Chapter 1.3 Quantifiers, Predicates, and Validity

Reading: 1.3 Next Class: 1.4

•	Predicate	
	It is the verbal statement the variable. Usually represented used to represent some unsp may have	at describes the property of a ed by the letter P, the notation $P(x)$ is pecified property or predicate that x
	 statement A 	E.g. The earth is round
	• unary predicate $P(x)$	E.g. x is a person.
	 binary predicate F(x; y) n-ary predicate S(x₁,, x_n) 	E.g. x is the father of y .
•	The collection of objects th the <i>domain of interpretation</i>	at satisfy the property $P(x)$ is called $\frac{n}{2}$.
•	The value of a predicate can undefined if the identity of	n be either <i>TRUE</i> , <i>FALSE</i> , or the object(s) is unknown.

• <u>E</u> z	<u>kistential Quantifier</u> : represented by ∃
Tl "t	here exist(s)," "there is a," or "for at least one".
1	Specifies the existence of at least one object within the domain of interpretation.
	Eg. $(\exists x)(x=2)$
	Important: $(\exists x)$ does not mean that there is exactly one object but rather that there is at least one object.
	The existential quantifier allows to translate arguments like this:
	Bill is tall. There are no tall jockeys. Therefore Bill is not a jockey.
	$T(b) \land [(\exists x)(J(x) \land T(x))]' \to [J(b)]'$

11	Scope of a variable in an expression	
	 Brackets are used wisely to identify the scope of the variable, the section of the wff to which the quantifier applies. (∀x) [(∃y)[P(x,y) ∨ Q(x,y)] → R(x)] Scope of (∃y) is P(x,y) ∨ Q(x,y) while the scope of (∀x) is the entire expression. (∀x)S(x) ∨ (∃y)R(y) Scope of x is S(x) while the scope of y is R(y). (∀x)[P(x,y) → (∃y) Q(x,y)] Scope of variable y is not defined for P(x,y) hence y is called a free variable. Such expressions might not have a truth value at all. 	
	 What is the truth of the expression (∃x)[A(x) Λ (∀y)[B(x,y) → C(y)]] is the interpretation A(x) is "x > 0", B(x, y) is "x > y" and C(y) is "y ≤ 0" where the domain of x is positive integers and the domain of y is all integers 	
T	True, x=1 is a positive integer and any integer less than x is ≤ 0	

•	 Example for forming symbolic forms from predicate symbols D(x) is "x is dog"; R(x) is "x is a rabbit"; C(x,y) is "x chases y" All dogs chase all rabbits ⇔ For anything, if it is a dog, then for any other thing, if it is a rabbit, then the dog chases it ⇔
	 Some dogs chase all rabbits ⇔ There is something that is a dog and for any other thing, if that thing is a rabbit, then the dog chases it ⇔
	 Only dogs chase rabbits ⇔ For any two things, if one is a rabbit and the other chases it, then the other is a dog ⇔ All things that chase rabbits are dogs.

17	Class Exercise
	 What is the negation of "Everybody loves somebody sometime." Everybody hates somebody sometime Somebody loves everybody all the time Everybody hates everybody all the time Somebody hates everybody all the time
•	 What is the negation of the following statements? Some pictures are old and faded. Every picture is neither old nor faded. All people are tall and thin. Someone is short or fat. Some students eat only pizza. Every student eats something that is not pizza. Only students eat pizza. There is a non-student who eats pizza.
Sectio	n 1.3 Quantifiers, Predicates and Validity

		Validity		
•	 Analogous to a tautology of propositional logic. Truth of a predicate wff depends on all possible interpretations A predicate wff is valid if it is true in all possible interpretation just like a propositional wff is true if it is true for all rows of th truth table. 			
•	A valid pred	icate wif is intrinsically t	rue.	
		Propositional Wffs	Predicate Wffs	
	Truth values	Propositional Wffs True or false – depends on the truth value of statement letters	Predicate Wffs True, false or neither (if the wff has a free variable)	
	Truth values Intrinsic truth	Propositional Wffs True or false – depends on the truth value of statement letters Tautology – true for all truth values of its statements	Predicate Wffs True, false or neither (if the wff has a free variable) Valid wff – true for all interpretations	

21		Class Exercise	
	•	What is the truth of the following wffs where the domain consists of integers:	
		• $(\forall x)[L(x) \rightarrow O(x)]$ where $O(x)$ is "x is odd" and $L(x)$ is "x < 10"?	
		$ (\exists y)(\forall x)(x+y=0)? $	
		$ (\exists y)(\exists x)(x^2 = y)? $	
		• $(\forall x)[x < 0 \rightarrow (\exists y)(y > 0 \land x + y = 0)]?$	
	•	Using predicate symbols and appropriate quantifiers, write the symbolic form of the following English statement:	
		 D(x) is "x is a day", M is "Monday", T is "Tuesday" 	
		S(x) is "x is sunny", $R(x)$ is "x is rainy"	
		 Some days are sunny and rainy. 	
		 It is always a sunny day only if it is a rainy day. 	
		 It rained both Monday and Tuesday. 	
		• Every day that is rainy is not sunny.	
	Section 1	2 Overtifiers Profilence and Velidity	