## Chapter 7.1 Directed Graphs

Read: 7.1 Next Class: 7.2













| 7 | Reachability                                                                                                                                                                                                                                       |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | If node $n_j$ is reachable from node $n_i$ , it is by a path of some length. Such a path will be shown by a 1 as the <i>i</i> , <i>j</i> entry in <b>A</b> or $\mathbf{A}^{(2)}$ or $\mathbf{A}^{(3)}$                                             |
| • | If there are <i>n</i> nodes in the graph, then any path with <i>n</i> or more arcs $(n + 1 \text{ or more nodes})$ must have a repeated node.<br>Therefore, we never need to look for a path from $n_i$ to $n_j$ of length greater than <i>n</i> . |
| • | To determine reachability, consult element <i>i</i> , <i>j</i> in A, $A^{(2)}$ ,, $A^{(n)}$ .                                                                                                                                                      |
|   | We can define a <b>reachability matrix R</b> by:                                                                                                                                                                                                   |
|   | $\mathbf{R} = \mathbf{A} \vee \mathbf{A}^{(2)}, \vee \dots \vee \mathbf{A}^{(n)}$                                                                                                                                                                  |
|   | $n_i$ is reachable from $n_i$ if and only if entry <i>i</i> , <i>j</i> in <b>R</b> is positive.                                                                                                                                                    |
|   |                                                                                                                                                                                                                                                    |
|   |                                                                                                                                                                                                                                                    |
|   |                                                                                                                                                                                                                                                    |
|   |                                                                                                                                                                                                                                                    |









- For a graph G with n nodes, Warshall's algorithm computes a sequence of n + 1 matrices M<sub>0</sub>, M<sub>1</sub>, M<sub>2</sub>, ..., M<sub>n</sub>.
- For each k, 0 ≤ k ≤ n, M<sub>k</sub>[i, j] = 1 if and only if there is a path in G from n<sub>i</sub> to n<sub>j</sub> whose interior nodes (i.e., nodes that are not the endpoints of the path) come only from the set of nodes {n<sub>1</sub>, n<sub>2</sub>, ..., n<sub>k</sub>}.
- Warshall's algorithm begins with  $\mathbf{A} = \mathbf{M}_0$  and  $\mathbf{M}_1, \mathbf{M}_2, \dots, \mathbf{M}_n = \mathbf{R}$  inductively.
- The base case is to let M<sub>0</sub> = A. Assume that M<sub>k</sub> has been computed, M<sub>k+1</sub>[*i*, *j*] = 1 if and only if there is a path from n<sub>i</sub> to n<sub>j</sub> whose interior nodes come only from the set {n<sub>1</sub>, n<sub>2</sub>, ..., n<sub>k+1</sub>}.

11



- There are two ways to see if  $\mathbf{M}_{k+1}[i, j] = 1$
- 1. All the interior nodes come from  $\{n_1, n_2, ..., n_k\}$ , in which case  $\mathbf{M}_k[i, j] = 1$ . Any 1 entries in  $\mathbf{M}_k$  are carried forward into  $\mathbf{M}_{k+1}$ .
- 2. Node  $n_{k+1}$  is an interior node. There must be a path from  $n_i$  to  $n_{k+1}$  whose interior nodes come from  $\{n_1, n_2, ..., n_k\}$  and a path from  $n_{k+1}$  to  $n_j$  whose interior nodes come from  $\{n_1, n_2, ..., n_k\}$ , so  $\mathbf{M}_k[i, k+1] = 1$  and  $\mathbf{M}_k[k+1, j] = 1$ .

Section 7.1

12

Directed Graphs and Binary Relations

| • | ALGORITHM Warshall                                                                       |
|---|------------------------------------------------------------------------------------------|
|   | $Warshall(n \times n$ Boolean matrix <b>M</b> )                                          |
|   | //Initially, $\mathbf{M}$ = adjacency matrix of a directed graph G //with no             |
|   | parallel arcs                                                                            |
|   | <b>for</b> $k = 0$ to $n - 1$ <b>do</b>                                                  |
|   | <b>for</b> $i = 1$ to $n$ <b>do</b>                                                      |
|   | <b>for</b> $j = 1$ to $n$ <b>do</b>                                                      |
|   | $\mathbf{M}[i, j] = \mathbf{M}[i, j] \lor (\mathbf{M}[i, k+1] \land \mathbf{M}[k+1, j])$ |
|   | end for                                                                                  |
|   | end for                                                                                  |
|   | end for                                                                                  |
|   | //at termination, $\mathbf{M}$ = reachability matrix of G                                |
|   | endWarshall                                                                              |
|   |                                                                                          |
|   |                                                                                          |
|   |                                                                                          |



