Question 1 - 30 points
1a. (5 points) Consider the following knowledge base:

A AND B

C OR D

(A => (C OR D)) AND (NOT (A => C))

How many rows are there in the truth table for this knowledge base? How did you determine this number?

There are four symbols, A, B, C, D, so there are 2^4=16 rows in the truth table.
1b. (5 points) Which sentences, if any, do you obtain by applying the resolution inference rule to the following pair of sentences? Do not do any simplifications to either the input or the output sentences, just blindly apply the resolution rule.
A OR (NOT B) OR C OR (NOT D)

(NOT B) OR (NOT C) OR D OR H

1. A OR (NOT B) OR (NOT D) OR (NOT B) OR D OR H
2. A OR (NOT B) OR C OR (NOT B) OR (NOT C) OR H
1c. (5 points) Which sentences, if any, do you obtain by applying the resolution inference rule to the following pair of sentences? Do not do any simplifications to either the input or the output sentences, just blindly apply the resolution rule.
A OR (NOT B) OR C OR (NOT D)

(NOT B) OR C OR (NOT G) OR H

The resolution rule is not applicable here.
1d. (5 points) Put the following knowledge base in conjunctive normal form:

A => (B OR NOT C)

C OR (A AND (NOT B))

(NOT A) OR B OR (NOT C)

C OR A

C OR (NOT B)
1e. (5 points) John and Mary sign the following binding contract in front of their parents:

1. On Sunday, John will mow the lawn or buy groceries.

2. On Sunday, Mary will mow the lawn or wash the car.

This is an all-inclusive list of what actually happens on Sunday:
1. Mary mows the lawn on Sunday.

2. Mary washes the car on Sunday.

3. Mary buys groceries on Sunday.
How can the above statements be represented using propositional logic? First, define Associate literals and specify what English phrase each literal corresponds to. Second, represent the knowledge base (i.e., what happens on Sunday) using those literals. Third, represent the contract as a single logical statement, using those literals. Four, determine (in any way you like) whether, according to the rules of propositional logic, the contract was violated or not.

We define the following literals:

JM: John mows the lawn on Sunday

JB: John buys groceries on Sunday

MB: Mary buys groceries on Sunday

MM: Mary mows the lawn on Sunday

MW: Mary washes the car on Sunday

This is what happens on Sunday:

MM and MW and MB and (not JM) and (not JB)

Note: (not JM) and (not JB) are included because the question explicitly says that the given list of what happens on Sunday is all-inclusive (so, whatever is not specified there, did not happen).

The contract is represented as:

(JM or JB) and (MM or MW)

The contract was violated, since (JM or JB) was false.

1f. (5 points, harder) Suppose that a knowledge base contains only symbols A, B, and C. When does such a knowledge base entail the statement D (i.e., the statement consisting of a single symbol that does not appear in the knowledge base)? Always, sometimes, or never? If sometimes, then identify precisely the conditions that determine whether this knowledge base entails the statement D.
There is only one case where this knowledge base entails D: the case where the knowledge base is always false. A knowledge base that is always false entails everything.

Question 2 - 10 points
Partially-Ordered Plans

The actions for the traditional block-world problem are:

Action: Move(p,x,y)

 Precond: on(p,x) and clear(y) and clear(p)

 Effect: on(p,y) and clear (x) and not(clear(y)) and not(on(p,x))
Action: MoveFromTable(p,y)

 Precond: on(p,Table) and clear(y) and clear(p)

 Effect: on(p,y) and not(clear(y)) and not(on(p,Table))
Action: MoveToTable(p,x)

 Precond: on(p,x) and clear(p)

 Effect: on(p,Table) and clear (x) and not(on(p,x))
Consider the following initial state and goal:

- Initial state: on(A, B), on(C,D), clear(A), clear(C), on(B, Table), on(D, Table)

- Goal: on(D, B)

Give a partially ordered plan to achieve the goal from the initial state, such that the plan is minimally ordered (i.e., no action A is constrained to happen before another action B unless it is necessary for plan correctness). In specifying the plan, specify the name and parameter of every action in the plan, but do NOT list the preconditions and effects of each action.
 START

MoveToTable(A, B) MoveToTable(C, D)

 MoveFromTable(D, B)

 FINISH

Question 3 - 15 points
Conditional Planning
We modify the traditional block-world actions, to introduce uncertainty. In particular, while actions MoveFromTable and MoveToTable remain as in Question 5, action Move is modified. Specifically, the actions are now defined as follows:
Action: Move(p,x,y)

 Precond: on(p,x) and clear(y) and clear(p)

 Effect: (on(p,y) and clear (x) and not(clear(y)) and not(on(p,x))) or

 (on(p,Table) and clear (x) and not(on(p,x)))

Action: MoveFromTable(p,y)

 Precond: on(p,Table) and clear(y) and clear(p)

 Effect: on(p,y) and not(clear(y)) and not(on(p,Table))
Action: MoveToTable(p,x)

 Precond: on(p,x) and clear(p)

 Effect: on(p,Table) and clear (x) and not(on(p,x))
Consider the following initial state and goal:

- Initial state: on(A, B), on(B, C), clear(A), on(C, Table)

- Goal: on(C, B), on(B, A)

Is it possible to come up with a finite plan that guarantees success in this case? If not, why not? If yes, specify the plan in partial or complete order. In specifying the plan, specify the name and parameter of every action in the plan, but do NOT list the preconditions and effects of each action.
Yes, it is possible, here is a plan:

MoveToTable(A, B)
MoveToTable(B, C)

MoveFromTable(B, A)

MoveFromTable(C, B)
Question 4 - 15 points
Defining Actions

We define a new version of the block world, where we can move block p from x to y even if p is not clear. In that case, all blocks that are on top of p move together with p, and remain on top of p and in the same order as before (and, naturally, the topmost block of the pile remains clear). Note that x or y may be the table. Everything else is the same as in the traditional block world of question 5, and there is NO uncertainty in the effects of any action. In other words, y still needs to be clear before the move, x is clear after the move, and the table is always clear.

4a (10 points). Define appropriate actions for this problem. The set of actions should be complete enough to allow optimal plans to be constructed in all possible cases. Optimal plans are the ones that consist of the smallest possible number of actions, given the initial state and goal.

Action: Move(p,x,y)

 Precond: on(p,x) and clear(y)

 Effect: on(p,y) and clear (x) and not(clear(y)) and not(on(p,x))

Action: MoveFromTable(p,y)

 Precond: on(p,Table) and clear(y)

 Effect: on(p,y) and not(clear(y)) and not(on(p,Table))

Action: MoveToTable(p,x)

 Precond: on(p,x)

 Effect: on(p,Table) and clear (x) and not(on(p,x))

4b (5 points). Given the specifications for this modified block world, provide (in partial or complete order) an optimal (i.e., shortest possible) plan for the following problem:

- Initial state: clear(A), on(A, B), on(B, C), on (C, D), on (D, E), on(E, Table)

- Goal: on(A, B), on(B, E)

In specifying the plan, specify the name and parameter of every action in the plan, but do NOT list the preconditions and effects of each action.
MoveToTable(D, E)

Move(B, C, E)
Question 5
30 points.
5a. Consider the following set of actions:

Action(PutSockOnFoot(a, f):

 Precond: Sock(a), Foot(f), FreeSock(a)

 Effect: not (FreeSock(a)), SockOn(f))
Action(PutShoeOnFoot(b, f):

 Precond: Shoe(b), Foot(f), SockOn(f), FreeShoe(b)

 Effect: not (FreeShoe(b)), ShoeOn(f))
Now, consider this initial state, and this goal:

InitState: Sock(sock1) and Sock(sock2) and
 FreeSock(sock1)and FreeSock(sock2) and
 Shoe(left_shoe) and Shoe(right_shoe) and
 FreeShoe(left_shoe)and FreeShoe(right_shoe)

 and Foot(left_foot) and Foot(right_foot)

Goal: ShoeOn(left_foot) and ShoeOn(right_foot)
Make two different totally-ordered plans to achieve the goal, given the initial state.
First plan:

PutSockOnFoot(sock1, left_foot)

PutSockOnFoot(sock2, right_foot)

PutShoeOnFoot(left_shoe, left_foot)

PutShoeOnFoot(right_shoe, right_foot)

Second plan:

PutSockOnFoot(sock1, left_foot)

PutShoeOnFoot(left_shoe, left_foot)

PutSockOnFoot(sock2, right_foot)

PutShoeOnFoot(right_shoe, right_foot)

5b. Consider the following set of actions (just a little different from 5a).
Action(PutSockOnFoot(a, f):

 Precond: Sock(a), Foot(f)
 Effect: SockOn(f))
Action(PutShoeOnFoot(b, f):

 Precond: Shoe(b), Foot(f), SockOn(f)
 Effect: ShoeOn(f))
Now, consider this initial state, and this goal:

InitState: Sock(sock1) and Shoe(left_shoe)

 and Foot(left_foot) and Foot(right_foot)

Goal: ShoeOn(left_foot) and ShoeOn(right_foot)
Make a totally-ordered plan to achieve the goal, given the initial state.
PutSockOnFoot(sock1, left_foot)

PutShoeOnFoot(left_shoe, left_foot)

PutSockOnFoot(sock1, right_foot)

PutShoeOnFoot(left_shoe, right_foot)

5c. Consider the following set of actions (exactly the same as 5b).
Action(PutSockOnFoot(a, f):

 Precond: Sock(a), Foot(f)
 Effect: SockOn(f))
Action(PutShoeOnFoot(b, f):

 Precond: Shoe(b), Foot(f), SockOn(f)
 Effect: ShoeOn(f))
Now, consider this initial state, and this goal (also exactly the same as 5b).
InitState: Sock(sock1) and Shoe(left_shoe)

 and Foot(left_foot) and Foot(right_foot)

Goal: ShoeOn(left_foot) and ShoeOn(right_foot)
Make a partially-ordered plan to achieve the goal, given the initial state. No order should be imposed between any two actions unless necessary (in other words, the plan should be minimally ordered).
 START

PutSockOnFoot(sock1, left_foot) PutSockOnFoot(sock1, right_foot)

PutShoeOnFoot(left_shoe, left_foot) PutShoeOnFoot(left_shoe, right_foot)

 FINISH
PAGE
2

