A AND B
B => (A OR C)
ADoes this knowledge base entail the following sentence:
B
NOT A
B OR CJustify your answer.
(a) (A and B) or (B and C)
(b) A or B
(c) A <=> B <=>C
A | B | C | Sentence |
false | false | false | true |
false | false | true | false |
false | true | false | false |
false | true | true | true |
true | false | false | false |
true | false | true | false |
true | true | false | false |
true | true | true | true |
1. for-every x, exists y: son(x) = yIn your answers, any "not" may only appear after the last appearance of a universal or existential quantifier.
2. for-every x, for-every y: son(x) = y <=> father(y) = x
KB 1:
for-every x: king(x) and greedy(x) => evil(x)
king(John)
greedy(John)
brother(Richard, John)
KB 2:
for-every x: king(x) and greedy(x) => evil(x)
king(John)
greedy(John)
brother(Richard, John)
king(father(John))
1. major(John, x), major(y, mathematics)
2. major(John, x), major(y, z)
3. major(John, x), major(y, x)
4. major(John, x), major(x, y)