Distributed Systems

Principles and Paradigms

Chapter 07
(version October 3, 2007)

Maarten van Steen

Vrije Universiteit Amsterdam, Faculty of Science

Dept. Mathematics and Computer Science
Room R4.20. Tel: (020) 598 7784

E-mail:steen@cs.vu.nl, URL: www.cs.vu.nl/~steen/

01
02
03
04
05
06
07
08
09
10
11
12
13

00-1

Introduction

Architectures

Processes

Communication

Naming

Synchronization

Consistency and Replication

Fault Tolerance

Security

Distributed Object-Based Systems
Distributed File Systems
Distributed Web-Based Systems
Distributed Coordination-Based Systems

07-1

Consistency & Replication

Introduction (what's it all about)

Data-centric consistency
Client-centric consistency
Replica management

Consistency protocols

Consistency & Replication/

Performance and Scalabllity

Main issue: To keep replicas consistent, we gener-
ally need to ensure that all conflicting operations are
done in the the same order everywhere

Conflicting operations: From the world of transac-
tions:

e Read-write conflict : aread operation and a write
operation act concurrently

e Write—write conflict : two concurrent write oper-
ations

Guaranteeing global ordering on conflicting operations
may be a costly operation, downgrading scalability

Solution: weaken consistency requirements so that
hopefully global synchronization can be avoided

07 -2 Consistency & Replication/7.1 Introduction

Data-Centric Consistency Models

Consistency model: acontract between a (distributed)
data store and processes, in which the data store spec-
ifies precisely what the results of read and write oper-
ations are in the presence of concurrency.

Essence: A data store is a distributed collection of
storages accessible to clients:

Process Process Process
F— é

Distributed data store

Local copy

07-3 Consistency & Replication/7.2 Data-Centric Consistency Models

Continuos Consistency

Observation: We can actually talk a about a degree
of consistency

e replicas may differ in their numerical value

e replicas may differ in their relative staleness

e there may differences with respect to (humber and
order) of performed update operations

Conit: conistency unit = specifies the data unit over
which consistency is to be measured.

07 -4 Consistency & Replication/7.2 Data-Centric Consistency Models

Example: Conit

Replica A Replica B
LA LA
X=6,y=3" X=2,y=5
Operation Result Operation Result
|< 5,B>|x:=x+2| [x=2] |< 5,B>|x:=x+2| [x=2]
<8 a|y=y+2]| [y=2] |<10.B>|y=y+5]| [y=5]
|<12,A>|y::y+l| [y=3]
|<14,A>|x::y*2 | [x=6]
Vector clock A =(15,5) Vector clock B =(0, 11)
Order deviation =3 Order deviation =2
Numerical deviation= (1, 5) Numerical deviation= (3, 6)

Conit: contains the variables x and y:

e Each replica maintains a vector clock

e B sends A operation [(5,B): x:=x+2]; A has
made this operation permanent (cannot be rolled
back)

e A has three pending operations = order devia-
tion =3

e A has missed one operation from B, yielding a
max diff of 5 units = (1,5)

07 -5 Consistency & Replication/7.2 Data-Centric Consistency Models

Sequential Consistency

The result of any execution is the same as if the op-
erations of all processes were executed in some se-
guential order, and the operations of each individual
process appear in this sequence in the order speci-
fied by its program.

Note: We’'re talking about interleaved executions: there
IS some total ordering for all operations taken together.

P1. W(X)a

P2: W(x)b

P3: R(x)b R(x)a
P4: R(xX)b R(x)a

(a)

P1: W(x)a

P2: W(x)b

P3: R(x)b R(x)a
P4. R(X)a R(x)b

(b)

07 -6 Consistency & Replication/7.2 Data-Centric Consistency Models

Causal Consistency

Writes that are potentially causally related must be
seen by all processes in the same order. Concurrent
writes may be seen in a different order by different
processes.

P1: W(X)a

P2: R(x)a W(X)b

P3: R(x)b R(x)a
P4. R(x)a R(X)b

(a)

P1: W(x)a

P2: W(x)b

P3: R(x)b R(x)a
P4. R(x)a R(x)b

(b)

07-7 Consistency & Replication/7.2 Data-Centric Consistency Models

Grouping Operations (1/2)

e Accesses to synchronization variables are se-
guentially consistent.

e No accessto a synchronization variable is allowed
to be performed until all previous writes have com-
pleted everywhere.

e No data access is allowed to be performed un-
til all previous accesses to synchronization vari-
ables have been performed.

Basic idea: You don’t care that reads and writes of a
series of operations are immediately known to other
processes. You just want the effect of the series itself
to be known.

07-8 Consistency & Replication/7.2 Data-Centric Consistency Models

Grouping Operations (2/2)

P1: Acq(Lx) W(x)a Acq(Ly) W(y)b Rel(Lx) Rel(Ly)
P2: Acq(Lx) R(x)a R(y) NIL
P3: Acq(Ly) R(y)b

Observation: Weak consistency implies that we need
to lock and unlock data (implicitly or not).

Question: What would be a convenient way of mak-

Ing this consistency more or less transparent to pro-
grammers?

07-9 Consistency & Replication/7.2 Data-Centric Consistency Models

Client-Centric Consistency
Models

e System model

e Monotonic reads
e Monotonic writes
e Read-your-writes

e Write-follows-reads

Goal: Show how we can perhaps avoid systemwide
consistency, by concentrating on what specific clients
want, instead of what should be maintained by servers.

07-10 Consistency & Replication/7.3 Client-Centric Consistency Models

Consistency for Mobile Users

Example: Consider a distributed database to which
you have access through your notebook. Assume your
notebook acts as a front end to the database.

e Atlocation A you access the database doing reads
and updates.

e At location B you continue your work, but unless
you access the same server as the one at location
A, you may detect inconsistencies:

— your updates at A may not have yet been prop-
agated to B

— you may be reading newer entries than the
ones available at A

— your updates at B may eventually conflict with
those at A

Note: The only thing you really want is that the entries
you updated and/or read at A, are in B the way you left
them in A. In that case, the database will appear to
be consistent to you.

07—-11 Consistency & Replication/7.3 Client-Centric Consistency Models

Basic Architecture

Client moves to other location
and (transparently) connects to
other replica

B

S Replicas need to maintain
client-centric consistency

Distributed and replicated database

/ Read and write operations
Portable computer

07 —-12 Consistency & Replication/7.3 Client-Centric Consistency Models

Monotonic Reads (1/2)

If a process reads the value of a data item x, any suc-
cessive read operation on x by that process will al-
ways return that same or a more recent value.

L1: WS(X4) R(X1)-.

L2: WS(X 1;X5) R(X5)
L1: WS(x,) R(X{)-n- -~ "~
L2: WSO] - R(X)

—
—
—
—

Notation: WS(x;[t]) is the set of write operations (at
L;) that lead to version x; of x (attime t); WS(x;[t1];x;(t2])
indicates that it is known that WS(x;[t1]) is part of
WS(Xj[tz]).

Note: Parameter t is omitted from figures

07 -13 Consistency & Replication/7.3 Client-Centric Consistency Models

Monotonic Reads (2/2)

Example: Automatically reading your personal calen-
dar updates from different servers. Monotonic Reads
guarantees that the user sees all updates, no matter
from which server the automatic reading takes place.

Example: Reading (not modifying) incoming mail while
you are on the move. Each time you connect to a dif-
ferent e-mail server, that server fetches (at least) all
the updates from the server you previously visited.

07 —-14 Consistency & Replication/7.3 Client-Centric Consistency Models

Monotonic Writes

A write operation by a process on a data item x is
completed before any successive write operation on x
by the same process.

L1 W(Xq)--------.

L2 WS(x;) — ve-e--- W(X5)
L1 W(Xq)--------. I
L2 B W(x2)

Example: Updating a program at server S,, and en-
suring that all components on which compilation and
linking depends, are also placed at S».

Example: Maintaining versions of replicated files in
the correct order everywhere (propagate the previous
version to the server where the newest version is in-
stalled).

07 —-15 Consistency & Replication/7.3 Client-Centric Consistency Models

Read Your Writes

The effect of a write operation by a process on data
item x, will always be seen by a successive read op-
eration on x by the same process.

L1 W(Xl) ---------

L2 WS(X;X5) “v------ R(X2)
L1 W(Xg)--------. =TT
L2 WS(xz) veo---- R(X>)

Example: Updating your Web page and guarantee-
iIng that your Web browser shows the newest version
iInstead of its cached copy.

07 —-16 Consistency & Replication/7.3 Client-Centric Consistency Models

Writes Follow Reads

A write operation by a process on a data item x fol-
lowing a previous read operation on x by the same
process, is guaranteed to take place on the same or a
more recent value of x that was read.

L1: WS(x,) R(x1)-.

L2: WS(X1;X>) - W(X,)
L1: WS(X,) RX)-— -~~~
L2: _WS(X) NS W(xy)

—
—
—

Example: See reactions to posted articles only if you
have the original posting (a read “pulls in” the corre-
sponding write operation).

07 —-17 Consistency & Replication/7.3 Client-Centric Consistency Models

Distribution Protocols

e Replica server placement
e Content replication and placement

e Content distribution

07 -18 Consistency & Replication/7.4 Replica Management

Replica Placement

Essence: Figure out what the best K places are out
of N possible locations.

e Select best location out of N — K for which the av-
erage distance to clients is minimal. Then choose
the next best server. (Note: The first chosen loca-
tion minimizes the average distance to all clients.)
Computationally expensive.

e Select the K-th largest autonomous system and
place a server at the best-connected host. Com-
putationally expensive.

e Position nodes in a d-dimensional geometric space,
where distance reflects latency. Identify the K re-
gions with highest density and place a server in
every one. Computationally cheap.

07 -19 Consistency & Replication/7.4 Replica Management

Content Replication (1/2)

Model: We consider objects (and don’t worry whether
they contain just data or code, or both)

Distinguish different processes: A process is capa-
ble of hosting a replica of an object or data:

e Permanent replicas: Process/machine always
having a replica

e Server-initiated replica: Process that can dy-
namically host a replica on request of another server
In the data store

e Client-initiated replica: Process that can dynam-
ically host a replica on request of a client (client
cache)

07 -20 Consistency & Replication/7.4 Replica Management

Content Replication (2/2)

—» Server-initiated replication
---» Client-initiated replication

07 -21 Consistency & Replication/7.4 Replica Management

Server-Initiated Replicas

O
Server without)

copy of file F /)

P \\\
Client -7 =5

Server with
Q copy of F
@ File F

Server Q counts access from C,and
C> as if they would come from P

e Keep track of access counts per file, aggregated
by considering server closest to requesting clients

e Number of accesses drops below threshold D =
drop file

e Number of accesses exceeds threshold R =- repli-
cate file

e Number of access between D and R =- migrate
file

07 —-22 Consistency & Replication/7.4 Replica Management

Content Distribution (1/3)

Model: Consider only a client-server combination:

e Propagate only notification/invalidation of update
(often used for caches)

e Transfer data from one copy to another (distributed
databases)

e Propagate the update operation to other copies
(also called active replication)

Observation: No single approach is the best, but de-
pends highly on available bandwidth and read-to-write
ratio at replicas.

07 -23 Consistency & Replication/7.4 Replica Management

Content Distribution (2/3)

e Pushing updates: server-initiated approach, in which
update is propagated regardless whether target
asked for it.

e Pulling updates: client-initiated approach, in which
client requests to be updated.

Issue | Push-based Pull-based

1: List of client caches None

2: Update (and possibly fetch update) | Poll and update
3: Immediate (or fetch-update time) Fetch-update time

1: State at server
2: Messages to be exchanged
3: Response time at the client

07 —24

Consistency & Replication/7.4 Replica Management

Content Distribution (3/3)

Observation: We can dynamically switch between
pulling and pushing using leases: A contract in which
the server promises to push updates to the client until
the lease expires.

Issue: Make lease expiration time dependent on sys-
tem’s behavior (adaptive leases):

e Age-based leases : Anobjectthat hasn’'t changed
for a long time, will not change in the near future,
so provide a long-lasting lease

e Renewal-frequency based leases : The more of-
ten a client requests a specific object, the longer
the expiration time for that client (for that object)
will be

e State-based leases : The more loaded a server
IS, the shorter the expiration times become

Question: Why are we doing all this?

07 -25 Consistency & Replication/7.4 Replica Management

Consistency Protocols

Consistency protocol: describes the implementa-
tion of a specific consistency model.

e Continuous consistency
e Primary-based protocols

e Replicated-write protocols

07 — 26 Consistency & Replication/7.5 Consistency Protocols

Continuous Consistency:
Numerical Errors (1/2)

Principle: consider a data item x and let weight(W)
denote the numerical change in its value after a write
operation W. Assume that VW : weight(W) > 0.

W is initially forwarded to one of the N replicas, de-
noted as origin(W). TWIi,j| are the writes executed
by server S; that originated from S]-:

=Y {weight(W)|origin(W) = S; & Welog(S;)}
Note: Actual value v(t) of x:

N
v(t) = v+ Y TWIk, K]
k—1

value v; of x at replica i:

N
0; =it + Y TW[i, K]
k=1

07 - 27 Consistency & Replication/7.5 Consistency Protocols

Continuous Consistency:
Numerical Errors (2/2)

Problem: We need to ensure that v(t) — v; < é; for
every server S;.

Approach: Letevery server S, maintain a view TW,[i, /]
of what it believes is the value of TW[i,j|]. This in-
formation can be gossiped when an update is propa-
gated.

Note: 0 < TW,[i,j] < TW[i,j] < TWIj,j

Solution: S sends operations from its log to S; when
it sees that TW,[i, k| is getting too far from TW |k, k]|, in
particular, when TW |k, k| — TW,|i, k| > 6;/(N —1).

Note: Staleness can be done analogously, by essen-
tially keeping track of what has been seen last from S;
(see book).

07 - 28 Consistency & Replication/7.5 Consistency Protocols

Primary-Based Protocols (1/2)

Primary-backup protocol:

Client Client
Primary server
A for item x A Backup server
W1| | W5 \ R1| |R2
f w4 w4 \
PRiia [=
— —>
W2 W3
N " Y
WL1. Write request R1. Read request
W?2. Forward request to primary R2. Response to read

Wa. Tell backups to update
W4. Acknowledge update
WS5. Acknowledge write completed

Example: Traditionally applied in distributed databases
and file systems that require a high degree of fault tol-
erance. Replicas are often placed on same LAN.

07 - 29 Consistency & Replication/7.5 Consistency Protocols

Primary-Based Protocols (2/2)
Primary-backup protocol with local writes:

Client Client

Old primary New primary
A for item x for item x A Backup server

R1| |R2 W1| |W3

/
B B
NN

WL1. Write request R1. Read request
W2. Move item x to new primary R2. Response to read

W3. Acknowledge write completed
W4. Tell backups to update
WS5. Acknowledge update

Example: Mobile computing in disconnected mode
(ship all relevant files to user before disconnecting,
and update later on).

07 -30 Consistency & Replication/7.5 Consistency Protocols

Replicated-Write Protocols

Quorum-based protocols: Ensure that each opera-
tion is carried out in such a way that a majority vote is
established: distinguish read quorum and write quo-
rum:

Read quorum

| ‘.
e F) G H
| 3K L
Ne=1, Ny =12
()

07 -31 Consistency & Replication/7.5 Consistency Protocols

