
Distributed Systems
Principles and Paradigms

Chapter 07
(version October 3, 2007)

Maarten van Steen

Vrije Universiteit Amsterdam, Faculty of Science
Dept. Mathematics and Computer Science

Room R4.20. Tel: (020) 598 7784
E-mail:steen@cs.vu.nl, URL: www.cs.vu.nl/∼steen/

01 Introduction
02 Architectures
03 Processes
04 Communication
05 Naming
06 Synchronization
07 Consistency and Replication
08 Fault Tolerance
09 Security
10 Distributed Object-Based Systems
11 Distributed File Systems
12 Distributed Web-Based Systems
13 Distributed Coordination-Based Systems

00 – 1 /

Consistency & Replication

• Introduction (what’s it all about)

• Data-centric consistency

• Client-centric consistency

• Replica management

• Consistency protocols

07 – 1 Consistency & Replication/

Performance and Scalability

Main issue: To keep replicas consistent, we gener-
ally need to ensure that all conflicting operations are
done in the the same order everywhere

Conflicting operations: From the world of transac-
tions:

• Read–write conflict : a read operation and a write
operation act concurrently

• Write–write conflict : two concurrent write oper-
ations

Guaranteeing global ordering on conflicting operations
may be a costly operation, downgrading scalability

Solution: weaken consistency requirements so that
hopefully global synchronization can be avoided

07 – 2 Consistency & Replication/7.1 Introduction

Data-Centric Consistency Models

Consistency model: a contract between a (distributed)
data store and processes, in which the data store spec-
ifies precisely what the results of read and write oper-
ations are in the presence of concurrency.

Essence: A data store is a distributed collection of
storages accessible to clients:

Distributed data store

Process Process Process

Local copy

07 – 3 Consistency & Replication/7.2 Data-Centric Consistency Models

Continuos Consistency

Observation: We can actually talk a about a degree
of consistency :

• replicas may differ in their numerical value
• replicas may differ in their relative staleness
• there may differences with respect to (number and

order) of performed update operations

Conit: conistency unit ⇒ specifies the data unit over
which consistency is to be measured.

07 – 4 Consistency & Replication/7.2 Data-Centric Consistency Models

Example: Conit

< 5, B> x := x + 2 [x = 2]

[y = 2]

[y = 3]

[x = 6]

< 8, A>

<12, A>

<14, A>

y := y + 2

y := y + 1

x := y * 2

Operation Result

x = 6; y = 3

Conit

Replica A

Vector clock A	 = (15, 5)

Order deviation 	 = 3

Numerical deviation 	= (1, 5)

< 5, B> x := x + 2 [x = 2]

[y = 5]<10, B> y := y + 5

Operation Result

x = 2; y = 5

Conit

Replica B

Vector clock B	 = (0, 11)

Order deviation 	 = 2

Numerical deviation 	= (3, 6)

Conit: contains the variables x and y:

• Each replica maintains a vector clock
• B sends A operation [〈5,B〉: x := x + 2]; A has

made this operation permanent (cannot be rolled
back)

• A has three pending operations ⇒ order devia-
tion = 3

• A has missed one operation from B, yielding a
max diff of 5 units ⇒ (1,5)

07 – 5 Consistency & Replication/7.2 Data-Centric Consistency Models

Sequential Consistency

The result of any execution is the same as if the op-
erations of all processes were executed in some se-
quential order, and the operations of each individual
process appear in this sequence in the order speci-
fied by its program.

Note: We’re talking about interleaved executions: there
is some total ordering for all operations taken together.

P1:

P1:

W(x)a

W(x)a

W(x)b

W(x)b

R(x)b

R(x)b

R(x)b

R(x)a

R(x)a

R(x)b

R(x)a

R(x)a

P2:

P2:

P3:

P3:

P4:

P4:

(a)

(b)

07 – 6 Consistency & Replication/7.2 Data-Centric Consistency Models

Causal Consistency

Writes that are potentially causally related must be
seen by all processes in the same order. Concurrent
writes may be seen in a different order by different
processes.

P1:

P1:

W(x)a

W(x)a

R(x)aP2:

P2:

P3:

P3:

P4:

P4:

W(x)b

W(x)b

R(x)a

R(x)a

R(x)a

R(x)a

R(x)b

R(x)b

R(x)b

R(x)b

(a)

(b)

07 – 7 Consistency & Replication/7.2 Data-Centric Consistency Models

Grouping Operations (1/2)

• Accesses to synchronization variables are se-
quentially consistent.

• No access to a synchronization variable is allowed
to be performed until all previous writes have com-
pleted everywhere.

• No data access is allowed to be performed un-
til all previous accesses to synchronization vari-
ables have been performed.

Basic idea: You don’t care that reads and writes of a
series of operations are immediately known to other
processes. You just want the effect of the series itself
to be known.

07 – 8 Consistency & Replication/7.2 Data-Centric Consistency Models

Grouping Operations (2/2)

Acq(Lx) W(x)a Acq(Ly) W(y)b Rel(Lx) Rel(Ly)

Acq(Lx) R(x)a R(y) NIL

Acq(Ly) R(y)b

P1:

P2:

P3:

Observation: Weak consistency implies that we need
to lock and unlock data (implicitly or not).

Question: What would be a convenient way of mak-
ing this consistency more or less transparent to pro-
grammers?

07 – 9 Consistency & Replication/7.2 Data-Centric Consistency Models

Client-Centric Consistency
Models

• System model

• Monotonic reads

• Monotonic writes

• Read-your-writes

• Write-follows-reads

Goal: Show how we can perhaps avoid systemwide
consistency, by concentrating on what specific clients
want, instead of what should be maintained by servers.

07 – 10 Consistency & Replication/7.3 Client-Centric Consistency Models

Consistency for Mobile Users

Example: Consider a distributed database to which
you have access through your notebook. Assume your
notebook acts as a front end to the database.

• At location A you access the database doing reads
and updates.

• At location B you continue your work, but unless
you access the same server as the one at location
A, you may detect inconsistencies:

– your updates at Amay not have yet been prop-
agated to B

– you may be reading newer entries than the
ones available at A

– your updates at B may eventually conflict with
those at A

Note: The only thing you really want is that the entries
you updated and/or read at A, are in B the way you left
them in A. In that case, the database will appear to
be consistent to you.

07 – 11 Consistency & Replication/7.3 Client-Centric Consistency Models

Basic Architecture

Read and write operations

Client moves to other location
and (transparently) connects to
other replica

Wide-area network

Replicas need to maintain
client-centric consistency

Portable computer

Distributed and replicated database

07 – 12 Consistency & Replication/7.3 Client-Centric Consistency Models

Monotonic Reads (1/2)

If a process reads the value of a data item x, any suc-
cessive read operation on x by that process will al-
ways return that same or a more recent value.

WS()x 1 R()x 1

WS(;)x 1 x 2 R()x 2

L1:

L2:

WS()x 1

WS()x 2

R()x 1

R()x 2

L1:

L2:

Notation: WS(xi[t]) is the set of write operations (at
Li) that lead to version xi of x (at time t);WS(xi[t1];xj[t2])
indicates that it is known that WS(xi[t1]) is part of
WS(xj[t2]).

Note: Parameter t is omitted from figures

07 – 13 Consistency & Replication/7.3 Client-Centric Consistency Models

Monotonic Reads (2/2)

Example: Automatically reading your personal calen-
dar updates from different servers. Monotonic Reads
guarantees that the user sees all updates, no matter
from which server the automatic reading takes place.

Example: Reading (not modifying) incoming mail while
you are on the move. Each time you connect to a dif-
ferent e-mail server, that server fetches (at least) all
the updates from the server you previously visited.

07 – 14 Consistency & Replication/7.3 Client-Centric Consistency Models

Monotonic Writes

A write operation by a process on a data item x is
completed before any successive write operation on x
by the same process.

L1:

L2: x 2

W()x 1

W()

x 2

W()x 1

W()

L1:

L2:

WS()x 1

Example: Updating a program at server S2, and en-
suring that all components on which compilation and
linking depends, are also placed at S2.

Example: Maintaining versions of replicated files in
the correct order everywhere (propagate the previous
version to the server where the newest version is in-
stalled).

07 – 15 Consistency & Replication/7.3 Client-Centric Consistency Models

Read Your Writes

The effect of a write operation by a process on data
item x, will always be seen by a successive read op-
eration on x by the same process.

L1:

L2:

W()x 1

W()x 1L1:

L2:

WS(;)x 1 x 2 R()x 2

R()x 2WS()x 2

Example: Updating your Web page and guarantee-
ing that your Web browser shows the newest version
instead of its cached copy.

07 – 16 Consistency & Replication/7.3 Client-Centric Consistency Models

Writes Follow Reads

A write operation by a process on a data item x fol-
lowing a previous read operation on x by the same
process, is guaranteed to take place on the same or a
more recent value of x that was read.

WS()x 1 R()x 1

WS(;)x 1 x 2

L1:

L2:

WS()x 1

WS()x 2

R()x 1L1:

L2:

W()x 2

W()x 2

Example: See reactions to posted articles only if you
have the original posting (a read “pulls in” the corre-
sponding write operation).

07 – 17 Consistency & Replication/7.3 Client-Centric Consistency Models

Distribution Protocols

• Replica server placement

• Content replication and placement

• Content distribution

07 – 18 Consistency & Replication/7.4 Replica Management

Replica Placement

Essence: Figure out what the best K places are out
of N possible locations.

• Select best location out of N−K for which the av-
erage distance to clients is minimal. Then choose
the next best server. (Note: The first chosen loca-
tion minimizes the average distance to all clients.)
Computationally expensive.

• Select the K-th largest autonomous system and
place a server at the best-connected host. Com-
putationally expensive.

• Position nodes in a d-dimensional geometric space,
where distance reflects latency. Identify the K re-
gions with highest density and place a server in
every one. Computationally cheap.

07 – 19 Consistency & Replication/7.4 Replica Management

Content Replication (1/2)

Model: We consider objects (and don’t worry whether
they contain just data or code, or both)

Distinguish different processes: A process is capa-
ble of hosting a replica of an object or data:

• Permanent replicas: Process/machine always
having a replica

• Server-initiated replica: Process that can dy-
namically host a replica on request of another server
in the data store

• Client-initiated replica: Process that can dynam-
ically host a replica on request of a client (client
cache)

07 – 20 Consistency & Replication/7.4 Replica Management

Content Replication (2/2)

Permanent
replicas

Server-initiated replicas

Client-initiated replicas

Clients

Client-initiated replication
Server-initiated replication

07 – 21 Consistency & Replication/7.4 Replica Management

Server-Initiated Replicas

Server without
copy of file F

Client Server with
copy of F

P
Q

C1

C2

Server Q counts access from C and
C as if they would come from P

1
2

File F

• Keep track of access counts per file, aggregated
by considering server closest to requesting clients

• Number of accesses drops below threshold D ⇒

drop file

• Number of accesses exceeds threshold R⇒ repli-
cate file

• Number of access between D and R ⇒ migrate
file

07 – 22 Consistency & Replication/7.4 Replica Management

Content Distribution (1/3)

Model: Consider only a client-server combination:

• Propagate only notification/invalidation of update
(often used for caches)

• Transfer data from one copy to another (distributed
databases)

• Propagate the update operation to other copies
(also called active replication)

Observation: No single approach is the best, but de-
pends highly on available bandwidth and read-to-write
ratio at replicas.

07 – 23 Consistency & Replication/7.4 Replica Management

Content Distribution (2/3)

• Pushing updates: server-initiated approach, in which
update is propagated regardless whether target
asked for it.

• Pulling updates: client-initiated approach, in which
client requests to be updated.

Issue Push-based Pull-based
1: List of client caches None
2: Update (and possibly fetch update) Poll and update
3: Immediate (or fetch-update time) Fetch-update time
1: State at server
2: Messages to be exchanged
3: Response time at the client

07 – 24 Consistency & Replication/7.4 Replica Management

Content Distribution (3/3)

Observation: We can dynamically switch between
pulling and pushing using leases : A contract in which
the server promises to push updates to the client until
the lease expires.

Issue: Make lease expiration time dependent on sys-
tem’s behavior (adaptive leases):

• Age-based leases : An object that hasn’t changed
for a long time, will not change in the near future,
so provide a long-lasting lease

• Renewal-frequency based leases : The more of-
ten a client requests a specific object, the longer
the expiration time for that client (for that object)
will be

• State-based leases : The more loaded a server
is, the shorter the expiration times become

Question: Why are we doing all this?

07 – 25 Consistency & Replication/7.4 Replica Management

Consistency Protocols

Consistency protocol: describes the implementa-
tion of a specific consistency model.

• Continuous consistency

• Primary-based protocols

• Replicated-write protocols

07 – 26 Consistency & Replication/7.5 Consistency Protocols

Continuous Consistency:
Numerical Errors (1/2)

Principle: consider a data item x and let weight(W)

denote the numerical change in its value after a write
operationW. Assume that ∀W : weight(W) > 0.

W is initially forwarded to one of the N replicas, de-
noted as origin(W). TW[i, j] are the writes executed
by server Si that originated from Sj:

TW[i, j] = ∑{weight(W)|origin(W) = Sj &W ∈ log(Si)}

Note: Actual value v(t) of x:

v(t) = vinit+
N

∑
k=1

TW[k,k]

value vi of x at replica i:

vi = vinit+
N

∑
k=1

TW[i,k]

07 – 27 Consistency & Replication/7.5 Consistency Protocols

Continuous Consistency:
Numerical Errors (2/2)

Problem: We need to ensure that v(t) − vi < δi for
every server Si.

Approach: Let every server Sk maintain a view TWk[i, j]
of what it believes is the value of TW[i, j]. This in-
formation can be gossiped when an update is propa-
gated.

Note: 0≤ TWk[i, j] ≤ TW[i, j] ≤ TW[j, j]

Solution: Sk sends operations from its log to Si when
it sees that TWk[i,k] is getting too far from TW[k,k], in
particular, when TW[k,k] − TWk[i,k] > δi/(N − 1).

Note: Staleness can be done analogously, by essen-
tially keeping track of what has been seen last from Si
(see book).

07 – 28 Consistency & Replication/7.5 Consistency Protocols

Primary-Based Protocols (1/2)

Primary-backup protocol:

Data store

Primary server
for item x

Client Client

Backup server

W1. Write request
W2. Forward request to primary
W3. Tell backups to update
W4. Acknowledge update
W5. Acknowledge write completed

W1

W2

W3 W3

W3

W4 W4

W4

W5

R1. Read request
R2. Response to read

R1 R2

Example: Traditionally applied in distributed databases
and file systems that require a high degree of fault tol-
erance. Replicas are often placed on same LAN.

07 – 29 Consistency & Replication/7.5 Consistency Protocols

Primary-Based Protocols (2/2)

Primary-backup protocol with local writes:

Data store

Old primary
for item x

Client Client

Backup server

W1. Write request
W2. Move item x to new primary

W4. Tell backups to update
W5. Acknowledge update

W3. Acknowledge write completed

R1

W2

W4W4

W4

R2

R1. Read request
R2. Response to read

W1 W3

New primary
for item x

W5 W5

W5

Example: Mobile computing in disconnected mode
(ship all relevant files to user before disconnecting,
and update later on).

07 – 30 Consistency & Replication/7.5 Consistency Protocols

Replicated-Write Protocols

Quorum-based protocols: Ensure that each opera-
tion is carried out in such a way that a majority vote is
established: distinguish read quorum and write quo-
rum :

A A

A

B B

B

C C

C

D D

D

E E

E

F F

F

G G

G

H H

H

I I

I

J J

J

K K

K

L L

L

Read quorum

Write quorum

NR WN= 3, = 10 NR WN= 7, = 6

NR WN= 1, = 12

(a) (b)

(c)

07 – 31 Consistency & Replication/7.5 Consistency Protocols

