Schedule - CSE 4308 - 001 and CSE 5360 - 001

Lecture videos are available on Blackboard.


L/no Date Chapters, 2nd Edition Chapters, 3rd Edition Topic
1 01/14 1, 2 1, 2 Course Details[1] and Overview[1], Agents[2]
2 01/16 3 3.1 - 3.4 Solving Problems by Search[2]

01/21 MARTIN LUTHER KING DAY - NO CLASS
3 01/23 4 3.5 - 3.6 Notes on Implementation[1], Informed Search[2]
4 01/28 6 5 Game Playing[2]
5 01/30 6 5 Alpha - Beta Pruning[3], Non - Deterministic Games
6 02/04 5 6
Constraint Satisfaction Problems[2]
7 02/06 7 7 Knowledge and Logic Reasoning[2]
8 02/11 Exam 1 Review
02/13 EXAM 1
9 02/18 7 7 Exam 1 Discussion, Inference by Enumeration
10 02/20 7 7 Forward and Backward Chaining, Resolution
11 02/25 8.1-8.3, 9.1.2, 9.2 8.1-8.3, 9.1.2, 9.2 First Order Logic[3], Unification & FC/BC[2]
12 02/27 11 10 Planning[3], Planning[2]
13 03/04 11 10 Planning (Contd.)
14 03/06 1211Conditional Planning and Replanning[3], Conditional Planning and Replanning[2]
03/11 SPRING BREAK - NO CLASS
03/13SPRING BREAK - NO CLASS
1503/181313Probablity[2]
1603/20Exan 2 Review
03/25EXAM 2
1703/271313Exam 2 Discussion,, Joint Probablity Distribution
1804/011313Prior and Posterior Probablites[3]
1904/0314.1 - 14.414.1 - 14.4Bayesian Networks[3], Bayesian Networks[2]
2004/0818.1-18.318.1-18.3Learning[3], Learning[2]
2104/1018.1-18.318.1-18.3Decision Trees[3]
2204/1518.1-18.318.1-18.3Practical Issues with Decision Trees[3]
23 04/17 20.3Bayesian Classifiers[3]
24 04/22  18.8.1Probabilty Estimations, Nearest Neighbor Classifiers[3]
25 04/24 20.518.6.4, 18.7Neural Networks[2], Neuron Architeture[1][4]Backpropogation Learning[3]
26 04/29 20.518.6.4, 18.7Backpropogation Learning, Introduction to Deep Learning
27 05/01Exam 3 Review, Final Q & A
05/08EXAM 3 - CSE 5360 001, 002
05/10EXAM 3 - CSE 4308 001


This schedule is tentative and subject to change. If changes are necessary they will be announced in class and posted here.
[1] (c) Vamsikrishna Gopikrishna, University of Texas at Arlington.
[2] (c) Stuart Russell (Artificial Intelligence: A Modern Approach. Stuart Russell, Peter Norvig. ISBN: 978-0136042594)
[3] (c) Vassilis Athitsos, University of Texas at Arlington.
[4] (c) Martin Hagan (Neural Network Design. Martin T. Hagan, Howard B. Demuth, Mark H. Beale. ISBN: 0-9717321-0-8)