrollable parameters (disturbance / noise)

A4
Initial configuration ~—  Corrections Observed output

> Core of distributed system
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measures l estimation
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Analysis [«
Measured output

Adjustment triggers
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Example: Globule

Globule: Collaborative CDN that analyzes traces to
decide where replicas of Web content should be placed.
Decisions are driven by a general cost model :

cost = (wq x mq) + (wy X my) + -+ + (wy X my)

1 ] [ Client

Orlgln server

A\

~A Core Internet

Replica server “

Enterprlse network

L 1L 1L Client L 1L ][] Client

e Globule origin server collects traces and does what-
if analysis by checking what would have happened
If page P would have been placed at edge server
S.

e Many strategies are evaluated, and the best one
Is chosen.
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