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ABSTRACT
Distributed optimal traffic engineering in the presence of
multiple paths has been found to be a difficult problem to
solve. In this paper, we introduce a new approach in an
attempt to tackle this problem. This approach has its basis
in nonlinear control theory. More precisely, it relies on the
concept of Sliding Modes. We develop a family of control
laws, each of them having the property that the steady-state
network resource allocation yields the maximum of the given
utility function, subject to the network resource constraints.
These control laws not only allow each ingress node to in-
dependently adjust its traffic sending rate but also provide
a scheme for optimal traffic load redistribution among mul-
tiple paths. The only nonlocal information needed is binary
feedback from each congested node in the path. Moreover,
the algorithms presented are applicable to a large class of
utility functions, namely, utility functions that can be ex-
pressed as the sum of concave functions of the sending rates.
We show that the technique can be applied not only to rate
adaptive traffic with multiple paths, but also to assured ser-
vice traffic with multiple paths. Preliminary case studies
show that this technique is potentially very useful for op-
timal traffic engineering in a multiple-class-of-service and
multiple-path enabled Internet, e.g., differentiated services
enabled multi-protocol label switching networks.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design
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1. INTRODUCTION
The focal point of this paper is a network (e.g., an au-
tonomous system) which has several paths available for rout-
ing flows between edge node pairs. The objective is to pro-
vide distributed control algorithms that will accommodate
incoming traffic in an optimal way.

Network traffic management and control have become in-
creasingly important as the Internet evolves into a global
commercial communication infrastructure. The increase in
complexity leads to the need for the development of the
so-called automated Traffic Engineering (TE). TE improves
network resource utilization and thus leads to an increase
of revenue as well as satisfaction of diversified application
requirements. As value-added services are being added to
the Internet, TE algorithms should be able to address not
only elastic Classes of Service (CoSs) but also inelastic CoSs
in the presence of multiple paths.

Different methodologies have been proposed for TE. In [1],
TE methodologies are classified into two basic types: time-
dependent and state-dependent. In time-dependent TE,
traffic control algorithms are used to optimize network re-
source utilization in response to long time scale traffic varia-
tions. They make no attempt to adapt to random short term
traffic variations or changing network conditions. An exam-
ple of time-dependent algorithm is the optimization-based
centralized control algorithm proposed by Mitra, et al. [2].
In [2], the TE problem with multiple CoSs and multiple
paths is formulated as a multi-commodity linear program-
ming problem under the assumption that global information
is available.

In contrast to time-dependent TE, in state-dependent TE,
traffic control algorithms adapt to relatively fast network
state changes. An example of state-dependent TE that op-
erates in a relatively long time scale is constraint-based rout-
ing; e.g., see [3]. An example that operates in a relatively
short time scale is load-balancing among multiple paths;
e.g., see [4]. Our paper focuses on the state-dependent
methodologies and explores the control issues for globally
optimal TE in the presence of both multiple CoSs and mul-
tiple paths.

1.1 Decentralized Traffic Engineering
It has been widely recognized that there should be a devel-
opment of distributed traffic control mechanisms for state-
dependent TE which can quickly react to changes of the



network situation. There is extensive literature on distrib-
uted traffic control. It includes both empirical algorithms
(e.g., see [5, 6]) and algorithms based on control theory;
e.g., see [7, 8, 9]. These algorithms focus exclusively on
congestion control issues for TCP (transport control proto-
col) or ABR (available bit rate) types of traffic. Moreover,
they assume a single path and the approaches taken are
not optimization-based. A distributed TE tool for load bal-
ancing of the best-effort traffic in an Multi-Protocol Label
Switching (MPLS) network has been proposed in [4]. The
objective of the proposed algorithm is to minimize the sum
of the delays for multiple-path flows between an ingress-
egress node pair. However, proof of optimality of the pro-
posed algorithms was not presented.

Recently, several approaches have been proposed which ad-
dress the distributed optimal TE problem using nonlinear
optimization techniques. Their starting point is very similar
to the one of this paper, i.e., maximization (minimization)
of a utility (cost) function, subject to network resource con-
straints. Since different traffic types (i.e., flows with different
ingress-egress node pairs) share the same network resources,
the key challenge in the design of decentralized control laws
is the fact that there is a high degree of interaction be-
tween different traffic types. The design of optimal control
laws can be formalized as a nonlinear optimization problem
where the constraints represent the interaction between dif-
ferent types of traffic. The high degree of “entanglement”
of these constraints makes this a very complex optimization
problem.

This obstacle has been circumvented in a number of dif-
ferent ways. In a paper by Golestani, et al. [10], instead
of using link resource constraints, a link congestion cost is
incorporated into the overall utility function. The optimiza-
tion problem was then solved using a gradient type algo-
rithm. Iterative algorithms were proposed where individual
sources periodically adjust their sending rates based on the
congestion cost information fed back from each of the links
along the flow forwarding paths. The results presented by
Kelly, et al. [11] use a Lagrangian multiplier technique to
solve the optimization problem at hand. This results in a
separation between the rate control executed at individual
sources and the calculation of the “price,” which is done
by each link in the network. The rate control at individual
sources is based on the “prices” fed back from all the links
in the data paths. Low [12] uses a technique which converts
a constrained problem into a non-constrained dual problem.
This reformulation results in a similar distributed control
scheme. Iterative algorithms were also proposed and their
convergence is proven for the single-path case. An attempt
was also made in [12] to design a distributed multi-path al-
gorithm. However, convergence of the algorithm was not
proven.

1.2 A New Approach to Decentralized TE
To the best of our knowledge, no set of optimal distributed
control laws and algorithms are available which address the
case of multiple paths and multiple CoSs. There are two ma-
jor obstacles to the application of nonlinear programming
techniques to solve this kind of problem. First, the dual
problem with multiple paths is non-differentiable [12] and
is therefore difficult to solve using nonlinear programming

techniques. Second, Lagrangian approach is not viable for
problems with a large number of constraints; e.g., see [13].
Each resource constraint results in a Lagrangian multiplier
(or “price”) which needs to be periodically updated and dis-
tributed to the sending sources. Since each link contributes
at least one constraint, every link in the network has to peri-
odically update and distribute one or more “prices” to all the
source nodes using it, regardless of whether the link is con-
gested or not. This raises the concern about possible high
computational overhead imposed on the network nodes and
large control traffic overhead in the network. Obviously, the
problems will become more severe if multiple CoSs or multi-
ple virtual private networks are to be supported in the same
physical network.

To circumvent the problems mentioned above, we propose a
new approach to the design of control algorithms for com-
puter networks which relies on nonlinear control theory. Al-
though some of the results are of a preliminary nature,
the proposed technique enables optimal distributed TE in
a multiple-path and multiple-CoS network. It allows ingress
nodes to independently adjust their CoS-based traffic send-
ing rates and/or redistribute traffic load among multiple
paths, solely based on binary feedback information from the
congested nodes. Moreover, the control law design technique
allows for a large class of utility functions, namely utility
functions that can be represented as a sum of concave terms.
The technique can be used for TE of both rate adaptive and
assured service CoSs. This technique is potentially very use-
ful for optimal TE in a differentiated services enabled MPLS
network [14].

1.3 Sliding Modes
As mentioned above, our approach has its basis in nonlin-
ear control theory. More specifically, we use results from
the theory of Sliding Mode Control (also known as Variable
Structure Control). Sliding Mode Control has been widely
used in the control of nonlinear systems both in the presence
and absence of uncertainty; for an introduction on the use of
Sliding Modes in control systems, e.g., see [15]. Many suc-
cessful applications of this theory have been documented,
from the control of robotic manipulators to the control of
underwater vehicles.

The main idea behind sliding mode control is the use of dis-
continuous control laws to limit the evolution of the state of
the system to a surface called “sliding surface.” Of partic-
ular interest to the problem addressed in this paper is the
use of sliding modes in mathematical programming. The
results in [13] indicate that sliding mode theory can be a
powerful tool for optimizing convex functions subject to a
large number of convex constraints. Motivated by this re-
sult, in this paper, we provide a class of adaptation control
laws that converge to the optimal network resource alloca-
tion. These adaptation control laws allow distributed multi-
path flow rate adaptation and load balancing at individual
sources. The only information required is binary feedback
from each congested node in the path. We also show that
the same technique can be applied to assured service traffic
with given target rates. A possible extension of the proposed
approach to the control of aggregated inelastic traffic with
multiple paths is also discussed.



1.4 The Sequel
The remainder of this paper is organized as follows. In Sec-
tion 2, the proposed approach is described and the control
laws presented. Section 3 is dedicated to the proofs of the
results presented in Section 2 and it can be skipped by the
reader who is solely interested in the application of the re-
sults of this paper. In Section 4, two examples of application
of the results in this paper are presented. Finally, the con-
clusions and future work are given in Section 5.

2. MAIN RESULTS
To simplify the exposition, in this paper we assume that
network resources are not shared by different CoSs and each
CoS sees a separate logical network with dedicated resources.
This implies that the control laws can be separately designed
for individual CoSs. In our model, the traffic flows are as-
sumed to be described by a fluid flow model and the only re-
source considered is the link bandwidth. This paper will not
address practical implementation issues such as discretiza-
tion, finite granularity, asynchronous updates and delays.
Before presenting the main results, let us first introduce the
notation that is used throughout this paper.

2.1 Notation
In the remainder of this paper we will use the terms call
and flow interchangeably. Now, consider a computer net-
work where calls of different types are present. Here, dif-
ferent types correspond to calls with different ingress/egress
node pairs. Moreover, for a call of a given type there are
several possible paths available. The objective is to find the
allocation of the resources that leads to the maximization
of a given utility function subject to the network resource
constraints.

More precisely, consider a computer network whose set of
links is denoted by L and let cl be the capacity of link l ∈ L.
Let n be the number of types of calls and ni be the number
of paths available for calls of type i. Finally, let Li,j be the
set of links used by calls of type i taking path j. Given calls
of type i, let xi,j be the total data rate of calls of type i
using path j. Also,

xi
.
= [xi,1, xi,2, . . . , xi,ni ] ∈ Rni

denotes the vector containing the data rates allocated to the
different paths taken by calls of type i. Finally, the vector

x
.
= [x1,x2, . . . ,xn] ∈ Rn1+n2+···nn

contains all the data rates allocated to different call types
and respective paths.

We aim at maximizing utility functions of the form

U(x)
.
=

nX
i=1

fi(xi)
.
=

nX
i=1

fi (xi,1, xi,2, . . . , xi,ni ) ,

subject to the network constraints, where fi are differen-
tiable concave functions, non decreasing in each one of the
arguments, i = 1, 2, . . . , n. More precisely, we want to max-
imize the above utility function subject to

hl(x)
.
=

X
i,j:l∈Li,j

xi,j − cl ≤ 0

for all l ∈ L and xi,j ≥ 0 for all i = 1, 2, . . . , n
and j = 1, 2, . . . , ni. Also, let bi,j denote the number of
bottleneck links encountered by calls of type i taking path j,
i.e., the number of saturated links along the path taken by
xi,j . Finally, we use the notation g′(y∗) to denote the deriv-
ative of a function g evaluated at point y∗; i.e.,

g′(y∗) .
=

dg

dy

����
y=y∗

and u(x) to denote the step function; i.e,

u(x) =

8<
:

1 if x > 0

0 if x < 0.

2.2 Rate Adaptive CoS with Multiple Paths
We are now ready to present the results that indicate how
an edge node can adapt the sending rates so that they con-
verge to the optimum values. These results indicate that,
for utility functions of the form described in the previous
section, there exists a family of adaptation laws that con-
verges to the maximum. From this family, one can choose
the one that best suites the problem at hand. Furthermore,
the control law obtained is decentralized. By decentralized
we mean that the adaptation law for the data rate xi,j only
depends on the data rates of calls of the same type i and
the number of bottleneck links encountered in its path. We
now provide a precise statement of a first result that gives
the simplest member of this family.

Theorem 1. The adaptation law

ẋi,j =
∂fi

∂xi,j

����
xi

− αbi,j(t) + δi,ju(−xi,j)

converges to the maximum of the utility function U(x) for
any constants α > 0 and δi,j > 0 satisfying

α−
����� ∂fi

∂xi,j

����
xi

����� > ε,

for some ε > 0 and for all admissible xi and

δi,j > Bi,jα.

where Bi,j is the number of links used by calls of type i taking
path j.

Notice that the adaptation law provided above is decentral-
ized. Adaptation of data rate xi,j only uses knowledge of
the number of congested nodes in path j and the value of xi;
i.e., to compute xi,j , except for information on congestion,
one only uses the data rates of calls of the same type. The
term δi,ju(−xi,j) is used to ensure that the sending rates
are positive.

The result above only provides one of the possible adap-
tation laws. We now present an extension of the theorem
above which describes a family of adaptation laws that con-
verge to the optimal data rates.



Theorem 2. The adaptation law

ẋi,j =

"
∂fi

∂xi,j

����
xi

− αbi,j(t)

# �
g′i,j(g

−1
i,j (xi,j))

�2
+ δi,ju(−xi,j)

��g′i,j(g−1
i,j (xi,j))

��
converges to the maximum of the utility function U(x) for
any convex functions gi,j(yi,j) whose inverse exists,
g′i,j(yi,j) �= 0 and for which

fi (gi,1(yi,1), gi,2(yi,2), . . . , gi,ni (yi,ni ))

is a concave function of yi,1, yi,2, . . . , yi,ni , i = 1, 2, . . . , n,
j = 1, 2, . . . , ni and for any constants α > 0 and δi,j > 0
satisfying

α−
����� ∂fi

∂xi,j

����
xi

����� > ε,

for some ε > 0 and

δi,j > Bi,jα
��g′i,j(g−1

i,j (xi,j))
�� .

for all admissible xi, where Bi,j is the number of links used
by calls of type i taking path j.

2.3 Remarks
The above theorem provides a family of continuous rate
adaptation laws concerning calls of type i. Note that type
i refers to a given ingress/egress node pair. Therefore, the
control laws above are distributed control laws in the sense
that individual ingress nodes independently adjust their traf-
fic sending rates and redistribute their traffic among multi-
ple paths. The quantity bi,j represents the only interaction
between different types of traffic; i.e., the binary conges-
tion information being fed back from the congested nodes
along flow forwarding paths. We can make use of the ideas
of the binary congestion feedback signaling schemes pro-
posed for ABR service [16] to convey bi,j information back
to the source. For instance, one possible scheme [17] is
to let the congested nodes along the forwarding path pe-
riodically generate backward congestion messages. The flow
sending source estimates bi,j value by periodically updating
the number of counts of congestion messages received from
the distinct congested nodes along forwarding path j. The
effectiveness of different schemes together with other imple-
mentation issues, such as discretization, finite granularity,
and delay, are subject to future investigation.

2.4 Assured Service with Multiple Paths
The approach above can be easily modified to accommodate
assured service traffic. By assured service we mean that a
target rate for a call should be guaranteed in average sense.
In this case, if Λi is the target rate for calls of type i, the
problem of bandwidth allocation can be easily reformulated
leading to maximizing our utility function subject to link
capacity constraints and

niX
j=1

xi,j = Λi.

These extra constraints lead only to a small modification
of the control law. The control law is given in the next
theorem.

Theorem 3. The adaptation law

ẋi,j =
∂fi

∂xi,j

����
xi

− αbi,j(t) − βiri(t) + δi,ju(−xi,j),

where

ri(t) =

8>>>><
>>>>:

1 if
niP

j=1

xi,j > Λi

−1 if
niP

j=1

xi,j < Λi,

converges to the maximum of the utility function U(x) for
all constants α > 0, βi > 0 and δi,j > 0 satisfying

α−
����� ∂fi

∂xi,j

����
xi

����� > ε,

βi −
����� ∂fi

∂xi,j

����
xi

����� > ε,

for some ε > 0 and for all admissible xi and

δi,j > Bi,jα + βi.

where Bi,j is the number of links used by calls of type i taking
path j.

2.5 Implementation Issues
If one uses continuous control, the control law described
above guarantees that the trajectories of xi,j will satisfy
both link capacity constraints and assured service constraints.
Hence, the target rate for the call of type i can be perfectly
achieved. However, practical implementation requires dis-
crete time, finite granular control, which will introduce ”im-
perfections.” Hence, the actual xi,j values will oscillate and
the target rate can be achieved only in average sense. As
the control time interval and control granularity reduces, it
can be proven that the oscillation subsides.

2.6 Remark on Non-Uniqueness
It should be noted that the data rate values that achieve the
optimum value might not be unique. In other words, there
might exist several solutions for the optimization problem
studied in this paper. The control laws presented will con-
verge to one of the achievers of the optimum. Moreover, once
the optimum value of the utility function has been achieved,
there will be no further adaptation of the data rates. For
further details on the convergence properties of laws based
on Sliding Mode Theory see [13].

3. PROOFS OF THEOREMS 1, 2 AND 3
In this section we provide the proofs of the theorems pre-
sented in the previous section. It can be skipped by the
reader who is mainly interested in the application of the re-
sults provided in this paper. The proofs rely on the results
presented in [13], which indicate how Sliding Mode Theory
can be successfully applied to convex optimization problems.
Consider the problem

max
x

U(x),

where U(·) is a concave function, subject to inequality con-
straints

hl(x) ≤ 0; l = 1, 2, . . . ,m



and equality constraints

hl(x) = 0; l = m + 1,m + 2, . . . , L.

The functions hl(·) are assumed to be convex for
l = 1, 2, . . . ,m and linear for l = m + 1, m + 2, . . . , L. This
results in a convex optimization problem; i.e., the maximiza-
tion of a concave function subject to convex constraints.

As it is proven in [13], adaptation laws of the following form

ẋ = ∇U(x) −H(x)v(x),

converge to the optimum value, where ∇U(·) denotes the
gradient of the function U(·), H(·) is the following matrix

H(·) = [∇h1(·) ∇h2(·) · · · ∇hL(·)]
and v(·) = [v1(·), v2(·), . . . , vL(·)]T is a n-dimensional vector
whose entries are of the form

vi(x) =

8<
:

αi if hi(x) > 0

0 if hi(x) < 0,

for i = 1, 2, . . . ,m and

vi(x) =

8<
:

βi if hi(x) > 0

−βi if hi(x) < 0,

for i = m+ 1,m + 2, . . . , L. Finally, αi > 0, i = 1, 2, . . . ,m
and βi > 0, i = m + 1,m + 2, . . . , L are design constant
parameters. To achieve convergence to the optimum these
constants should satisfy the following condition: Let x∗ be a
point that achieves the optimum of the problem above and
let I be the set of essential constraints at the point x∗; i.e.,

I .
= {i ∈ {1, 2, . . . , L} : hi(x

∗) = 0} .
Then, the adaptation law converges to the optimal if there
exists a vector v0 = [v0

1, v
0
2, . . . , v

0
L]T satisfying

∇U(x∗) = H(x∗) v0.

and

v0
i = 0 for i /∈ I;

0 ≤ v0
i < αi for i ∈ I ∩ {1, 2, . . . ,m}

−βi < v0
i < βi for i ∈ I ∩ {m + 1,m + 2, . . . , L}.

This is a difficult condition to check, since we do not know a
priori the optimal points x∗. Instead, in this paper we use a
sufficient condition which can also be found in [13]. Namely,
the optimum value is achieved if there exists a constant
γ < 0 such that

vT (x)HT (x)[∇U(x) −H(x)v(x)] ≤ γ < 0

for all x leading to the violation of at least one of the con-
straints. We are now ready to present the proofs of the
theorems stated in the previous section.

3.1 Proof of Theorem 1
Recall that in this case the function U(x) has the form

U(x)
.
=

nX
i=1

fi (xi,1, xi,2, . . . , xi,ni) .

Furthermore, the constraints are of the form

hl(x) =
X

i,j:l∈Li,j

xi,j − cl ≤ 0

for l ∈ L and

h̃i,j(x) = −xi,j ≤ 0

for i = 1, 2, . . . , n and j = 1, 2, . . . , ni. We now apply the
algorithm introduced in [13] (presented at the beginning of
this section). The algorithm indicates that

ẋi,j =
∂U

∂xi,j

����
x

−
X
l∈L

∂hl

∂xi,j

����
x

vl(x)

−
nX

k=1

niX
m=1

∂h̃k,m

∂xi,j

����
x

ṽk,m(x).

Note that

∂U

∂xi,j

����
x

=
∂fi

∂xi,j

����
xi

.

Furthermore,

∂hl

∂xi,j

����
x

=

8<
:

1 if l ∈ Li,j

0 if l /∈ Li,j

for all l ∈ L and

∂h̃k,m

∂xi,j

����
x

=

8<
:

−1 if k = i and m = j

0 otherwise.

Now, recall that in this optimization problem there are only
inequality constraints. However, instead of using the general
adaptation law presented at the beginning of this section, we
use

vl(x) =

8<
:

α if hl(x) > 0

0 if hl(x) < 0,

for all l ∈ L. In other words, we take αl to be equal to a
constant α for all l ∈ L. Also, take

ṽk,m(x) =

8<
:

δk,m if h̃k,m(x) > 0

0 if h̃k,m(x) < 0,

This implies X
l∈L

∂hl

∂xi,j

����
x

vl(x) = αbi,j

where bi,j is the number of bottleneck links for xi,j . Fur-
thermore,

nX
k=1

niX
m=1

∂h̃k,m

∂xi,j

����
x

ṽk,m(x) = −δi,ju(−xi,j).

Hence, the adaptation law

ẋi,j =
∂fi

∂xi,j

����
xi

− αbi,j(t) + δi,ju(−xi,j),

i = 1, 2, . . . , n and j = 1, 2, . . . , ni, will converge to the
optimum if the constants α and δi,j satisfy the conditions
for convergence. Recall that δi,j > α and

α−
����� ∂fi

∂xi,j

����
xi

����� > ε,



for some ε > 0. Let

w(x)
.
= H(x)v(x)

= [w1,1(x), . . . , w1,n1 (x), w2,1(x), . . . , wn,nn (x)]T

where

wi,j(x) = αbi,j(t) − δi,ju(−xi,j),

If at least one of the constraints is violated, we have

w(x)T [∇U(x) − w(x)]

=
nX

i=1

niX
j=1

wi,j(x)

�
∂fi

∂xi,j
− wi,j(x)

�

≤ −εmin

�
α,min

i,j
(δi,j − α)

�
< 0.

Hence, the sufficient condition for convergence is satisfied.
Finally, the fact that

δi,j > Bi,jα ≥ bi,j(t)α

implies that

ẋi,j > 0

whenever xi,j < 0. Therefore, if the initial value of xi,j(0)
is nonnegative then xi,j(t) ≥ 0 for all t > 0.

3.2 Comments on the Proof of Theorem 2
Without loss of generality assume that the functions gi,j(·)
are increasing. A straightforward modification of the reason-
ing below can be applied to the case where some of the gi,j(·)
are decreasing. Define

yi,j
.
= g−1

i,j (xi,j)

and consider the equivalent optimization problem on the
variables yi,j

max
nX

i=1

fi [gi,1(yi,1), gi,2(yi,2), . . . , gi,ni (yi,ni)] ,

subject to

hl(y) =
X

i,j:l∈Li,j

gi,j(yi,j) − cl ≤ 0

for l ∈ L and

h̃i,j(y) = −yi,j + g−1
i,j (0) ≤ 0

for i = 1, 2, . . . , n and j = 1, 2, . . . , ni. Since

fi [gi,1(yi,1), gi,2(yi,2), . . . , gi,ni (yi,ni )]

is a concave function of y, we can apply the Sliding Mode
optimization algorithm provided in [13]. Using the same line
of reasoning as in the previous proof, we obtain the following
adaptation law for the new variables yi,j

ẏi,j =
∂fi

∂xi,j

����
xi=[gi,1(yi,1),gi,2(yi,2),... ,gi,ni

(yi,ni
)]T

g′i,j (yi,j)

− αbi,j(t)g
′
i,j(yi,j) + δi,ju[−yi,j + g−1

i,j (0)]

where bi,j(t) is the number of constraints involving yi,j which
are violated at time t. Again, a sufficient condition for con-
vergence of the algorithm is

α− ∂fi

∂xi,j

����
xi=[gi,1(yi,1),gi,2(yi,2),... ,gi,ni

(yi,ni
)]T

> ε,

for some ε > 0 and

δi,ju[−yi,j + g−1
i,j (0)] − Bi,jαg

′
i,j(yi,j) > 0

for all admissible yi = [yi,1, yi,2, . . . , yi,ni ]
T , where Bi,j is

the number of constraints that depend on yi,j . Now, just
use the fact that

xi,j = gi,j(yi,j)

and

ẋi,j = g′i,j(yi,j)ẏi,j

to obtain the adaptation law presented in the theorem.

3.3 Remark
Note that if, for some i and j, the function gi,j(·) is decreas-
ing then the constraint

h̃i,j(y) = −yi,j + g−1
i,j (0) ≤ 0

should be substituted by

h̃i,j(y) = yi,j − g−1
i,j (0) ≤ 0

giving rise to the term

δi,ju(−xi,j)
��g′i,j(g−1

i,j (xi,j))
��

in the control law of xi,j .

3.4 Comments on the Proof of Theorem 3
The main difference between the optimization problem ad-
dressed in this section and the previous ones is that we have
additional equality constraints. In other words, one has con-
straints of the form

hi(x) = 0.

The Sliding Mode algorithm described at the beginning of
this section also addresses this type of constraints. As we
have seen in this case, the adaptation algorithm has an ad-
ditional term. This additional term is of the form

∇hi(x)vi(x)

where

vi(x) =

8<
:

βi if hi(x) > 0

−βi if hi(x) < 0,

where βi is a positive constant which must satisfy the con-
vergence conditions. The remainder of the proof follows very
closely the proof of Theorem 1. Just apply the rule for equal-
ity constraints taking into account their particular form and
obtain the adaptation law presented in the statement of the
theorem.

4. EXAMPLES
In this section we present two application examples of the re-
sults in this paper. The first one exemplifies how the frame-
work presented in this paper generalizes the



linear-increase-exponential-decrease TCP-type control law
to the case where multiple paths are available. The second
example illustrates the use of the control law in the presence
of assured traffic.

4.1 TCP-Type Congestion Control
As a simple example, consider the case where ni paths are
available for calls of type i. Let the utility function be of
the form

U(x) =
nX

i=1

ki log

 
niX

j=1

xi,j

!
,

where ki > 0 are constants. This is the so-called “law of
diminishing returns.” The application of Theorem 2 to this
problem yields the following family of adaptation laws that
will converge to the maximum of the above utility function:

ẋi,j =
kiPni

j=1 xi,j

�
g′i,j(g

−1
i,j (xi,j))

�2
+ δi,ju(−xi,j)

��g′i,j (g−1
i,j (xi,j))

��
if there are no bottlenecks on path j and

ẋi,j =

"
kiPni

j=1 xi,j
− αbi,j

# �
g′i,j(g

−1
i,j (xi,j))

�2
+ δi,ju(−xi,j)

��g′i,j(g−1
i,j (xi,j))

��
otherwise, i = 1, 2, . . . , n, j = 1, 2, . . . , ni. As we have seen
in Section 2, α > 0 and δi,j are design constants, gi,j(·) is a
function that can be arbitrarily chosen within a given class
and bi,j is the number of bottleneck links encountered by
calls of type i taking path j.

Notice that, if only one path is available for calls of type i
(i.e, ni = 1, i = 1, 2, . . . , n), and

gi,j(y) =
1

4
y2 ⇒ �

g′i,j(g
−1
i,j (xi,j))

�2
= xi,j ,

for high values of data rate the above law reduces to the
well known linear-increase-exponential-decrease bandwidth
adaptation law which has been shown to converge to the
optimum of the “law of diminishing returns;” e.g., see [11].

4.2 Assured Service Traffic
As a demonstration of the power of the approach introduced
in this paper, consider the network in Figure 1, where calls
of type 1 have only one path available and calls of type 2, 3
and 4 have two paths available. Assume that the capacity
of each link is 10. In this example, the following utility
function is used

U(x) = log(x1) +

4X
i=2

log(xi,1 + xi,2).

All traffic is assumed to be of the assured service type, with
target rate 10 for calls of types 2, 3 and 4.

At the beginning of the simulation, the sending rate of calls
of type 1 is 5. Moreover, the sending rate of calls of types 2,
3 and 4 is equally partitioned between the available routes.
More precisely, we have

x1(0) = 5 x2,1(0) = 5 x3,1(0) = 5 x4,1(0) = 5
x2,2(0) = 5 x3,2(0) = 5 x4,2(0) = 5

1x 1x

1,2x 1,2x

2,2x 2,2x

1,3x 1,3x

2,3x 2,3x

1,4x 1,4x

2,4x 2,4x

Figure 1: Sample Network

Therefore, the network is at a stationary point where all
the demand is being met. Then, we introduce an additional
demand of calls of type 1 of size 5. Using Theorem 3, we
obtain the following adaptation laws

ẋ1 =
1

x1
− b1(t) − r1(t) + 4u(−x1(t))

where r1(t) = 1 if x1(t) > 10 and r1(t) = −1 if x1(t) < 10
and

ẋi,j =
1

xi,1 + xi,2
− bi,j (t) − ri(t) + 4u(−xi,j(t))

for i = 2, 3, 4, j = 1, 2, where ri(t) = 1 if xi,1(t)+xi,2(t) > 10
and ri(t) = −1 if xi,1(t) + xi,2(t) < 10. In other words, we
chose α = 1 and δi,j = 4 (each call uses 3 links).

As it can be seen in the simulation results presented in Fig-
ure 2, the traffic was reallocated so that all the demands
were met. By the end of the simulation the distribution of
the traffic was the following

x1 = 10 x2,1 = 0 x3,1 = 0 x4,1 = 0
x2,2 = 10 x3,2 = 10 x4,2 = 10

showing that this approach endows the network with the
ability to adapt to changing demands. If enough resources
are available, it will accept all the traffic. Otherwise, it
will adapt the data rates in order to maximize the utility
function. Note that we do not show the time scale in the
plots in Figure 2. This information was omitted because the
speed of convergence depends on the choice of the utility
function. If one chooses a new utility function V (x) of the
form

V (x) = γU(x)

with γ > 0, then the speed of convergence is γ times faster
than the original one. The results presented are only in-
dicative of the behavior of the network. The time scale
associated with this behavior is a consequence of the design
parameters.
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Figure 2: Simulation Results

5. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced a new traffic control technique
based on nonlinear control theory. The initial results indi-
cate that the Sliding Mode concept is a powerful tool for
computer network control and optimization. The technique
provides a family of continuous adaptation laws for optimal
TE for different CoSs in a multiple-path network. Moreover,
the control laws obtained are decentralized and only require
binary feedback from congested nodes. However, this paper
is just the first step towards a comprehensive solution and
many open issues are yet to be addressed.

5.1 Different CoSs
In this paper we assumed that resources are not shared by
different CoSs and each CoS sees a separate logical network
with dedicated resources so that the control laws can be
separately designed for individual CoSs. In reality, however,
network resources are to be shared among different CoSs
and multiple resource constraints need to be imposed on in-
dividual links. Also the utility function needs to be carefully
designed to include all the CoSs. To this end, resource al-
location/sharing policies among different CoSs need to be
incorporated as part of the algorithm design. This research
issue is currently under investigation.

5.2 Discretization, Granularity and Delays
In a practical setting, one does not have continuous adap-
tation laws. Practical implementation requires individual
ingress nodes to periodically adjust the traffic load at finite
granularity. Moreover, link congestion feedback is triggered
by the congestion itself and is subject to a delay. Part of

our future work is to study the consequences of discretiza-
tion, since practical implementation requires discrete control
laws. Not only is the adaptation not continuous with respect
to time, it is granular and there is no synchronization be-
tween nodes. These implementation issues will introduce
“imperfections” in the control algorithm that might result
in a loss of performance or even instability. Therefore, an
important part of our future work is to study the effects
of discretization and to provide implementation algorithms
that will minimize the adverse effects of this phenomenon.

5.3 Choosing the Right Control Law
Also of particular interest is the choice of the adaptation
law. The approach presented in this paper provides a fam-
ily of adaptation laws that will converge to the desired op-
timal value. However, each one of these laws will have a
different transient response, in particular different conver-
gence speeds. Therefore, one of the objectives of our future
research is to study the properties of these adaptation algo-
rithms so that one can choose the one that is best suited to
solve the problem at hand.

5.4 Inelastic CoSs with Multiple Paths
Finally, we discuss a possible application of the control laws
to optimal control of inelastic CoSs with multiple paths. In-
elastic applications generally have stringent QoS (quality of
service) requirements. For this kind of applications, multiple
paths should not be used in its literal sense, simply because
the received packets may be out-of-order and packet reorder-
ing at the receiver introduces undesirable variable delay and
delay jitter. Also inelastic flow re-routing for the purpose



of load balancing is undesirable because a transition from
one route to another may cause extra delay, delay jitter,
and even packet reordering problems. Hence, at micro-flow
level, only one path should be selected out of a given set of
candidate paths for an inelastic flow. However, preliminary
results indicate that the results in this paper can be applied
to inelastic traffic when combined with a concept proposed
in [14], called trunk. A trunk is a bundle of micro-flows of
one or more CoSs who share the same forwarding behav-
ior and the same edge node pair. Hence, we can treat each
trunk as a fluid and apply the algorithms developed in this
paper. The main difference resides in the fact that, in this
case, we cannot modify the data rate of a micro-flow, change
its path or terminate it. Therefore, we are looking into the
possibility of directly controlling the call admission process.
In other words, one controls the total rate occupied by a
specific trunk by controlling the number of micro-flows that
are accepted. Decreasing of the overall data rate is done by
letting the calls that are in progress end and not replacing
them with new ones. Preliminary simulations indicate that
this is a very efficient way of handling inelastic traffic.
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