Tentative Schedule for Monday and Wednesday Sections (changes, if any, posted at the end)

Lecture recordings will be available on Canvas.

L/no Date Chapters, 2nd Edition Chapters, 3rd Edition Chapters, 4th Edition Topic
1 1/19
1 1 1 Course Details[1] and Overview[1]
2 1/24
2, 3 2, 3.1 - 3.4 2, 3.1 - 3.4 Agents[2], Solving Problems by Search[2]
3 1/36
4 3.5 - 3.6 3.5 - 3.6 Informed Search[2]
4 1/31
4 3.5 - 3.6 3.5 - 3.6
Search (contd.), Notes on Implementation[1]
5 2/02
6 5 5
Game Playing[2], Alpha - Beta Pruning[3]
6 2/07
6, 5 5, 6
5, 6
Non - Deterministic Games, Constraint Satisfaction Problems[2]
7 2/09
5 6 6
CSP (contd.)
8
2/14
7
7
7
Knowledge and Logic Reasoning[2], Inference by Enumeration

2/16



Exam 1 Review, Q & A

2/21



EXAM 1
9
2/23
7
7
7
Forward and Backward Chaining, Resolution
10 2/28
8.1-8.3, 9.1, 9.2 8.1-8.3, 9.1, 9.2 8.1-8.3, 9.1, 9.2
First Order Logic[3], Unification & FC/BC[2]
11 3/02
11 10 11
Planning[3], Planning[2]
12 3/07
12 11 11
Conditional Planning and Replanning[3], Conditional Planning and Replanning[2]
13 3/09
13 13 12
Probablity[2]

3/14



SPRING VACATION - NO CLASS

3/16



SPRING VACATION - NO CLASS
14 3/21
13 13 12
Joint Probablity Distribution, Prior and Posterior Probablites[3]
15 3/23
14.1 - 14.4 14.1 - 14.4 13.1-13.4 Bayesian Networks[3], Bayesian Networks[2]
16
3/28
14.1 - 14.4 14.1 - 14.4 13.1-13.4 Bayesian Networks (Contd.)

3/30



Exam 2 Review

4/04



EXAM 2
17
4/06
18.1-18.3 18.1-18.3 19.1-19.3 Learning[3], Learning[2]
18 4/11
18.1-18.3 18.1-18.3 19.1-19.3
Decision Trees[3]
19 4/13
18.1-18.3 18.1-18.3 19.1-19.3 Practical Issues with Decision Trees[3]
20 4/18

20.3 20.3 Bayesian Classifiers[3]
21 4/20

20.3 20.3 Probabilty Estimations
22
4/25

 18.8.1 19.7.1
Nearest Neighbor Classifiers[3]
23
4/27
20.5 18.6.4, 18.7 19.6.4, 21.1
Neural Networks[2], Neuron Architeture[1][4]Backpropogation Learning[3]

5/02



Exam 3 Review, Final Q & A

5/04



STUDENT STUDY DAY - NO CLASS

5/09



EXAM 3 - CSE 5360 004 (2:00 PM)

This schedule is tentative and subject to change. If changes are necessary they will be announced in class and posted here.
[1] (c) Vamsikrishna Gopikrishna, University of Texas at Arlington.
[2] (c) Stuart Russell (Artificial Intelligence: A Modern Approach. Stuart Russell, Peter Norvig. ISBN: 978-0136042594)
[3] (c) Vassilis Athitsos, University of Texas at Arlington.
[4] (c) Martin Hagan (Neural Network Design. Martin T. Hagan, Howard B. Demuth, Mark H. Beale. ISBN: 0-9717321-0-8)

Schedule Changes

Any Schedule changes will be listed here.