Question 1 - 15 points

1a (5 points).  Function P1 is a function defined on a set of samples S = {A, B, C, D}. P1 is defined as shown below. Is there a value for y that makes P1 a valid probability function? If yes, what is that value? Justify your answer.

P1(A) = 10*y

P1(B) = 20*y

P1(C) = 30*y

P1(D) = 20*y

y = 0.0125, so that the sum of all probabilities is 1.
1b (5 points). Function P2 is a function defined on the set of real numbers. P2 is defined as shown below. Is there a value for y that makes P2 a valid probability density function? If yes, what is that value? Justify your answer.

P2(x) = 0         if x < 100

P2(x) = 6*y     if 100 <= x <= 110

P2(x) = 4*y     if 110 <= x <= 130

P2(x) = 0         if x > 130.
y = 1/140 = 0.00714, so that the integral of P2 from –infinity to infinity is 1.
1c (5 points). Function P3 is a function defined on the set of real numbers. P3 is defined as shown below. Is there a value for y that makes P3 a valid probability density function? If yes, what is that value? Justify your answer.

P3(x) = 0           if x < 0

P3(x) = 7*y       if 0 <= x <= 10

P3(x) = 3*y       if x > 10

No. If y <= 0, then the integral of P3 from –infinity to infinity is <= 0, which is illegal (the integral should be 1). If y > 0, then the integral of P3 from –infinity to infinity is infinity, which is again illegal.
Question 2 – 10 points
	Age of owner
	Car
	Minivan
	SUV

	under 30
	0.15
	0.05
	0.1

	between 30 and 50
	0.1
	0.15
	0.1

	over 50
	0.15
	0.15
	0.05


The above joint distribution table shows the probability of combinations of vehicle types and vehicle owners. For example, the probability that a vehicle is an SUV and is owned by a person over 50 years old is 0.05. Using that table:
2a. (5 points) Determine the probability that a vehicle owner is under 30 years old.

P(vehicle owner age under 30) = 0.15 + 0.05 + 0.1 = 0.3
2b. (5 points) Determine P(vehicle type = Minivan | age of owner is under 30)
P(Minivan | age under 30) = P(Minivan AND age under 30) / P(age under 30)

P(Minivan AND age under 30) = 0.05

P(age under 30) = 0.3 (from Question 2a).

So, (Minivan AND age under 30) / P(age under 30) = 0.05 / 0.3 = 0.1667
Question 3 - 10 points


3a. (5 points) Given the above Bayesian network, compute P( (B=true) AND (C=false) ). You do not have to carry out numerical calculations, but you have to write an expression that fully specifies the answer numerically.

P(B=t AND C=f) = P(A=t AND B=t AND C=f) + P(A=f AND B=t AND C=f) 
=  P(A=t) * P(B=t | A=t) * P(C=f | B=t) + P(A=f) * P(B=t | A=f) * P(C=f | B=t) 
=  0.6 * 0.8 * (1 - 0.2) + (1-0.6) * 0.3 * (1 – 0.2) = 0.384 + 0.096 = 0.48
3b. (5 points) In the above Bayesian network, compute P(B). You do not have to carry out numerical calculations, but you have to write an expression that fully specifies the answer numerically.
P(B) = P(B | A) * P(A) + P(B | not A) * P(not A) 
=  0.8 * 0.6 + 0.3 * 0.4 = 0.6

Question 4 = 15 points
4a (5 points). You have a Bayesian network of N nodes. Each node corresponds to a Boolean random variable. Each node has a maximum of 3 parents. How many numbers would you need to specify at most, in order to fully specify the probability distribution modeled by this Bayesian network? In other words, what is the maximum number of values you need to store (for the entire network) in order to full specify the probability table for each node? Justify your answer.

For each node, we must specify the probability of the variable of that node being true for each of at most 8 possible combinations of values for the parent nodes. So, we need to store at most 8*N values.
4b (5 points). What is the time complexity of doing inference in the Bayesian network of question 4a?
In the worst case, we must enumerate 2N possible combinations of values for the network nodes. Applying the product rule for each combination of values takes O(N) time, so in total we need, in the worst case, O(N2N) time.
4c (5 points). Suppose that you want to model the same probability distribution as in question 4a, but using a joint distribution table. How many values do you need to specify in that case?
We need to specify a probability value for each combination of values for the N variables, so we must specify 2N values.

Question 5 – 10 points
[image: image1.png]
5a (5 points). In the above Bayesian network, is the battery-flat event conditionally independent of the fanbelt-broken event given a value for the no-charging event? Justify your answer.

Yes. The fanbelt broken event influences the battery-flat event only through the no charging event. If we know the value for no-charging, then the value of fanbelt-broken makes no difference anymore in calculating the probability of battery flat.
5b (5 points). In the above Bayesian network, is the battery-flat event conditionally independent of the no-oil event given a value for the oil-light event? Justify your answer.
No. Given a value for the oil-light event, battery-flat and no-oil are competing causes, so they are conditionally dependent on each other.

Question 6 - 15 points

6a (5 points) Suppose that a decision tree is trained on 1000 training examples, and achieves 90% accuracy on the training examples. What is the smallest and largest accuracy that this decision tree can possibly achieve on a test set of 1000 examples? Justify your answer. You can assume there are only two classes.
The accuracy on the training set provides no guarantee whatsoever about accuracy on the test set, so the accuracy on the test set could be anywhere from 0% to 100%.
6b (5 points). Suppose that a decision tree is trained on 1000 training examples, and achieves 80% accuracy on the training examples. What is the smallest and largest possible value for the entropy at a leaf node of this decision tree? Remember that entropy is measured on the training set. You can assume there are only two classes.
Since some training examples are classified correctly, it is possible that some leaf node of the decision tree only receives training examples from a single class, in which case the  entropy of that leaf node would be 0.
Since some training examples are classified incorrectly, it is possible that some leaf node of the decision tree receives equal numbers of training examples from both classes, in which case the  entropy of that leaf node would be 1.
So, the entropy at a leaf node can be as small as 0 and as large as 1.
6c (5 points). Suppose that a decision tree is trained on 1000 training examples, and achieves 100% accuracy on the training examples. What is the smallest and largest possible value for the entropy at a leaf node of this decision tree? Again, remember that entropy is measured on the training set. You can assume there are only two classes.
Since no training examples are classified incorrectly, it is impossible that some leaf node of the decision tree receives training examples from both classes. Each leaf node receives training examples from a single class, and has entropy 0.
So, the entropy at a leaf node can be as small as 0 and as large as 0.
Question 7 - 5 points

We want to build a decision tree that determines whether a new laptop is going to break down or not during its first week. This decision tree is trained on 200 training examples (i.e., 200 cases of new laptops). The only thing that we know about each training example is the operating system that the laptop was running. In particular:

100 laptops in the training set crashed within their first week.
70 of those laptops were running operating system AA.

20 of those laptops were running operating system BB.

10 of those laptops were running operating system CC.

100 laptops in the training set did not crash within their first week.

10 of those laptops were running operating system AA.

20 of those laptops were running operating system BB.

70 of those laptops were running operating system CC.

Determine the entropy gain of choosing, at the root node, the predicate 

(Operating System = CC) as the test to apply at that node. You do not have to carry out numerical calculations, but you have to write an expression that fully specifies the answer numerically.
Let C1 be the child receiving examples where the operating system = CC.

Let C2 be the child receiving examples where the operating system != CC.

Entropy Gain = Entropy(parent) – 80/200 * Entropy(C1) – 120/200 * Entropy(C2)

Entropy(parent) = -0.5 * log2 (0.5) – 0.5 * log2 (0.5) = 1.

Entropy(C1) = -10/80 * log2 (10/80) – 70/80 * log2 (70/80) = 0.5436

Entropy(C2) = -90/120 * log2 (90/120) - 30/120 * log2 (30/120) = 0.8113
Entropy(parent) – 80/200 * Entropy(C1) – 120/200 * Entropy(C2)

= 1 – 80/200 * 0.5436 – 120/200 * 0.8113 = 0.2958.

Consequently, the entropy gain is 0.2958.

Question 3

30 points.

3a. Consider the following set of actions:

Action(PutSockOnFoot(a, f): 

          Precond: Sock(a), Foot(f), FreeSock(a)

          Effect: not (FreeSock(a)), SockOn(f))
Action(PutShoeOnFoot(b, f): 

          Precond: Shoe(b), Foot(f), SockOn(f), FreeShoe(b)

          Effect:  not (FreeShoe(b)), ShoeOn(f))
Now, consider this initial state, and this goal:

InitState: Sock(sock1) and Sock(sock2) and
           FreeSock(sock1)and FreeSock(sock2) and
                           Shoe(left_shoe) and Shoe(right_shoe) and
           FreeShoe(left_shoe)and FreeShoe(right_shoe)

           and Foot(left_foot) and Foot(right_foot)

Goal: ShoeOn(left_foot) and ShoeOn(right_foot)                           
Make two different totally-ordered plans to achieve the goal, given the initial state.
First plan:

PutSockOnFoot(sock1, left_foot)

PutSockOnFoot(sock2, right_foot)

PutShoeOnFoot(left_shoe, left_foot)

PutShoeOnFoot(right_shoe, right_foot)

Second plan:

PutSockOnFoot(sock1, left_foot)

PutShoeOnFoot(left_shoe, left_foot)

PutSockOnFoot(sock2, right_foot)

PutShoeOnFoot(right_shoe, right_foot)

3b. Consider the following set of actions (just a little different from 3a).
Action(PutSockOnFoot(a, f): 

          Precond: Sock(a), Foot(f)
          Effect: SockOn(f))
Action(PutShoeOnFoot(b, f): 

          Precond: Shoe(b), Foot(f), SockOn(f)
          Effect:  ShoeOn(f))
Now, consider this initial state, and this goal:

InitState: Sock(sock1) and  Shoe(left_shoe)

           and Foot(left_foot) and Foot(right_foot)

Goal: ShoeOn(left_foot) and ShoeOn(right_foot)                           
Make a totally-ordered plan to achieve the goal, given the initial state.
PutSockOnFoot(sock1, left_foot)

PutShoeOnFoot(left_shoe, left_foot)

PutSockOnFoot(sock1, right_foot)

PutShoeOnFoot(left_shoe, right_foot)

3c. Consider the following set of actions (exactly the same as 3b).
Action(PutSockOnFoot(a, f): 

          Precond: Sock(a), Foot(f)
          Effect: SockOn(f))
Action(PutShoeOnFoot(b, f): 

          Precond: Shoe(b), Foot(f), SockOn(f)
          Effect:  ShoeOn(f))
Now, consider this initial state, and this goal (also exactly the same as 3b).
InitState: Sock(sock1) and  Shoe(left_shoe)

           and Foot(left_foot) and Foot(right_foot)

Goal: ShoeOn(left_foot) and ShoeOn(right_foot)                           
Make a partially-ordered plan to achieve the goal, given the initial state. No order should be imposed between any two actions unless necessary (in other words, the plan should be minimally ordered).
                                                         START


PutSockOnFoot(sock1, left_foot)                  PutSockOnFoot(sock1, right_foot)


PutShoeOnFoot(left_shoe, left_foot)            PutShoeOnFoot(left_shoe, right_foot)


                                                       FINISH
3d. Consider the following set of actions (slightly different than 3c).
Action(PutSockOnFoot(a, f): 

          Precond: Sock(a), Foot(f)
          Effect: SockOn(f) or SockOnFloor(a))
Action(PutShoeOnFoot(b, f): 

          Precond: Shoe(b), Foot(f), SockOn(f)
          Effect:  ShoeOn(f))
Now, consider this initial state, and this goal (exactly the same as 3b and 3c).
InitState: Sock(sock1) and  Shoe(left_shoe)

           and Foot(left_foot) and Foot(right_foot)

Goal: ShoeOn(left_foot) and ShoeOn(right_foot)                           
Is there a finite conditional plan that always achieves the goal given the initial state? If yes, describe the plan. If not, why not?
There is no finite conditional plan that always achieves the goal. There is no guarantee that, after any finite number of repeating the PutSockOnFoot(sock1, left_foot) action, we will achieve SockOn(left_foot), which is a precondition for putting a shoe on the left foot.

3e. Consider the following set of actions (exactly the same as 3d).
Action(PutSockOnFoot(a, f): 

          Precond: Sock(a), Foot(f)
          Effect: SockOn(f) or SockOnFloor(a) )
Action(PutShoeOnFoot(b, f): 

          Precond: Shoe(b), Foot(f), SockOn(f)
          Effect:  ShoeOn(f) )
Now, consider this initial state, and this goal (exactly the same as 3b, 3c, and 3d).
InitState: Sock(sock1) and  Shoe(left_shoe)

           and Foot(left_foot) and Foot(right_foot)

Goal: ShoeOn(left_foot) and ShoeOn(right_foot)                           
Provide an execution-monitoring plan to achieve the goal given the initial state.

while(not(SockOn(left_foot)))

  PutSockOnFoot(sock1, left_foot)

end

while(not(SockOn(right_foot)))

  PutSockOnFoot(sock1, right_foot)

end

PutShoeOnFoot(left_shoe, left_foot)

PutShoeOnFoot(right_shoe, right_foot)

3f. Consider the following set of actions (exactly the same as in 3a):

Action(PutSockOnFoot(a, f): 

          Precond: Sock(a), Foot(f), FreeSock(a)

          Effect: not (FreeSock(a)), SockOn(f))
Action(PutShoeOnFoot(b, f): 

          Precond: Shoe(b), Foot(f), SockOn(f), FreeShoe(b)

          Effect:  not (FreeShoe(b)), ShoeOn(f))
Now, consider this initial state, and this goal (also exactly the same as in 3a)
InitState: Sock(sock1) and Sock(sock2) and
           FreeSock(sock1)and FreeSock(sock2) and
                           Shoe(left_shoe) and Shoe(right_shoe) and
           FreeShoe(left_shoe)and FreeShoe(right_shoe)

           and Foot(left_foot) and Foot(right_foot)

Goal: ShoeOn(left_foot) and ShoeOn(right_foot)                           
Give an example of a plan (sequence of actions) that does not make much intuitive sense (a person would not normally do such a thing, or would find it pretty awkward to do such a thing). What modifications to the actions and init state are needed to fix that?
PutSockOnFoot(sock1, left_foot)

PutShoeOnFoot(right_shoe, left_foot)

PutSockOnFoot(sock2, right_foot)

PutShoeOnFoot(left_shoe, right_foot)

To prevent putting on the wrong shoe on each foot, we can create a predicate Compatible, that is true for shoes and feet that match. Then, we would add precondition 

Compatible(b, f) to PutShoeOnFoot, and we would add to init state the statements

Compatible(left_shoe, left_foot)

Compatible(right_shoe, right_foot)

Question 5  - 10 points
Partially-Ordered Plans

The actions for the traditional block-world problem are:

Action: Move(p,x,y)

     Precond: on(p,x) and clear(y) and clear(p)

     Effect: on(p,y) and clear (x) and not(clear(y)) and not(on(p,x))
Action: MoveFromTable(p,y)

     Precond: on(p,Table) and clear(y) and clear(p)

     Effect: on(p,y) and not(clear(y)) and not(on(p,Table))
Action: MoveToTable(p,x)

     Precond: on(p,x) and clear(p)

     Effect: on(p,Table) and clear (x) and not(on(p,x))
Consider the following initial state and goal:

- Initial state: on(A, B), on(C,D), clear(A), clear(C), on(B, Table), on(D, Table)

- Goal:  on(D, B)

Give a partially ordered plan to achieve the goal from the initial state, such that the plan is minimally ordered (i.e., no action A is constrained to happen before another action B unless it is necessary for plan correctness). In specifying the plan, specify the name and parameter of every action in the plan, but do NOT list the preconditions and effects of each action.
                                                     START


MoveToTable(A, B)                                                  MoveToTable(C, D)


                                            MoveFromTable(D, B)

                                                     FINISH

Question 6  - 15 points
Conditional Planning
We modify the traditional block-world actions, to introduce uncertainty. In particular, while actions MoveFromTable and MoveToTable remain as in Question 5, action Move is modified. Specifically, the actions are now defined as follows:
Action: Move(p,x,y)

     Precond: on(p,x) and clear(y) and clear(p)

     Effect: (on(p,y) and clear (x) and not(clear(y)) and not(on(p,x))) or

                 (on(p,Table) and clear (x) and not(on(p,x)))

Action: MoveFromTable(p,y)

     Precond: on(p,Table) and clear(y) and clear(p)

     Effect: on(p,y) and not(clear(y)) and not(on(p,Table))
Action: MoveToTable(p,x)

     Precond: on(p,x) and clear(p)

     Effect: on(p,Table) and clear (x) and not(on(p,x))
Consider the following initial state and goal:

- Initial state: on(A, B), on(B, C), clear(A), on(C, Table)

- Goal:  on(C, B), on(B, A)

Is it possible to come up with a finite plan that guarantees success in this case? If not, why not? If yes, specify the plan in partial or complete order. In specifying the plan, specify the name and parameter of every action in the plan, but do NOT list the preconditions and effects of each action.
Yes, it is possible, here is a plan:

MoveToTable(A, B)
MoveToTable(B, C)

MoveFromTable(B, A)

MoveFromTable(C, B)
Question 7  - 15 points
Defining Actions

We define a new version of the block world, where we can move block p from x to y even if p is not clear. In that case, all blocks that are on top of p move together with p, and remain on top of p and in the same order as before (and, naturally, the topmost block of the pile remains clear). Note that x or y may be the table. Everything else is the same as in the traditional block world of question 5, and there is NO uncertainty in the effects of any action. In other words,  y still needs to be clear before the move, x is clear after the move, and the table is always clear.

7a (10 points). Define appropriate actions for this problem. The set of actions should be complete enough to allow optimal plans to be constructed in all possible cases. Optimal plans are the ones that consist of the smallest possible number of actions, given the initial state and goal.

Action: Move(p,x,y)

     Precond: on(p,x) and clear(y)

     Effect: on(p,y) and clear (x) and not(clear(y)) and not(on(p,x))

Action: MoveFromTable(p,y)

     Precond: on(p,Table) and clear(y)

     Effect: on(p,y) and not(clear(y)) and not(on(p,Table))

Action: MoveToTable(p,x)

     Precond: on(p,x)

     Effect: on(p,Table) and clear (x) and not(on(p,x))

7b (5 points). Given the specifications for this modified block world, provide (in partial or complete order) an optimal (i.e., shortest possible) plan for the following problem:

- Initial state: clear(A), on(A, B), on(B, C), on (C, D), on (D, E), on(E, Table)

- Goal:  on(A, B), on(B, E)

In specifying the plan, specify the name and parameter of every action in the plan, but do NOT list the preconditions and effects of each action.
MoveToTable(D, E)

Move(B, C, E)
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