Question 1  - 10 points
Partially-Ordered Plans

The actions for the traditional block-world problem are:

Action: Move(p,x,y)

     Precond: on(p,x) and clear(y) and clear(p)

     Effect: on(p,y) and clear (x) and not(clear(y)) and not(on(p,x))
Action: MoveFromTable(p,y)

     Precond: on(p,Table) and clear(y) and clear(p)

     Effect: on(p,y) and not(clear(y)) and not(on(p,Table))
Action: MoveToTable(p,x)

     Precond: on(p,x) and clear(p)

     Effect: on(p,Table) and clear (x) and not(on(p,x))
Consider the following initial state and goal:

- Initial state: on(A, B), on(C,D), clear(A), clear(C), on(B, Table), on(D, Table)

- Goal:  on(D, B)

Give a partially ordered plan to achieve the goal from the initial state, such that the plan is minimally ordered (i.e., no action A is constrained to happen before another action B unless it is necessary for plan correctness). In specifying the plan, specify the name and parameter of every action in the plan, but do NOT list the preconditions and effects of each action.
                                                     START


MoveToTable(A, B)                                                  MoveToTable(C, D)


                                            MoveFromTable(D, B)

                                                     FINISH

Question 2  - 15 points
Conditional Planning
We modify the traditional block-world actions, to introduce uncertainty. In particular, while actions MoveFromTable and MoveToTable remain as in Question 5, action Move is modified. Specifically, the actions are now defined as follows:
Action: Move(p,x,y)

     Precond: on(p,x) and clear(y) and clear(p)

     Effect: (on(p,y) and clear (x) and not(clear(y)) and not(on(p,x))) or

                 (on(p,Table) and clear (x) and not(on(p,x)))

Action: MoveFromTable(p,y)

     Precond: on(p,Table) and clear(y) and clear(p)

     Effect: on(p,y) and not(clear(y)) and not(on(p,Table))
Action: MoveToTable(p,x)

     Precond: on(p,x) and clear(p)

     Effect: on(p,Table) and clear (x) and not(on(p,x))
Consider the following initial state and goal:

- Initial state: on(A, B), on(B, C), clear(A), on(C, Table)

- Goal:  on(C, B), on(B, A)

Is it possible to come up with a finite plan that guarantees success in this case? If not, why not? If yes, specify the plan in partial or complete order. In specifying the plan, specify the name and parameter of every action in the plan, but do NOT list the preconditions and effects of each action.
Yes, it is possible, here is a plan:

MoveToTable(A, B)
MoveToTable(B, C)

MoveFromTable(B, A)

MoveFromTable(C, B)
Question 3  - 15 points
Defining Actions

We define a new version of the block world, where we can move block p from x to y even if p is not clear. In that case, all blocks that are on top of p move together with p, and remain on top of p and in the same order as before (and, naturally, the topmost block of the pile remains clear). Note that x or y may be the table. Everything else is the same as in the traditional block world of question 5, and there is NO uncertainty in the effects of any action. In other words,  y still needs to be clear before the move, x is clear after the move, and the table is always clear.

3a (10 points). Define appropriate actions for this problem. The set of actions should be complete enough to allow optimal plans to be constructed in all possible cases. Optimal plans are the ones that consist of the smallest possible number of actions, given the initial state and goal.

Action: Move(p,x,y)

     Precond: on(p,x) and clear(y)

     Effect: on(p,y) and clear (x) and not(clear(y)) and not(on(p,x))

Action: MoveFromTable(p,y)

     Precond: on(p,Table) and clear(y)

     Effect: on(p,y) and not(clear(y)) and not(on(p,Table))

Action: MoveToTable(p,x)

     Precond: on(p,x)

     Effect: on(p,Table) and clear (x) and not(on(p,x))

3b (5 points). Given the specifications for this modified block world, provide (in partial or complete order) an optimal (i.e., shortest possible) plan for the following problem:

- Initial state: clear(A), on(A, B), on(B, C), on (C, D), on (D, E), on(E, Table)

- Goal:  on(A, B), on(B, E)

In specifying the plan, specify the name and parameter of every action in the plan, but do NOT list the preconditions and effects of each action.
MoveToTable(D, E)

Move(B, C, E)
Question 4
30 points.
4a. Consider the following set of actions:

Action(PutSockOnFoot(a, f): 

          Precond: Sock(a), Foot(f), FreeSock(a)

          Effect: not (FreeSock(a)), SockOn(f))
Action(PutShoeOnFoot(b, f): 

          Precond: Shoe(b), Foot(f), SockOn(f), FreeShoe(b)

          Effect:  not (FreeShoe(b)), ShoeOn(f))
Now, consider this initial state, and this goal:

InitState: Sock(sock1) and Sock(sock2) and
           FreeSock(sock1)and FreeSock(sock2) and
                           Shoe(left_shoe) and Shoe(right_shoe) and
           FreeShoe(left_shoe)and FreeShoe(right_shoe)

           and Foot(left_foot) and Foot(right_foot)

Goal: ShoeOn(left_foot) and ShoeOn(right_foot)                           
Make two different totally-ordered plans to achieve the goal, given the initial state.
First plan:

PutSockOnFoot(sock1, left_foot)

PutSockOnFoot(sock2, right_foot)

PutShoeOnFoot(left_shoe, left_foot)

PutShoeOnFoot(right_shoe, right_foot)

Second plan:

PutSockOnFoot(sock1, left_foot)

PutShoeOnFoot(left_shoe, left_foot)

PutSockOnFoot(sock2, right_foot)

PutShoeOnFoot(right_shoe, right_foot)

4b. Consider the following set of actions (just a little different from 4a).
Action(PutSockOnFoot(a, f): 

          Precond: Sock(a), Foot(f)
          Effect: SockOn(f))
Action(PutShoeOnFoot(b, f): 

          Precond: Shoe(b), Foot(f), SockOn(f)
          Effect:  ShoeOn(f))
Now, consider this initial state, and this goal:

InitState: Sock(sock1) and  Shoe(left_shoe)

           and Foot(left_foot) and Foot(right_foot)

Goal: ShoeOn(left_foot) and ShoeOn(right_foot)                           
Make a totally-ordered plan to achieve the goal, given the initial state.
PutSockOnFoot(sock1, left_foot)

PutShoeOnFoot(left_shoe, left_foot)

PutSockOnFoot(sock1, right_foot)

PutShoeOnFoot(left_shoe, right_foot)

4c. Consider the following set of actions (exactly the same as 4b).
Action(PutSockOnFoot(a, f): 

          Precond: Sock(a), Foot(f)
          Effect: SockOn(f))
Action(PutShoeOnFoot(b, f): 

          Precond: Shoe(b), Foot(f), SockOn(f)
          Effect:  ShoeOn(f))
Now, consider this initial state, and this goal (also exactly the same as 4b).
InitState: Sock(sock1) and  Shoe(left_shoe)

           and Foot(left_foot) and Foot(right_foot)

Goal: ShoeOn(left_foot) and ShoeOn(right_foot)                           
Make a partially-ordered plan to achieve the goal, given the initial state. No order should be imposed between any two actions unless necessary (in other words, the plan should be minimally ordered).
                                                         START


PutSockOnFoot(sock1, left_foot)                  PutSockOnFoot(sock1, right_foot)


PutShoeOnFoot(left_shoe, left_foot)            PutShoeOnFoot(left_shoe, right_foot)


                                                       FINISH
4d. Consider the following set of actions (slightly different than 4c).
Action(PutSockOnFoot(a, f): 

          Precond: Sock(a), Foot(f)
          Effect: SockOn(f) or SockOnFloor(a))
Action(PutShoeOnFoot(b, f): 

          Precond: Shoe(b), Foot(f), SockOn(f)
          Effect:  ShoeOn(f))
Now, consider this initial state, and this goal (exactly the same as 4b and 4c).
InitState: Sock(sock1) and  Shoe(left_shoe)

           and Foot(left_foot) and Foot(right_foot)

Goal: ShoeOn(left_foot) and ShoeOn(right_foot)                           
Is there a finite conditional plan that always achieves the goal given the initial state? If yes, describe the plan. If not, why not?
There is no finite conditional plan that always achieves the goal. There is no guarantee that, after any finite number of repeating the PutSockOnFoot(sock1, left_foot) action, we will achieve SockOn(left_foot), which is a precondition for putting a shoe on the left foot.

4e. Consider the following set of actions (exactly the same as 4d).
Action(PutSockOnFoot(a, f): 

          Precond: Sock(a), Foot(f)
          Effect: SockOn(f) or SockOnFloor(a) )
Action(PutShoeOnFoot(b, f): 

          Precond: Shoe(b), Foot(f), SockOn(f)
          Effect:  ShoeOn(f) )
Now, consider this initial state, and this goal (exactly the same as 4b, 4c, and 4d).
InitState: Sock(sock1) and  Shoe(left_shoe)

           and Foot(left_foot) and Foot(right_foot)

Goal: ShoeOn(left_foot) and ShoeOn(right_foot)                           
Provide an execution-monitoring plan to achieve the goal given the initial state.
while(not(SockOn(left_foot)))

  PutSockOnFoot(sock1, left_foot)

end

while(not(SockOn(right_foot)))

  PutSockOnFoot(sock1, right_foot)

end

PutShoeOnFoot(left_shoe, left_foot)

PutShoeOnFoot(right_shoe, right_foot)

4f. Consider the following set of actions (exactly the same as in 4a):

Action(PutSockOnFoot(a, f): 

          Precond: Sock(a), Foot(f), FreeSock(a)

          Effect: not (FreeSock(a)), SockOn(f))
Action(PutShoeOnFoot(b, f): 

          Precond: Shoe(b), Foot(f), SockOn(f), FreeShoe(b)

          Effect:  not (FreeShoe(b)), ShoeOn(f))
Now, consider this initial state, and this goal (also exactly the same as in 4a)
InitState: Sock(sock1) and Sock(sock2) and
           FreeSock(sock1)and FreeSock(sock2) and
                           Shoe(left_shoe) and Shoe(right_shoe) and
           FreeShoe(left_shoe)and FreeShoe(right_shoe)

           and Foot(left_foot) and Foot(right_foot)

Goal: ShoeOn(left_foot) and ShoeOn(right_foot)                           
Give an example of a plan (sequence of actions) that does not make much intuitive sense (a person would not normally do such a thing, or would find it pretty awkward to do such a thing). What modifications to the actions and init state are needed to fix that?
PutSockOnFoot(sock1, left_foot)

PutShoeOnFoot(right_shoe, left_foot)

PutSockOnFoot(sock2, right_foot)

PutShoeOnFoot(left_shoe, right_foot)

To prevent putting on the wrong shoe on each foot, we can create a predicate Compatible, that is true for shoes and feet that match. Then, we would add precondition 

Compatible(b, f) to PutShoeOnFoot, and we would add to init state the statements

Compatible(left_shoe, left_foot)

Compatible(right_shoe, right_foot)

PAGE  
2

