
The LCD interconnection of LRU caches and its analysis∗

Nikolaos Laoutaris, Hao Che, Ioannis Stavrakakis

Abstract

In a multi-level cache, a hit at level l leads to the caching of the requested object

in all intermediate caches on the reverse path (levels l − 1, . . . , 1). This paper shows

that a simple modification to this de facto behavior, in which only the l − 1 level cache

gets to store a copy, can lead to significant performance gains. The modified caching

behavior is called Leave Copy Down (LCD); it has the merit of being able to avoid the

amplification of replacement errors and also the unnecessary repetitious caching of the

same objects at multiple levels. Simulation results against other cache interconnections

show that LCD reduces the average hit distance. We construct an accurate approximate

analytic model for the case of LCD interconnection of LRU caches. The developed

model presents several novel techniques for the analysis of interconnected caches, and

gives a clear insight as to why the LCD interconnection yields an improved performance.

Although initially motivated from web caching, LCD and its analysis are more general

in scope, and apply to other applications of caching as well.

1 Introduction

A cache is a fast access memory that mediates between a consumer of information, and a

slower memory where information is stored on a permanent basis. The function of the cache

is to maintain a set of most valuable objects, so that they may be accessed promptly, thus

∗Nikolaos Laoutaris and Ioannis Stavrakakis are with the Dept. of Informatics and Telecommunications,

University of Athens, 15784 Athens, Greece. E-mail: {laoutaris,ioannis}@di.uoa.gr. Hao Che is with the Dept.

of Computer Science and Engineering, Univerity of Texas at Arlington, USA. E-mail: hche@cse.uta.edu.

1

avoid accessing the slower and/or remote (permanent) memory. Caching is one of the most

pervasive and omnipresent ideas of computer science. It has been studied and applied in many

different domains, such as: in computer architecture, to speed up the communication between

the central processor unit (CPU) and the main memory (RAM); in operating systems, to

perform paging, i.e., keep in the RAM the most valuable blocks from the permanent storage

devices (hard disks); in distributed file systems, to keep frequently accessed files closer to the

clients; in the world wide web, to allow clients to receive web content from local proxy servers,

thus avoid accessing the remote origin servers through the network.

In several occasions caches are employed at multiple levels. Examples are, multi-level cache

architectures in modern CPUs, multi-level caches in RAID disk arrays, multi-level caches in

the world wide web. Under the modus operandi of such multi-level systems, requests are first

received at the lowest level cache (the one closest to the client), and then routed upwards

until they reach a cache that stores the requested object. A hit is said to have occurred in

that case. Following the hit, the requested object is sent downwards on the reverse path to

the client, and each cache on this path gets to store a local copy of the object.

Leaving copies everywhere on the reverse path (here after abbreviated LCE), has been

considered as a de facto behavior. Despite the vast bibliography on caching, we are only aware

of a few works that have questioned this de facto behavior [1, 2, 3]. This paper continues

on this line of research, investigating whether caching a local copy in all intermediate caches

on the reverse path is indeed a good idea, or are there reasons to revise it, and instead keep

copies only in a subset of intermediate caches. Our answer to this question is that LCE is not

always the best choice and that simple alternative algorithms can outperform it in a variety

of common scenarios. In [3], we have proposed such an algorithm – which we call Leave Copy

Down (LCD) – that appears to be superior to LCE and other potential algorithms, across a

wide range of parameters. The operation of LCD is quite simple; instead of storing a copy

in all intermediate caches, only the immediate downstream neighbor of the hit cache gets to

store one. This way, objects move gradually from the origin server towards the clients, with

each request advancing them by one hop. The conception of LCD and the initial discussion

in [3] were motivated in the context of web caching; the algorithm, however, is not specific to

web caching and may be applied to other applications of caching as well.

2

The current work focuses on LCD, and takes an analytic look at its workings, with the aim

of deepening our understanding as to why this particular algorithm yields an improved per-

formance. By developing an appropriate analytic performance evaluation model, it becomes

clear why this is the case. The enhanced performance of LCD stems from: (1) its ability to

avoid the amplification of replacement errors (it limits replacement errors locally to a single

cache instead of allowing them to spread to an entire chain of caches); (2) its ability to provide

for exclusive caching (allows each cache on a chain of caches to hold a potentially different set

of objects, thus avoiding the repetitious replication of the same few objects).

The presented analysis of the LCD algorithm is a contribution to the analytic study of

interconnected caches. Several approximation techniques are introduced in order to overcome

problems such as the combinatorial hardness of analyzing LRU replacement, the correlation

in the miss streams that flow from cache to cache, the coupling of cache states under LCD

(the state of a cache depending on the state of its downstream neighbor and vice versa). By

carefully combining the various approximation techniques, the resulting final analytic model

is able to predict satisfactorily the performance of the real system. Apart from LCD, the

presented analysis methodology can be applied to other interconnections as well, thus having

a potentially broader scope.

The remainder of the paper is structured as follows. Section 2 introduces several cache

interconnection algorithms (called meta algorithms), elaborates on the desired properties for

such algorithms, and presents a performance comparison via simulation. Section 3 gives an

overview of previous approaches for the analysis of LRU caching. Section 4 presents the basic

theory for the analysis of isolated LRU caches; this theory is employed as a building block in

later parts. Section 5 presents the analysis of LCD-interconnected tandems of LRU caches,

and the required modifications to handle more general tree topologies. Section 6 demonstrates

the accuracy of the final analytic model. Section 7 concludes the paper.

2 Meta algorithm for multi-level caches

The question of whether to cache an object at an intermediate cache is one that may be

possed independently of the specific replacement algorithm operating on the cache. For this

3

reason, the algorithms that are studied here may be characterized as meta algorithms for

multi-level caches (or just meta algorithms) to differentiate them from the much discussed

and well understood replacement algorithms, and to stress the fact that they operate inde-

pendently of the latter. Meta algorithms have been employed in the past in the different,

but related to caching, domain of self-organizing linear search (see Hester and Hirschberg [4]

and references therein). Apart from the apparently different application domain, the meta

algorithms employed in this work operate on groups of caches organized in tandems or trees,

whereas earlier work on self-organizing linear search studied the operation of meta algorithms

on isolated linear lists.

In the following, we consider multi-level caches operating under several different meta

algorithms. In all cases it is assumed that the Least Recently Used (LRU) replacement

algorithm runs in all caches. Due to the aforementioned independent operation of the meta

algorithm from the employed replacement algorithm, it is believed that the presented results

and conclusions should apply to some extent to other replacement algorithms as well (the

reader is referred to Podlipnig and Böszörmenyi [5] for an up-to-date survey of replacement

algorithms).

2.1 Description

This section describes three new meta algorithms, LCD, MCD, Prob, as well as the currently

employed one, LCE, and two recently proposed ones, Filter (Che et al. [1]) and DEMOTE

(Wong and Wilkes [2]).

2.1.1 Leave Copy Everywhere (LCE)

This is the standard mode of operation currently in use in most multi-level caches. When a

hit occurs at a level l cache or the origin server, a copy of the requested object is cached in

all intermediate caches (levels l − 1, . . . , 1) on the path from the location of the hit down to

the requesting client.

4

2.1.2 Leave Copy Down (LCD)

Under LCD a new copy of the requested object is cached only at the (l − 1)-level cache, i.e.,

the one that resides immediately below the location of the hit on the path to the requesting

client. LCD is more “conservative” than LCE as it requires multiple requests to bring an

object to a leaf cache, with each request advancing a new copy of the object one hop closer

to the client.

2.1.3 Move Copy Down (MCD)

Similar to LCD with the difference that a hit at level l moves the requested object to the

underlying cache. This requires that the requested object be deleted1 from the cache where

the hit occurred. No deletion of course takes place when the hit occurs at the origin server.

The idea behind MCD is to reduce the number of replicas for the same object on the path

between the requesting client and the origin server.

2.1.4 Prob(p)

Prob is a randomized version of LCE. Each intermediate cache on the path from the location

of the hit down to the requesting client is eligible for storing a copy of the requested object.

An intermediate cache keeps a local copy with probability p, thus invoking the replacement

algorithm, and does not keep a copy with probability 1− p. Prob(1) is identical to LCE.2

The operation of the above mentioned algorithms is illustrated in Fig. 1. Note that the

three new meta algorithms require a very small amount of extra co-operation other than the

minimum required to implement a multi-level cache, i.e., each cache to know its immediate

ancestor so that it can forward requests upstream, and its immediate descendant(s) so that it

1The object does not have to be physically deleted from the cache. A better strategy is to set its timestamp to a very small

value thus marking it for eviction upon the next miss of any other requested object. This has the advantage that in the case that

the next request refers to this object, a hit will occur, whereas a miss would have occurred if physical deletion had taken place.
2Probabilistic algorithms have been recently employed in the domain of web caching, but in different contexts. Psounis and

Prabhakar [6] show that replacement algorithms may be efficiently implemented by utilizing only samples from the cache (instead

of the entire cache content) in order to identify a good eviction candidate. In Starobinski and Tse [7], randomized algorithms are

used in order to handle objects with varying costs (fetch distance) and sizes.

5

miss

probability p

probability p
copy with

miss

miss

copy

copy

request

hit

miss

miss

request

hit

Prob MCD

delete hit

request

copy

miss

miss

LCDLCE

hit

request

copy

miss

copy with

Figure 1: Operation of LCE, Prob, LCD, and MCD.

2

user
origin
server

os
access cost d

2
access cost d

1
access cost d

level 2level 1

LRULRU

capacity C
1

capacity C

PSfrag replacements
λ1i

Figure 2: A two level LRU tandem.

can forward objects downstream.

2.1.5 Filter: a non-memoryless meta algorithm

A major distinctive factor of replacement algorithms is whether they are memoryless or non-

memoryless. The LRU algorithm is characterized as memoryless because each permutation

of the cache, following a request, utilizes no additional information from the memory; the

permutation is executed by simply bringing the requested object to the top of the LRU list.

Frequency based algorithms, however, need to maintain additional information in the memory

to keep track of the number of requests for each object. Similar is the case with function-based

replacement algorithms that use multi-criteria value functions (capturing multiple criteria like

size, fetch distance, recency/frequency etc.) in order to make replacement decisions (such an

example is GD-Size, see [5] for more). Such algorithms are characterized as non-memoryless.

The aforementioned characterization may be applied to the field of meta algorithms as well.

All the aforementioned meta algorithms may be characterized as memoryless because they do

not require any extra information other than the actual state of the hierarchy. Recently, Che

et al. [1] proposed a new meta algorithm for hierarchical caches, aiming at improving the

overall hit ratio. This algorithm, that will here after be referred to as Filter, appears to be

non-memoryless.

Under the Filter algorithm, a hit for object i at level l leads to the caching of i in an

intermediate cache m, when m satisfies the following condition: τ−1m < λi: τm is said to

be the characteristic time of cache m; λi is the frequency that object i is requested at the

client level. Each cache m is seen as a low pass filter with a cutoff frequency equal to τ−1m

and, thus, a multi-level cache behaves like a tandem of low pass filters having different cutoff

frequencies. Additionally, when an object is evicted from a cache at level l, Filter forces

6

its caching at level l + 1 if not already cached there. Filter incurs additional complexity as

compared to the previous memoryless meta algorithms, as it needs to estimate the request

frequency of each requested object, and disseminate this information to all the caches along

with the request. This extra processing and the information that must be maintained make

Filter a non-memoryless meta algorithm.

2.1.6 DEMOTE

Wong and Wilkes [2] have proposed a simple inter-cache co-operation mechanism that they call

DEMOTE. A cache instead of just evicting an object, it demotes it, i.e., sends it for caching

at the above level, where it is inserted to the head of the LRU list (a similar mechanism

is included in the Filter algorithm of Che et al.). Additionally, when a cache transmits an

object to a downstream cache, it moves its local copy to the tail of its LRU list (to be evicted

with the next replacement); this is similar to the MCD algorithm (Sect. 2.1.3). The goal of

DEMOTE is to avoid the duplication of the same objects at multiple levels (more discussion

on this important issue in Sect. 2.2.2).

2.2 Design Principles

The three new meta algorithms, LCD, MCD, and Prob, aim at improving the performance

of a multi-level cache in terms of the expected distance to reach a cache hit. To achieve this

goal they take advantage of the following design principles.

2.2.1 Avoid the amplification of replacement errors

On-line replacement algorithms are bound to commit replacement errors as compared to the

OPT replacement strategy of Belady that replaces the object with the maximum forward

distance until the next request. OPT is of course not realizable in practice, as it requires

knowledge of future requests. Similarly, when considering independent identically distributed

requests – the so called independent reference model (IRM) – replacement errors occur when

a less popular object causes the eviction of a more popular one.

Thus, any causal replacement algorithm is committing errors as compared to the optimal,

7

and these errors lead to inferior performance. The effect of replacement errors becomes even

more critical when considering multi-level, rather than isolated caches. In an L-level multi-

level cache that operates under the LCE meta algorithm, a request for an unpopular object

may lead to its caching in all L caches on the path from the requesting client up to the

root cache, and by doing so commit up to L replacement errors. Leaving a copy in all the

intermediate caches is, in effect, leading to the amplification of replacement errors. The

proposed algorithms try to reduce the extent of this amplification by reducing the number of

copies that are cached with each request.

In the particular case of web caching, replacement errors are brought to their extreme,

due to the existence of a very high percentage of objects that are requested only once. These

so called one− timer objects usually amount up to 45% of the total requests and 75% of the

total distinct objects present in the measured workloads [8, 9]. Caching an one-timer object

is the worst type of replacement error that can occur as it is guaranteed that the one-timer

will not be requested again thus leading to waste of storage capacity. The aforementioned

high percentages of one-timers clog an entire multi-level cache that operates under LCE with

useless objects. The proposed LCD and MCD meta algorithms guarantee that the one-timers

cannot affect any cache other than the root cache. Thus they completely filter-out one-timers

for all but one cache in the hierarchy. Prob, likewise, filters out most of the one-timers by

using a small cache probability p (p = 0.2 is used in Sect.2.3, see [3] for more results).

2.2.2 Achieve cache exclusivity

Cache hierarchies that operate under LCE end up duplicating the same objects at multiple

levels. Their performance deteriorates to approximately the performance of the largest cache

in the hierarchy, whereas it should ideally be approaching the performance of a cache that is

as large as the sum of all the caches in the hierarchy. The problem of making cache hierarchies

exclusive – i.e., forcing them to store disjoint sets of objects at different levels – was studied

recently by Wong and Wilkes [2] who proposed the DEMOTE algorithm. Our LCD meta

algorithm shares some resemblance with [2], as it too caters to exclusivity, and it also strives

for minimum added complexity (as opposed to other works that keep track of individual

cache contents, and make completely coordinated caching/replacement decisions [10, 11], at

8

the expense of a significant amount of added complexity in terms of state and communication).

However, our approach towards exclusivity is completely different.

LCD takes an active approach towards exclusivity, whereas DEMOTE is potentially passive

in its workings. To understand these characterizations, see that LCD attempts to prevent

valueless objects from reaching the (valuable) leaf cache, whereas the DEMOTE architecture

permits them to get at the leaf cache with a single request (just like LCE), and then attempts

to achieve exclusivity by not evicting them at all levels, but rather giving them additional

chances through the demote operations. All together, LCD attempts to achieve exclusivity

through admission control prior to caching (hence being active), while DEMOTE attempts

to achieve exclusivity through replacement (hence being passive). The passive operation has

its cost, as it allows valueless object to linger at the lower levels of the hierarchy, depriving

valuable cache space from the most valuable objects. Also, the demote operation consumes

bandwidth, not only to transmit object downwards, but also to transmit objects upwards for

the demote operations.

A second important difference relates to the performance under multiple clients. In the

architecture of Wong and Wilkes, an intermediate cache that has transmitted an object to

a downstream client, marks it for eviction upon the next replacement (much like our MCD

algorithm). This is completely justified when considering a hierarchy for a single client, e.g., a

memory hierarchy for a single CPU, but can be counter intuitive in a hierarchy with multiple

clients, e.g., a tree-shaped interconnection of web caches, servicing multiple client institutions

at the leaf levels. In the second case, removing an object from an intermediate cache after

its transmission to a single client, prohibits other clients that have not yet cached it, from

receiving it promptly from the intermediate cache, rather than from the origin server. Such a

behavior wipes out a potentially important gain from servicing the so called cold misses, and

often leads to performance that is even worse than that of the standard LCE algorithm. Wong

and Wilkes comment on this matter that “the clear benefits from single-client workloads are

not so easily repeated in the multi-client case”. For the latter case, they propose variations

of the DEMOTE policy, that, however, make it more complex, and more important, require

considerable amount of fine-tuning to specific operating conditions.

Handling multiple clients is inherent to the operation of LCD and no similar problems

9

arise. An object that resides in an intermediate cache may flow towards multiple downstream

caches without leaving its position. It is evicted from the intermediate cache, only if requests

stop reaching it there, not as a consequence of being sent to a downstream cache (as is the

case with DEMOTE). Thus the demand driven operation of LCD (copy to multiple clients

when requested) coupled with a simple replacement logic (evict only when request rates fall

and avoid interfering with the state of the LRU list (as done by DEMOTE)), seem to be

more natural choices for handling multiple clients. Indeed, in all synthetic and trace-driven

experiments that appear in [3], which are under multiple clients arranged in a tree topology,

LCD always performs best.

2.3 Performance of different meta algorithms

This section presents an initial performance evaluation of the various meta algorithms. It does

not strive for an exhaustive comparison under all possible workloads, but rather to enhance

the experimental results that were presented in [3], and justify our interest in analyzing the

LCD meta algorithm in this article.

The performance evaluation is conducted through synthetic simulation under Zipf-like

requests and a two-level tandem topology (Fig. 2). A Zipf-like distribution is a power-law,

dictating that the ith most popular object is requested with a probability K/ia, where K =

(
∑N

j=1
1
ja)

−1; N denotes the number of distinct objects. The skewness parameter a captures the

degree of concentration of requests; values approaching 1 mean that few distinct objects receive

the vast majority of requests, while small values indicate progressively uniform popularity.

The Zipf-like distribution is representative of workloads that lead to high hit ratios. It is

under such workloads that caching becomes more effective. The Zipf-like model is recognized

as a good model for characterizing the popularity of various types of measured workloads,

such as web objects [12] and multimedia clips [13]. The popularity of P2P [14] and CDN

content has also been shown to be quite skewed towards the most popular documents, thus

approaching a Zipf-like behavior. Recently, evidence of Zipf-like behavior has been observed

in the distribution of Gnutella queries [15].

The average hit distance is used as the performance metric. A simple “hop-count” notion

10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

100 1000 10000
av

er
ag

e
hi

t d
is

ta
nc

e
(#

 h
op

s)

total tandem capacity (2*cache size)

simulated two-cache tandem with N=10000, a=0.9

LCE
DEMOTE
Prob(0.2)

MCD
LCD

Figure 3: Average fetch distance (hit) in a two-level cache tandem under various meta algorithms

of distance is employed, thus it is assumed that the client is co-located with the level 1 cache

(d1 = 0), while the level 2 cache and the origin server are one and two hops away, respectively

(d2 = 1, dos = 2).

Figure 3 depicts the average hit distance under the meta algorithms of Sect. 2.1. The

Filter algorithm is not included in the comparison, as it is the only one that requires laborious

per-object frequency estimation (in [3] it has been shown experimentally that LCD outper-

forms Filter in the studied scenarios). The x-axis depicts the total capacity of the tandem

in unit-sized objects (equally sized caches assumed). LCD and MCD yield almost the same

performance that is at least 20% better than LCE and at least 15% better than DEMOTE in

the initial range that reaches up to total tandem capacity of 1000 objects (representing 10%

of all available objects). Most caching systems operate with relative capacity below 10%. In

that range, LCD and MCD yield significant performance improvements.

As the available storage capacity increases, LCD, MCD, Prob, and DEMOTE progressively

converge to almost the same performance, that is constantly better than that of LCE. Focusing

on LCD and DEMOTE, we observe that whereas the two perform nearly as good under high

availability of storage, LCD becomes clearly better under a low availability of storage. This can

be explained intuitively as follows. Under abundant storage, the most popular objects will be

cached at level 1 with a high probability despite the replacement errors, thus cache exclusivity

becomes the dominant factor for improving the performance; both LCD and DEMOTE cater

to exclusivity. Under limited storage, however, valuable objects often get replaced in favor of

valueless ones. In that case, it is the avoidance of such replacement errors that dominates the

11

performance, and exclusivity comes second. LCD avoids replacement errors at the valuable

level 1 cache by requiring multiple requests to cache an object, whereas DEMOTE permits

such errors to occur by requiring just a single request to cache a valueless object at level 1.

Another interesting observation is that whereas LCD and MCD perform almost the same

here, LCD becomes clearly better under tree topologies [3]. This is attributed to the fact

that MCD suffers from not allowing multiple downstream caches to share an object from an

intermediate level cache (this issue has been discussed in Sect. 2.2.2 in the context of cache

exclusivity). The fact that LCD is as good as MCD under tandem topologies, and better

under tree topologies, has been one of the primary reason for our interest in analyzing LCD.

In the following sections, the LCD interconnection of LRU caches is mapped to an efficient

(approximate) analytic model. The results from this analytic model give further insights to

the performance gains of LCD, and to a large extent explain the observed experimental results.

For further simulation results, including more synthetical workloads as well as trace-driven

workloads and different topologies (trees), the reader is referred to [3].

3 Analytic models of LRU in the literature

To put the presented LCD/LRU analytic model for interconnected caches into perspective,

we first review previous attempts to model LRU caching. We focus on analyses assuming

independent identically distributed requests (the aforementioned IRM), that attempt to de-

rive the expected behavior of LRU in steady-state; the reader is referred to Motwani and

Raghavan [16] for analyses from the perspective of theoretical computer science, aiming at

establishing worst case performance bounds for the (on-line) LRU with respect to the (off-line)

optimal replacement policy.

It seems that King [17] was the first to derive the steady-state behavior of LRU under IRM.

Initial attempts employed a Markov chain to model the contents of a cache operating under

LRU. Unfortunately, such attempts give rise to huge Markov chains, having C!
(

N

C

)

states (N

number of objects in total, C capacity of the cache); numerical results for such chains can only

be derived for very small N and C. More efficient steady-state formulas have been derived by

avoiding the use of Markov chains, and instead making combinatorial arguments; see Koffman

12

and Denning [18], and Starobinski and Tse [7] for such approaches that, however, still require

exponential complexity to be evaluated numerically. Flajolet et al. [19] have presented integral

expressions of LRU’s hit ratio, that may be approximated through numerical integration at

complexity O(NC). Dan and Towsley [20] have derived an efficient O(NC) iterative method

for the approximation of LRU’s hit ratio. Jalenković [21] has provided a closed form expression

of hit ratio for the particular case of Zipf-like requests with skewness parameter α > 1, for

the asymptotic case, N → ∞. The same author has shown that the hit ratio of LRU under

Zipf-like requests is asymptotically insensitive for large caches, i.e., C →∞, to the statistical

correlations of the request arrival process [22]. Thus the hit ratio under IRM is, in that case,

similar to that under correlated requests.

Compared to the aforementioned works, Che at al. [1], and the current work, study the

more difficult problem of interconnected LRUs. The added difficulty relates to the need of

characterizing the miss process that flows to the upstream cache, in addition to the steady-

state hit probabilities, which has been the only focus of prior works, e.g., [19], [20]; extending

these works to handle multiple caches is not straight forward. The initial work of Che at al. [1]

studies hierarchies that operate under LCE, whereas the current work studies hierarchies that

operate under LCD. In the latter case, the analysis becomes even harder, due to the coupling

of cache states under LCD (the state of the underlying cache depends on the state of the

above one and vise versa), whereas under LCE, the hierarchy can be analyzed by a one-pass

bottom up algorithm as there are no bidirectinal state dependencies.

4 The Che et al. approximation for individual LRU

caches

This section presents the approximate analytic model for individual LRU caches that has been

proposed recently by one of the authors (H. Che) in [1]. The model and its concepts will be

used as building blocks at various occasions during the analysis of interconnected LCD/LRU

caches that follows in subsequent sections. To this end, the presentation is adapted to the

requirements of the current work. At certain points, it even adds details which do not appear

13

hit
miss miss

hit hit eviction

. . .

tail of cache

head of cache

PSfrag replacements

hi

ti1 ti2 tinti,n−1 τiti

Figure 4: Time diagram of the variables involved in the Che et al. approximation.

in the original paper, with the aim to assist the reader. The first part of the section contains

an elaborate version of the original analysis, while the second part contains a new, simpler

way of deriving some of the results.

4.1 Analysis

Consider an LRU cache with capacity for C unit-sized objects, and a set of N distinct unit-

sized objects. Assume that the request arrival process for object i, 1 ≤ i ≤ N , follows a

Poisson process with mean rate λi. The corresponding inter-arrival time, r, between successive

requests for object i is thus exponential, having distribution Pi(t) = P{r ≤ t} = 1− e−λit and

density φi(t) = λie
−λit. Under these assumptions, the following analytic model allows for the

derivation of π̃i, 1 ≤ i ≤ N – the probability of finding object i in the cache at an arbitrary

observation time in steady-state.

Let ti denote a random variable capturing the time between two subsequent misses for

object i. This random variable can be written as the sum of n other random variables tij,

1 ≤ j ≤ n, which are described as follows: tij, 1 ≤ j ≤ n − 1, is the inter-arrival time

between two successive hits for i; tin, is the inter-arrival time between the last hit for i and

the subsequent miss. Figure 4 is a time diagram illustrating the aforementioned variables (see

also Table 1 for a summary of notation). The exact distribution of tij for object i can be

expressed as a combinatorial function involving the arrival processes of the other objects. The

essence of the Che et al. approximation is to avoid the use of combinatorial formulas for the

expression of tij, and instead write it in a much less complicated way by employing a mean

value approximation.

Let τi denote the maximum inter-arrival time between two adjacent request for i that lead

14

to hits; it will be referred to as the characteristic time of object i. In essence, τi is a random

variable, but in the context of the Che et al. approximation it is considered a constant. The

rationale behind this approximation is that as the request rate for the other objects increases,

τi tends to fluctuate less and less around its mean value. This assumption is supported by

numerical studies and the results appearing in [1]. In the same work, it is argued that the

characteristic time for a given object may be obtained by solving the following equation for

its unique solution τi:
N
∑

j=1,j 6=i

Pj(τi) = C (1)

The idea behind eq. (1) is to count the number of distinct/unique requests for other objects

(non-tagged), that occur after the tagged object is brought to the head of the LRU list at

t = 0, given that the tagged object is not requested. As each such request causes an insertion

to the head of LRU, thereby pushing the tagged object one place back towards the tail of

LRU, it is eventually evicted when C such requests have occurred; τi is the expected duration

for this to happen. Since request inter-arrivals are exponential, thus memoryless, we can

disregard the elapsed time for non-tagged request inter-arrivals prior to t = 0. Thus eq. (1)

gives an exact expression for the characteristic time.

The following proposition establishes that the presented analysis may be applied as long

as N > C, i.e., when the cache cannot hold all the objects, which is the usual case.

Proposition 1 Equation (1) has exactly one real solution in R
+ as long as N > C.

Proof : Denote f(τi) =
∑N

j=1,j 6=i Pj(τi) − C. The following hold true: (1) f(τi) is continuous

and non-decreasing in R
+ as it is the sum of N −1 functions Pj(τi), which are continuous and

non-decreasing themselves (because they are exponential distributions); (2) f(0) = −C < 0,

due to Pj(0) = 1 − e−λj0 = 0, 1 ≤ j ≤ N, j 6= i; (3) lim
τi→∞

f(τi) = N − C > 0, due to

lim
τi→∞

Pj(τi) = 1, 1 ≤ j ≤ N, j 6= i (Pj’s are distributions thus approach 1 towards ∞). From

the three arguments and the intermediate value theorem, it follows that f(τi) has exactly one

real solution in R
+. ¤

Under the aforementioned mean value approximation, tij’s become independent random

variables whose distributions can be written in a straightforward manner by conditioning with

respect to τi as follows: inter-arrivals that are shorter than τi involve two hits (as in the case

15

of ti1, . . . , ti,n−1); inter-arrivals that are longer than τi involve a hit and a subsequent miss (as

in the case of tin). The exact distributions are given below.

• Distribution of tij, 1 ≤ j ≤ n−1 (having duration smaller than τi): All follow a common

distribution denoted Pi−(t), and defined as follows:

Pi−(t) = P{tij ≤ t} = P{r ≤ t|r ≤ τi} =
P{r ≤ t, r ≤ τi}

P{r ≤ τi}
=
Pi(t)u(τi − t) + Pi(τi)(1− u(τi − t))

Pi(τi)
(2)

where r is exponential following Pi(t). The function u(t) is the unit-step function, which

is defined as follows: u(t) = 1 for t ≥ 0 and 0 otherwise. Figure 5 gives a schematic

explanation of the derivation of P{r ≤ t, r ≤ τi} which is involved in the derivation of

Pi−(t). The “−” sign in the subscript of Pi−(t) is a mnemonic for indicating variables

that are smaller (hence the minus sign) than a constant (here τi).

The corresponding density function is:

fi−(t) =
dPi−(t)

dt
=

(Pi(t))
′ · u(τi − t) + Pi(t) · (u(τi − t))′ + Pi(τi) · (u(t− τi))

′

Pi(τi)

=
φi(t) · u(τi − t)− Pi(t) · δ(τi − t) + Pi(τi) · δ(t− τi)

Pi(τi)

=
λie

−λit · u(τi − t)− (1− e−λit) · δ(τi − t) + (1− e−λiτi) · δ(t− τi)

1− e−λiτi

(3)

Function δ(t) is the Dirac delta function, δ(t) = 1 for t = 0 and 0 otherwise. Let Fi−(s)

denote the Laplace transform of fi−(t).

Fi−(s) =
λi

1− e−λiτi
·
1− e−τi(λi+s)

λi + s
(4)

• Distribution of tin (having duration larger than τi): It follows distribution Pi+(t) which

is as follows:

Pi+(t) = P{tin ≤ t} = P{r ≤ t|r > τi} =
P{r ≤ t, r > τi}

P{r > τi}
=

(Pi(t)− Pi(τi))u(t− τi)

1− Pi(τi)
(5)

Figure 6 gives a schematic explanation of the derivation of P{r ≤ t, r > τi} which

is involved in the derivation of Pi+(t). The “+” sign in the subscript of Pi+(t) is a

mnemonic for indicating variables that are larger (hence the plus sign) than a constant

(here τi).

16

PSfrag replacements

t

t

0

0 τi

τi

r < t

r < t

r < τi

r < τi

(r<t)∪(r<τi)

(r<t)∪(r<τi)

(case t < τi)

(case t > τi)

Figure 5: Schematic of the derivation of P{r < t, r <

τi}. The thick solid lines indicate the values of the random

variable r that belong to the union (r < t) ∪ (r < τi).

P{r < t, r < τi} is the probability that an outcome belongs

to this union.

PSfrag replacements

t

t

0

0 τi

τi

r < t

r < t

r > τi

r > τi
(r<t)∪(r>τi)

(r<t)∪(r>τi)=∅

(case t < τi)

(case t > τi)

Figure 6: Schematic of the derivation of P{r < t, r >

τi}. The thick solid line indicates the values of the random

variable r that belong to the union (r < t) ∪ (r > τi).

P{r < t, r > τi} is the probability that an outcome belongs

to this union.

The corresponding density function is:

fi+(t) =
dPi+(t)

dt
=

(Pi(t))
′ · u(t− τi) + (Pi(t)− Pi(τi)) · (u(t− τi))

′

1− Pi(τi)

=
φi(t) · u(t− τi) + (Pi(t)− Pi(τi)) · δ(t− τi)

1− Pi(τi)

=
λie

−λit · u(t− τi) + (e−λiτi − e−λit) · δ(t− τi)

e−λiτi

(6)

and its Laplace transform,

Fi+(s) =
λie

−τis

λi + s
(7)

Since ti =
∑n

j=1 tij, the density function of ti|n is given by the convolution of (6) and the (n−

1)th convolution of (3), i.e., fi(t|n) = fi+(t)⊗f
(n−1)
i− (t), where: f

(n−1)
i− (t) = fi−(t)⊗ . . .⊗fi−(t)

((n−1)th convolution). The corresponding Laplace transform is Fi(s|n) = (Fi−(s))
n−1Fi+(s).

The density function of ti can be written by removing the dependence on n.

fi(t) =
∞
∑

n=1

fi(t|n) · (Pi(τi))
n−1 · (1− Pi(τi)) (8)

and its Laplace transform,

Fi(s) =

∫ ∞

0

∞
∑

n=1

fi(t|n) · (Pi(τi))
n−1 · (1− Pi(τi)) · e

−stdt

= (1− Pi(τi))
∞
∑

n=1

(Pi(τi))
n−1

∫ ∞

0

fi(t|n) · e
−stdt

= (1− Pi(τi)) ·
∞
∑

n=1

(Pi(τi))
n−1 · Fi(s|n) =

λi

λi + s · eτi(s+λi)

(9)

17

The average miss interval for object i, Ti = E{ti}, is readily available by taking the derivative

of −Fi(s) and evaluating it at s = 0:

Ti = −F
′
i (0) = λ−1i eλiτi (10)

Now π̃i can be written as follows:

π̃i =
Ti − E{hi}

Ti

= 1−
E{hi}

Ti

= 1−
λ−1i

λ−1i eλiτi

= 1− e−λiτi (11)

The variable hi denotes the residual time from the time that i gets evicted from the cache,

up to the next request for i (that results in a miss, see Fig. 4). Due to the fact that request

inter-arrivals are exponentially distributed, E{hi} = λ−1i .

Finally, it may be verified that the density of inter-miss intervals, fi(t), does not have a

simple representation (see that the Fi(s) of (9) does not have a compact inverse representa-

tion). It has been shown in [1] that a good compact approximation of fi(t) may be achieved

by a truncated exponential density, i.e., fi(t) = σi · e
−σi(t−τi) · u(t− τi), where σi =

1
Ti−τi

.

4.2 A simpler derivation of stationary behavior

In this section we show that if the objective is to study only the parts of stationary behavior

that relate to the most commonly employed performance metric – the expected hit ratio over

all requests – then a much simpler analysis becomes possible. To derive the hit ratio, one does

not need to know the probability of finding an object in the cache at arbitrary times (π̃i), but

only know this probability upon the time instances that this object is requested; we denote

this (conditional) probability for object i as πi, and refer to it as the hit-ratio of i. We shall

show that πi can be derived much simpler than π̃i.

See that between two successive misses for object i a total of n requests for it have occurred;

of these n − 1 are hits and 1 is a miss. Thus, πi =
E{n}−1
E{n}

. From (8) it is obvious that n is

geometrically distributed with (success) parameter (1− Pi(τi)). Thus, E{n} = 1/(1− Pi(τi))

and hence,

πi = 1− 1/E{n} = Pi(τi) = 1− e−λiτi (12)

Comparing this result with eq. (11) we realize that πi = π̃i, i.e., the conditional probability

upon request arrivals times for i, and the unconditioned one at arbitrary times are, in fact, the

18

Notation Definition

N,C total # objects, cache capacity

πi, λi request probability, rate, for i

Pi(t), φi(t) exponential CDF and PDF with param. λi

ti, Ti, τi inter-miss interval for i, expected value of ti, characteristic time for i

tij, 1 ≤ j ≤ n− 1, tin hit-hit interval for i, hit-miss interval for i

Pi−(t), fi−(t), Fi−(s) CDF, PDF, Laplace transform, of tij, 1 ≤ j ≤ n− 1

Pi+(t), fi+(t), Fi+(s) CDF, PDF, Laplace transform, of tn

fi(t), Fi(s) PDF, Laplace transform, of ti

π̃i, πi hit prob. for i at arbitrary times, and upon requests for i

1, 2 notational modifiers used to refer to level 1 or level 2

toffi , T offi , toni , T oni duration and expected value of OFF, ON states

P oni+ (t), f
on
i+(t), F

on
i+ (s) CDF, PDF, Laplace transform, of miss-miss interval for i during ON state

P oni− (t), f
on
i−(t), F

on
i− (s) CDF, PDF, Laplace transform, of miss-hit interval for i during ON state

νoni percentage of miss-miss intervals for i during ON state

P offi (t), π̃offi CDF of toffi , percentage of time on OFF state

P 2i (t) CDF for inter-arrivals for i at level 2

d1, d2, dos distance of level 1, level 2, origin server

Table 1: Notation summary. The notational modifiers 1, 2 are used to refer to corresponding quantities of level 1 and level 2.

same. This is a consequence of the Poisson arrival process. Thus if the interest is only on the

hit ratio, the current derivation is preferable as it is obviously much simpler (does not involve

the various density functions and their transforms). The more elaborate analysis, however,

has the advantage of characterizing the miss process also, which is required when studying

interconnected caches (where the miss process at one cache contributes to the arrival process

of an upstream one).

5 Analysis of a two-level LCD/LRU tandem

This section develops an approximate analytic model for LCD interconnected LRU caches.

5.1 Model description and assumptions

Figure 2 illustrates a two-level LCD/LRU tandem. User requests are received at the level 1

cache. Misses flow to the level 2 cache, and eventually to the origin server if neither cache

19

holds the requested object. Both caches operate under LRU replacement and the LCD meta

algorithm. The effect of the LCD meta algorithm on this particular tandem is that an object

missing from both caches needs at least two requests to be brought to the level 1 cache; the

first one brings it to the level 2 cache, and a subsequent one (assuming that it still resides at

level 2) brings it to level 1.

As in Sect. 4, the aggregate request arrival process at the level 1 is assumed to be Poisson

with mean rate λ1, thus the per-object arrival processes are also Poisson with rates λ1i = p1iλ
1;

p1i denotes the request probability of the ith most popular object. Objects are of unit size,

and cache capacities are integral. We analyze the tandem by starting from the level 1 cache

(the leaf) and then moving to the level 2 cache (the root).

5.2 Level 1 cache (leaf)

To analyze the leaf cache we focus on object i, and identify the two states that completely

characterize the caching behavior as pertaining to this object:

OFF state : During the OFF state, object i is either cached at level 1, or has been evicted

but not requested yet. Thus all requests for an object that is in its OFF state lead to

hits and no request overflows to the second level. The characterization OFF refers to the

fact that the miss process that leads to the second level is turned off for the particular

object. Let toffi denote the duration of OFF.

ON state : The ON state follows the OFF state. During ON, object i is not cached at level

1, thus all requests flow to level 2. If i is cached at level 2, then it is brought to level 1

thus ending the current ON state. ON here refers to the fact that the miss process is

turned on, feeding level 2 with requests. Let toni denote the duration of ON.

Figure 7 illustrates the two states, demonstrating the fact that the behavior with respect to

object i is fully described by a succession of OFF-ON cycles. Following an OFF-ON cycle for

the tagged object, the system returns to the beginning of a new OFF state for this object.

Thus it suffices to study this cycle to completely characterize the system. Notice that an

ON state might have zero duration. This is the case when the miss at the end of the OFF

20

������������

cachedmiss

���
�

miss cached evictedevicted

���
�

�������
�

origin server

level 2

level 1

ih

ON period

miss miss misshit hit

hit hit

time

hitmiss

cached cached

evicted ...

...

...
OFF period

PSfrag replacements

toffi toni (duration of ON)

noni (num. requests in ON)

Figure 7: Time diagram of a two-level LCD/LRU tandem.

state finds the level 2 cache with a copy of i which is brought to level 1, thus instantaneously

returning it to the beginning of a new OFF period.

5.2.1 Duration of OFF

The OFF interval has a duration toffi and involves two level 1 misses for i, at the beginning

and the end, and a number of level 1 hits that come in-between. The distribution of toffi may

be obtained by following the exact same steps as with a single LRU cache, as elaborated in

Sect. 4. Thus the expected duration of OFF for object i is,

T offi = (λ1i)
−1eλ

1

i τ
1

i (13)

The LCD algorithm, however, affects the way that the characteristic time τ 1i is computed. In

the case of an isolated cache, a miss leads directly to the caching of the requested object and

this fact is inherent in eq. (1) that gives the characteristic time in the isolated case. The LCD

case, however, is different. A miss at level 1 leads to local caching of the requested object

only when this object resides at level 2; the object is not cached at level 1 if it only resides at

the origin server at the time of the miss. To find the characteristic time, we employ a mean

value approximation that is similar in conception to eq. (1), but is adapted to the LCD case:

N
∑

j=1,j 6=i

π1j · P
1
j (τ

1
i) + (1− π1j) · π

2
j · P

1
j (τ

1
i) = C1 (14)

A verbal description of (14) would be that τ 1i is the interval in which exactly C1 distinct

objects j, j 6= i, that are either cached at the leaf or miss at the leaf but are cached at the

21

root, are requested and, thus, cause the eviction of i. By observing equation (14) one may

see that LCD enlarges the characteristic time τ 1i as compared to the case of pure LRU. This

can be easily understood by noting that π1j + (1 − π1j) · π
2
j i.e., the sum of the multipliers of

P 1j (τ
1
i)’s in (14) is less than 1, whereas the single multiplier of Pj(τi) in (1) is equal to 1.

A second important observation is that whereas eq. (1) gives an exact expression for

the expected time for C1 distinct/unique non-tagged insertions to occur at the head of LRU,

eq. (14) gives an approximate expression. This is because due to LCD, non-tagged requests do

not necessarily trigger insertions of non-tagged objects. Thus although request inter-arrivals

are memoryless, inter-insertion intervals are not. Thus the starting point t = 0 for counting

for C1 distinct/unique insertion of non-tagged objects, matters. Disregarding the elapsed time

of on-going non-tagged inter-insertions at t = 0 makes eq. (14) an approximate expression for

τ 1i . This approximation is made to preserve the tractability of the model and, as will be shown

in Sect. 6, leads to accurate results.

5.2.2 Duration of ON

The miss at the end of the OFF period signifies the beginning of the ON period. If the

requested object resides at level 2, then it is immediately transmitted to level 1, and the ON

period terminates instantaneously. Otherwise, the object descends from the origin server to

the level 2 cache,3 and it takes additional requests for the same object to get to level 1. The

number of additional requests depends on whether the next request for the same object at

level 1 (which is a miss), occurs before the object is evicted from level 2. Once again, it is

through the use of the characteristic time that the duration of the ON period is computed.

The rationale is as follows. To have n requests for i in the ON period, it will require that

n − 1 inter-arrivals for i at level 1 (which flow to level 2 as they are misses) be larger4 than

the characteristic time at level 2 (τ 2i), and the last one be smaller than the characteristic time

at level 2. This is much like an inverse analogy5 of the situation discussed in Sect. 4, with the

3Since the origin server always holds the requested object, it only takes a single miss to bring an object to level 2.
4Thus each time the first request of an inter-arrival brings i to level 2 from the origin server, but the next request comes too

late, when i has been evicted from level 2. Thus the second request instead of bringing i to level 1, it just brings it back to level

2 from the origin server.
5Here n− 1 intervals are larger than the char. time, and 1 is smaller, whereas in Sect. 4, n− 1 were smaller and 1 larger.

22

additional difference that inter-arrivals of one level are compared to the characteristic time of

a different level (the above one), whereas in the original case, inter-arrivals and characteristic

time refer to the same cache.

By conditioning on whether an inter-arrival for i at level 1 is larger or smaller than τ 2i ,

we get the following results (look at the corresponding derivations of Sect. 4 and the notation

summary on Table 1 for details):

P oni− (t) = P{r ≤ t|r ≤ τ 2i } =
Pi(t)u(τ

2
i − t) + Pi(τ

2
i)(1− u(τ 2i − t))

Pi(τ 2i)

f oni−(t) =
λ1i e

−λ1

i t · u(τ 2i − t)− (1− e−λ1

i t) · δ(τ 2i − t) + (1− e−λ1

i τ
2

i) · δ(t− τ 2i)

1− e−λ1

i
τ2

i

F oni− (s) =
λ1i

1− e−λ1

i
τ2

i

·
1− e−τ2

i (λ
1

i+s)

λ1i + s

P oni+ (t) = P{r ≤ t|r > τ 2i } =
(Pi(t)− Pi(τ

2
i))u(t− τ 2i)

1− Pi(τ 2i)

f oni+(t) =
λ1i e

−λ1

i t · u(t− τ 2i) + (e−λ1

i τ
2

i − e−λ1

i t) · δ(t− τ 2i)

e−λ1

i
τ2

i

F oni+ (s) =
λ1i e

−τ2

i s

λ1i + s

(15)

Following the aforementioned description of an ON period of n requests, we can write:

F oni (s|n) = (F oni+ (s))
n−1F oni− (s) (Laplace transform of toni |n)

f oni (t) =
∞
∑

n=1

f oni (t|n) · (1− Pi(τ
2
i))

n−1 · Pki(τ
2
i) (density function of toni)

F oni (s) =
λ1i (1− e−τ2

i (s+λ1

i))

λ1i − (s+ λ1i)e
τ2

i
(s+λ1

i
)

(Laplace transform of toni)

T oni = E{toni } = −F́
on
i (0) =

eτ
2

i λ
1

i

λ1i (e
τ2

i
λ1

i − 1)
(expected duration of ON period)

(16)

23

5.2.3 Stationary behavior at level 1

It is now possible to write the probability of finding object i at level 1 (at both request and

arbitrary epochs):

π1i = π̃1i =
T offi − E{hi}

T offi + T oni

=
T offi − (λ1i)

−1

T offi + T oni

=
(λ1i)

−1 · eλ
1

i τ
1

i − (λ1i)
−1

(λ1i)
−1 · eλ

1

i
τ1

i + (λ1i)
−1(eλ

1

i
τ2

i − 1)−1eλ
1

i
τ2

i

=
eλ

1

i τ
1

i − 1

eλ
1

i
τ1

i + (eλ
1

i
τ2

i − 1)−1eλ
1

i
τ2

i

(17)

Observe that the steady-state probability of finding i at level 1 depends on the characteristic

time at level 1 (τ 1i), as well as on the characteristic time at level 2 (τ 2i), whereas in an isolated

LRU cache (or in a level 1 cache of a hierarchy that operates under LCE) it is only the local

characteristic time that matters.

5.3 Level 2 cache (root)

The study of the level 2 cache starts with the characterization of the request arrival process

of the tagged object i.

5.3.1 The arrival process at level 2

The sole contributor to this arrival process is the miss process from level 1. Referring back to

Fig. 7, it may be seen that the inter-arrivals at level 2 are either inter-miss intervals of the OFF

period (each OFF period at level 1 creates one inter-arrival for level 2), or inter-miss intervals

during the ON period at level 1. Inter-arrivals of the first kind (OFF period) can be modeled

by a truncated exponential distribution, like the one used in Sect. 4.1. Inter-arrivals of the

second kind (ON period), follow conditional exponential distributions (the condition expressed

with respect to τ 2i). We, therefore, approximate the distribution of r2i , the inter-arrivals for i

at level 2, by the following mixture distribution:

P 2i (t) = P{r2i < t} = π̃offi · P offi (t) + (1− π̃offi) · (νoni · P oni+ (t) + (1− νoni) · P oni− (t)) (18)

24

where,

π̃offi =
T offi

T offi + T oni
=

eλ
1

i τ
1

i

eλ
1

i
τ1

i + (eλ
1

i
τ2

i − 1)−1eλ
1

i
τ2

i

P offi (t) = (1− e−σoffi (t−τ1

i)) · u(t− τ 1i) with σoffi = 1

Toff
i
−τ1

i

νoni =
E{noni } − 1

E{noni }
= e−λ1

i τ
2

i

(

where E{noni } =
∞
∑

non
i
=1

(1− P 1i (τ
2
i))

noni −1 · P 1i (τ
2
i) =

1

P 1i (τ
2
i)

)

(19)

π̃offi denotes the percentage of time that level 1 spends in the ON state with respect to object

i. P offi (t) is a truncated exponential distribution that is used to approximate the actual

distribution of OFF intervals. νoni denotes the percentage of requests that go into the ON

period, without succeeding to bring i to level 1. Figure 7 shows that noni requests for i go

into an ON period, of which only the last one brings i to level 1. It is easy to see that noni

is geometrically distributed with parameter P 1i (τ
2
i), hence E{n

on
i } = 1/P 1i (τ

2
i). A percentage

νoni of the total requests that go into ON are exponential intervals that are known to be larger

than τ 2i ; their distribution, P
on
i+ (t), has been given in (15). The remaining percentage, 1− νoni ,

involves exponential intervals that are smaller than τ 2i ; their distribution, P oni− (t), has been

given in (15) (such intervals bring i to level 1 thus ending the ON period).

5.3.2 The characteristic time at level 2

As far as the caching behavior is concerned, the level 2 cache operates in the usual LRU

manner, i.e., a miss leads to the immediate caching of the requested object. This happens

because the upstream neighbor of level 2 is the origin server which, by holding all the objects,

leads to the immediate caching at level 2 of all misses that occur at that level. Due to the

existence of the origin server, the LCD meta algorithm reduces to the normal caching operation

for the level 2 cache. Therefore, the characteristic time at level 2, τ 2i , may be approximated

(request inter-arrivals are no longer exponential) by solving:

N
∑

j=1,j 6=i

P 2j (τ
2
i) = C2 (20)

25

5.3.3 Stationary behavior at level 2

The stationary probability of finding object i at level 2, upon a request for it at level 2, π2i ,

can be obtained by applying the method of Sect. 4.2, thus

π2i =
E{n2i } − 1

E{n2i }
= 1−

1

E{n2i }
= 1−

1

1/(1− P 2i (τ
2
i))

= P 2i (τ
2
i) (21)

Here, n2i , denotes the number of requests for i that must occur from one miss until the next

one, at level 2; it is geometrically distributed with (success) parameter (1−P 2i (τ
2
i)). Using (18)

to write P 2i (τ
2
i) (and noting that P oni− (τ

2
i) = 1 and P oni+ (τ

2
i) = 0) and then substituting π̃offi ,

P offi (τ 2i) and νoni from (19), equation (21) becomes:

π2i = π̃offi · P offi (τ 2i) + (1− π̃offi) · (1− νoni)

=
eλ

1

i τ
1

i · (1− e−σoffi (τ2

i −τ1

i)) · u(τ 2i − τ 1i)

eλ
1

i
τ1

i + (eλ
1

i
τ2

i − 1)−1eλ
1

i
τ2

i

+

(

1−
eλ

1

i τ
1

i

eλ
1

i
τ1

i + (eλ
1

i
τ2

i − 1)−1eλ
1

i
τ2

i

)

(1− e−λ1

i τ
2

i)

(22)

For the level 2 cache we can again derive the miss process by applying the analysis of Sect. 4.

The method is the same: define the conditional distributions, take their transforms, condition

with respect to n2i , remove the dependence on n2i to get the Laplace transform of the inter-miss

distribution, find a compact inversion formula and use it for the arrivals at the next level. For

all the aforementioned quantities, closed-form expressions may be derived.

Having derived π1i and π2i , it becomes possible to compute the average hit distance in the

tandem (2 caches plus the origin server):

E{hit distance} =
N
∑

i=1

p1i · (d
1π1i + d2(1− π1i)π

2
i + dos(1− π1i)(1− π2i)) (23)

5.4 Decoupling the tandem

Although closed form expressions have been derived for π1i and π2i , it is not possible to use

them directly, as the two caches are coupled under LCD, i.e., the state of one depends on the

state of the other and vise versa. There also exist local couplings.

If the tandem were to involve LRU caches operating under LCE, then it would be possible

to work in a bottom up manner and derive the steady-state at each level. The LCD algorithm,

however, brings additional complications. To derive the steady-state behavior at level 1 under

26

LCD, one must know the steady-state behavior at level 2 also. This is because an object

insertion after a miss at level 1, depend under LCD on whether the requested object exists

at level 2. In various stages during the analysis of level 1, the steady-state behavior of level

2 had to be involved: (i) the derivation of the characteristic time at level 1 involved the π2j ’s

(eq.(14)); (ii) the analysis of the ON period was based on conditioning on τ 2i ’s (eqs. (15),(16)).

As a result π1i (eq. (17)) depends on level 2 explicitly, as it involves τ 2i , and also implicitly, as

its own τ 1i is the solution of eq. (14) that involves π2i . There also exist local couplings between

τ 1i ’s and π1i ’s due to eqs. (14) and (17).

The level 2 cache, naturally depends on level 1, as its arrival process is the miss process

of the downstream cache. To resolve the couplings, we resort to an iterative method which

works as follows. It starts with an initially uncoupled tandem (i.e., it assumes that the tandem

operates under LCE). The LCE tandem can be worked in a bottom up manner and thus get

the characteristic times and steady-state hit probabilities at both levels. Then it starts an

iteration where the LCD formulas are employed, and the LCE results provide the starting

point. A stopping rule is defined for convergence. The method is described below.

Initialization : Solve an uncoupled tandem for τ 1i (0), π
1
i (0), τ

2
i (0), π

2
i (0) using the method

of Sect. 4 (see also [1]).

Iteration n : For iteration n, n ≥ 1, perform the following steps:

Step 1 : Solve for τ 1i (n), π
1
i (n), τ

2
i (n), π

2
i (n) using the results of iteration (n− 1), and

the following formulas (which are adapted versions of formulas already presented):

N
∑

j=1,j 6=i

π1j (n− 1) · P 1j (τ
1
i (n)) + (1− π1j (n− 1)) · π2j (n− 1) · P 1j (τ

1
i (n)) = C1 (solve for τ 1i (n))

π1i (n) =
eλ

1

i τ
1

i (n) − 1

eλ
1

i
τ1

i
(n) + (eλ

1

i
τ2

i
(n−1) − 1)−1eλ

1

i
τ2

i
(n−1)

N
∑

j=1,j 6=i

P 2j (τ
2
i (n)) = C2 (solve for τ 2i (n); use P 2j (t) from (18) with τ 1i = τ 1i (n), τ

2
i = τ 2i (n− 1))

π2i (n) =
eλ

1

i τ
1

i (n)(1− e−σoffi (τ2

i (n)−τ1

i (n)))u(τ 2i (n)− τ 1i (n))

eλ
1

i
τ1

i
(n) + (eλ

1

i
τ2

i
(n) − 1)−1eλ

1

i
τ2

i
(n)

+

(

1−
eλ

1

i τ
1

i (n)

eλ
1

i
τ1

i
(n) + (eλ

1

i
τ2

i
(n) − 1)−1eλ

1

i
τ2

i
(n)

)

(1− e−λ1

i τ
2

i (n))

(24)

27

Step 2 : Convergence test:

max(e1(n), e2(n)) ≤ ε (25)

where e1(n) = |π1(n) − π
1(n− 1)| and e2(n) = |π2(n) − π

2(n− 1)|. The

max function returns the largest element in any of the two vectors (each one having

elements |πx
i (n)−π

x
i (n−1)|, 1 ≤ i ≤ N). The constant ε denotes the (user-defined)

tolerance for the convergence of the iterative method. If condition (25) holds true,

then set: π1i = π1i (n), π
2
i = π2i (n), 1 ≤ i ≤ N , and exit the iteration. Else, set:

τ 1i (n − 1) = τ 1i (n), π
1
i (n − 1) = π1i (n), τ

2
i (n − 1) = τ 2i (n), π

2
i (n − 1) = π2i (n), and

perform another iteration.

Finalization Compute the average hit distance in the tandem through eq. (23).

5.5 Handling multiple clients - an LCD/LRU tree

The analysis of the LCD/LRU tandem in Sect. 5, assumes the existence of a single client that

connects to the lowest level; this is the exact model of hierarchical memory. There are cases,

however, that multiple clients, each with its own level 1 cache, connect to a shared level 2

cache; such an example is a hierarchical web cache. In the latter case, caches form a tree

topology, rather than a tandem. How could such a topology be analyzed?

For that purpose, it is possible to use a slightly modified version of the analysis of Sect. 5

for tandems. The key observation is that in a tree, level 1 caches remain unaffected, and it

is only the level 2 cache that is affected from the presence of multiple clients. Still, only a

slight modification to the analysis of the level 2 cache is required; the arrival process at level 2

(Sect.5.3.1) needs to be adapted to multiple clients. Equation (15) in [1] gives the expression

for the aggregate inter-arrival distribution at the root under LCE and multiple miss streams

(each miss stream approximated by a truncated exponential distribution). The same equation

applies to the LCD case, with the only difference be that here the individual miss streams are

approximated by the mixture distribution of eq. (18), rather than by a truncated exponential

distribution. An analysis similar to the tandem case can then be carried out.

28

5.6 Summary of the analysis and discussion

This section summarizes the concepts and tools utilized in the analysis of LCD/LRU. Despite

that LRU itself is a complicated system (from an analytical point of view), and the fact that

LCD brings additional complications to its analysis, the presented model is able to predict

accurately the performance of LCD/LRU as will be shown in Sect. 6. The ability to do so,

owes to the use of a number of carefully selected techniques that approximate satisfactorily

the real system, while remaining tractable. These key techniques are summarized bellow:

• The mean value approximation is used to overcome the combinatorial hardness of an-

alyzing an isolated LRU. By considering the characteristic time to be a constant, the

per-object hit probabilities are expressed in a simple manner, without however sacri-

ficing the important dependencies between different object, which are retained through

eq. (1) that caters to the individual request probabilities.

• Object requests are i.i.d. random variables at the leaf level, whereas they become corre-

lated at the root level (due to the mediation of the leaf cache). This is a common feature

in many interconnected systems (e.g., in networks of queues, which in fact are simpler

than networks of LRU’s as the former involve only one type of costumer, whereas the

latter involve multiple types). In the case of the LCE interconnection, the correlated

request process for a particular object i at level 2, is approximated by an uncorrelated

one. This is done by approximating the inter-arrivals by a truncated exponential distri-

bution. By using the characteristic time of level 1 as the truncation constant, it becomes

possible to retain the most important characteristics of the miss process that flows to

level 2. This idea is also employed in the analysis of LCD, in order to capture the

distribution of inter-arrivals at the two ends of an OFF period.

• The LCD algorithm adds a significant amount of complication as it does not permit

all misses to be cached instantly, but rather places conditions for this to happen; such

conditions involve information on the state of the above level. The key concepts for han-

dling LCD are: (1) the identification of the OFF-ON repeated cycles; (2) the adoption

of a modified expression for the equation that gives the characteristic time of level 1.

29

• Having written the characteristic times and hit probabilities at both levels, it remains to

overcome the coupling due to the bidirectional dependency between the two levels. This

is handled by the iterative procedure of Sect. 5.4 that starts with an initially uncoupled

system and progressively adds the true dependencies that exist. Such methods have been

used in the past for the study of coupled queues, e.g., in Modiano and Ephremides [23].

Although the analysis has been centered around the LCD algorithm, the presented framework

might have a broader application. Other types of inter-cache dependencies can be modelled

by retaining most of the analysis, and adapting only the distribution of the ON period and

the equation for the characteristic time at level 1. The ON period must capture the amount

of time that an object is not allowed to descend to level 1 due to dependencies with other

caches. The equation for the characteristic time must reflect the effects of these dependencies

in the expected amount of time that is required to evict an object from the level 1 cache.

6 Numerical Results

To assess the accuracy and the predictive power of the analytic model for the LCD/LRU

tandem, analytic numerical results are compared against simulation results. The comparison

is carried out under Zipf-like requests. The topology is as shown in Fig. 2, and the access

distances are d1 = 0, d2 = 1, dos = 2 (level 1/level 2/origin server). Such a selection of

distances amount to a hop-count distance, where the clients are co-located with the level 1

cache. The average hit distance is computed using eq. (23).

We have chosen to test the accuracy of the analytic model under Zipf-like requests, be-

cause it is under such highly skewed distributions that it becomes challenging to estimate the

performance analytically. Should the popularity of objects be uniform, it would be possible to

substitute all p1i ’s, 1 ≤ i ≤ N , with a single value p = 1/N , and thus carry out a much simpler

analysis. Our approach was not to make any simplifying assumptions regarding popularity

during the analysis, thus construct a model that is more versatile.

Figure 8 depicts the average hit distance in a two-level LCD/LRU tandem with N = 100,

C1 = C2 = C, and Zipf-like requests (a = 0.6 and a = 0.9), as given by simulation and

analysis. Even for such a small population of objects, and small cache sizes, the analytic

30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10 15 20 25 30 35 40 45 50

av
er

ag
e

hi
t d

is
ta

nc
e

(#
 h

op
s)

C (cache size)

two-cache LCD/LRU tandem with N=100

LCD/LRU simulation - a=0.6
LCD/LRU analytic - a=0.6

LCD/LRU simulation - a=0.9
LCD/LRU analytic - a=0.9

Figure 8: Comparison of simulation and analytic results
for a two-cache LCD/LRU tandem under Zipf-like requests

(two different values for the skewness parameter a).

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

10 15 20 25 30 35 40 45 50

av
er

ag
e

hi
t d

is
ta

nc
e

(#
 h

op
s)

C (cache size)

two-cache tandem with N=100

LCE/LRU analytic - a=0.6
LCD/LRU analytic - a=0.6
LCE/LRU analytic - a=0.9
LCD/LRU analytic - a=0.9

Figure 9: Comparison of LCE/LRU and LCD/LRU two-
cache tandem under Zipf-like requests (two different values

for the skewness parameter a).

results are always within 2-3% of the simulation results.

Figure 9 compares the performance of LCD/LRU against that of LCE/LRU, using analysis.

For the later, the results of Sect. 4 are used (see also the original analysis in [1]). The figure

shows that LCD/LRU has a performance that is constantly superior across the depicted

spectrum of cache sizes. The gap, however, closes with increasing C. This is expected, as

under a high availability of storage, the gain that LCD achieves by judiciously accepting

objects in the level 1 cache, competes with the cost paid for requiring multiple requests to

bring an object to level 1. See, however, that for LCE to reach up to the performance of

LCD, the two caches must by able to collectively hold the entire object population (see that

the lines in Fig. 9 intersect when each cache holds 50 object, in a population of 100). This

means that as long as caches are not enormously large (to hold all the content), LCD/LRU

performs better than LCE/LRU, as also shown by previous simulations.

Figure 10 attempts to explain the superiority of LCD over LCE, by looking closely at the

objects that reside in each cache. The top left graph in Fig. 10, shows the per-object hit

probabilities, for the two levels of an LCE/LRU tandem, under a relatively small cache size,

C = 5. By observing the two curves, one may see that the two caches hold approximately the

same set of objects, with the level 1 cache having a somewhat larger probability of caching

some of the most popular ones; the two curves, however, are strikingly similar.

The top right graph of Fig. 10 shows the corresponding steady-state probabilities for

LCD/LRU and C = 5. The situation here is completely different. The curves for level 1 and

31

0

0.2

0.4

0.6

0.8

1

1 10 100

pr
ob

ab
ili

ty

i (object rank)

two-cache LCE/LRU tandem with N=100, C=5, a=0.9

P
S
frag

rep
lacem

en
ts

π
1i

L
C

D
/L

R
U

π
2i

L
C

D
/L

R
U

π1
i LCE/LRU

π2
i LCE/LRU

0

0.2

0.4

0.6

0.8

1

1 10 100

pr
ob

ab
ili

ty

i (object rank)

two-cache LCD/LRU tandem with N=100, C=5, a=0.9

P
S
frag

rep
lacem

en
ts

π1
i LCD/LRU

π2
i LCD/LRU

π
1i

L
C

E
/L

R
U

π
2i

L
C

E
/L

R
U

0

0.2

0.4

0.6

0.8

1

1 10 100

pr
ob

ab
ili

ty

i (object rank)

two-cache LCE/LRU tandem with N=100, C=30, a=0.9

P
S
frag

rep
lacem

en
ts

π
1i

L
C

D
/L

R
U

π
2i

L
C

D
/L

R
U

π1
i LCE/LRU

π2
i LCE/LRU

0

0.2

0.4

0.6

0.8

1

1 10 100

pr
ob

ab
ili

ty

i (object rank)

two-cache LCD/LRU tandem with N=100, C=30, a=0.9

P
S
frag

rep
lacem

en
ts

π1
i LCD/LRU

π2
i LCD/LRU

π
1i

L
C

E
/L

R
U

π
2i

L
C

E
/L

R
U

Figure 10: Level 1, π1

i , and level 2, π
2

i , object hit ratios for LCE and LCD (for two different cache sizes, C = 5 and C = 30).

level 2 are distinctively different. The level 1 cache holds with a high probability the initial

most popular object, and with a very low probability the objects that belong to the tail of

the popularity distribution; see that objects 1 and 2 are almost guaranteed to be at level 1

under LCD, whereas they are at level 1 for half of the occasions under LCE (top left graph).

The level 2 cache under LCD, behaves more rationally, granted the state of the underlying

cache. It picks up the most popular objects, starting with those that miss frequently at level

1; Thus it caches most of the objects that belong to the middle section of the popularity

distribution and avoids duplicating objects that have a high probability of being cached at

level 1. It is interesting to note that under LCD, objects 1 and 2 are almost guaranteed to

be at level 1 and also guaranteed not to be at level 2 (under LCE, objects 1 and 2 co-exist at

both levels for much of the time). The behavior of LCD clearly demonstrates the property of

cache exclusivity, as discussed in Sect. 2.2.2.

The bottom graphs of Fig. 10 depict the same results under a significantly larger cache size,

C = 30 (meaning that the two caches can collectively hold up to 60% of all objects). The high

availability of storage in this cases, leads to a caching behavior that is similar for both LCE

32

and LCD. Having more storage at level 1, combined with the skewed demand, allows even

LCE to have the popular object at level 1 in most occasions. This filters out most requests

that go to level 2, thus approaching the behavior under LCD. Still, LCD does a better job

in keeping the most popular objects only at level 1, and the subsequent most popular ones

only at level 2. Increasing further the cache size makes the behavior of the two policies even

more similar; this explains why LCE and LCD yield the same average hit distance for C = 50

(Fig. 9).

7 Conclusions

This paper has taken an analytic look at the LCD way of interconnecting LRU caches. Despite

its simplicity, LCD has demonstrated surprisingly good performance under various workloads

and interconnection topologies. Aiming at explaining the results of simulation experiments,

we have constructed an analytic performance evaluation model. Despite the simplicity of the

LCD algorithm itself, its exact analysis under LRU replacement is far beyond the borders of

tractability. For this reason, we have employed a number of novel approximation techniques.

The result is a tractable approximate analytic model that has the ability to accurately predict

the performance of a real LCD/LRU multi-level cache. Using this model, we study the caching

behavior at the different levels of a multi-level cache, and explain why LCD performs better

than other algorithms.

References

[1] Hao Che, Ye Tung, and Zhijun Wang, “Hierarchical web caching systems: Modeling,

design and experimental results,” IEEE Journal on Selected Areas in Communications,

vol. 20, no. 7, Sept. 2002.

[2] Theodore M. Wong and John Wilkes, “My cache or yours? making storage more exclu-

sive,” in Proc. of the USENIX Annual Technical Conference, Monterey, CA, June 2002,

pp. 161–175.

33

[3] Nikolaos Laoutaris, Sofia Syntila, and Ioannis Stavrakakis, “Meta algorithms for hierar-

chical web caches,” in IEEE International Performance Computing and Communications

Conference (IEEE IPCCC), Phoenix, Arizona, Apr. 2004.

[4] James H. Hester and Daniel S. Hirschberg, “Self-organizing linear search,” ACM Com-

puting Surveys, vol. 17, no. 3, pp. 295–311, Sept. 1985.

[5] Stefan Podlipnig and Laszlo Böszörmenyi, “A survey of web cache replacement strate-

gies,” ACM Computing Surveys, vol. 35, no. 4, pp. 374–398, 2003.

[6] Konstantinos Psounis and Balaji Prabhakar, “Efficient randomized web-cache replace-

ment schemes using samples from past eviciton-times,” IEEE/ACM Transactions on

Networking, vol. 10, no. 4, pp. 441–454, Aug. 2002.

[7] David Starobinski and David N. C. Tse, “Probabilistic methods for web caching,” Per-

formance Evaluation, vol. 46, no. 2-3, pp. 125–137, 2001.

[8] Anirban Mahanti, Carey Williamson, and Derek Eager, “Traffic analysis of a web proxy

caching hierarchy,” IEEE Network Magazine, vol. 14, no. 3, pp. 16–23, May 2000.

[9] Anirban Mahanti, Derek Eager, and Carey Williamson, “Temporal locality and its impact

on web proxy cache performance,” Performance Evaluation, vol. 42, pp. 187–203, 2000.

[10] Xueyan Tang and Samuel T. Chanson, “Coordinated en-route web caching,” IEEE

Transactions on Computers, vol. 51, no. 6, pp. 595–607, June 2002.

[11] Kang-Won Lee, Sambit Sahu, Khalil Amiri, and Chitra Venkatramani, “Understanding

the potential benefits of cooperation among proxies: Taxonomy and analysis,” Tech.

Rep. RC22173, IBM Research, Sept. 2001.

[12] Lee Breslau, Pei Cao, Li Fan, Graham Philips, and Scott Shenker, “Web caching and

Zipf-like distributions: Evidence and implications,” in Proceedings of the Conference on

Computer Communications (IEEE Infocom), New York, Mar. 1999.

[13] Maureen Chesire, Alec Wolman, Geoffrey M. Voelker, and Henry M. Levy, “Measurement

and analysis of a streaming-media workload,” in Proceedings of USITS, 2001.

34

[14] Stefan Saroiu, Krishna P. Gummadi, Richard J. Dunn, Steven D. Gribble, and Henry M.

Levy, “An analysis of internet content delivery systems,” in Proceedings of the 5th

Symposium on Operating Systems Design and Implementation (OSDI 2002), Dec. 2002.

[15] Kunwadee Sripanidkulchai, “The popularity of gnutella queries

and its implication on scalability,” 2001, white paper online at

http://www-2.cs.cmu.edu/∼kunwadee/research/p2p/gnu.

[16] Rajeev Motwani and Prabhakar Raghavan, Randomized Algorithms, Cambridge Univer-

sity Press, 1995.

[17] W.C. King, “Analysis of paging algorithms,” in Proceedings of the IFIP 1971 Congress,

Ljubljana, 1972, pp. 485–490.

[18] E. G. Coffman and P. J. Denning, Operating Systems Theory, Prentice-Hall Inc., 1980.

[19] Philippe Flajolet, Danièle Gardy, and Loys Thimonier, “Birthday paradox, coupon col-

lectors, caching algorithms and self-organizing search,” Discrete Applied Mathematics,

vol. 39, pp. 207–229, 1992.

[20] Asit Dan and Dan Towsley, “An approximate analysis of the LRU and FIFO buffer

replacement schemes,” in Proceedings of ACM SIGMETRICS, 1990, pp. 143–152.

[21] Predrag R. Jalenković, “Asymptotic approximation of the move-to-front search cost

distribution and least-recently-used caching fault probabilities,” Annals of Applied Prob-

ability, vol. 9, no. 2, pp. 430 – 464, 1999.

[22] Predrag R. Jalenković and Ana Radovanović, “Asymptotic insensitivity of least-recently-

used caching to statistical dependency,” in Proceedings of the Conference on Computer

Communications (IEEE Infocom), San Francisco, CA, Apr. 2003.

[23] Eytan Modiano and Anthony Ephremides, “A method for delay analysis of interact-

ing queues in multiple access systems,” in Proceedings of the Conference on Computer

Communications (IEEE Infocom), San Francisco, CA, Mar. 1993, pp. 447–454.

35

