
1

CSE5311 – Module 2

• This Class • At the end of the classThis Class
– Heaps and Heapsort?

– QuickSort

– Mergesort

– Other Sorting Algorithms

At the end of the class

Binary trees

Priority queues and heaps

Quicksort
Worstcase

Bestcase

8/30/2009 M KUMAR CSE5311 1

Mergesort

Recurrences for Quicksort
and Mergesort

Further Reading
Reference books
on Algorithms

Course Syllabus
• Review of Asymptotic Analysis and Growth of Functions, Recurrences

• Sorting Algorithms
• Graphs and Graph Algorithms.
• Greedy Algorithms:

– Minimum spanning tree,Union-Find algorithms, Kruskal's Algorithm,
– Clustering,
– Huffman Codes, and
– Multiphase greedy algorithms.

• Dynamic Programming:
– Shortest paths, negative cycles, matrix chain multiplications, sequence alignment, RNA secondary structure,

application examples.

• Network Flow:
– Maximum flow problem, Ford-Fulkerson algorithm, augmenting paths, Bipartite matching problem, disjoint

paths and application problems.

8/30/2009 M KUMAR CSE5311 2

p pp p

• NP and Computational tractability:
– Polynomial time reductions; The Satisfiability problem; NP-Complete problems; and Extending limits of

tractability.

• Approximation Algorithms, Local Search and Randomized Algorithms

2

Heaps and Heapsort

Further Reading
Reference books
on Algorithms

SORTING ALGORITHMS

Priority Trees
Building Heaps
Maintaining Heaps

8/30/2009 M KUMAR CSE5311 3

Maintaining Heaps
Heapsort Algorithm
Analysis of Heapsort Algorithm

Priority Queues

What is a priority queue?
A priority queue is an abstract data type which
consists of a set of elements. Each element of
the set has an associated priority or key
Priority is the value of the element or value of
some component of an element

Example :
S : {(Brown, 20), (Gray, 22), (Green, 21)} priority based on name

{(Brown, 20), (Green,21), (Gray, 22)} priority based on age

8/30/2009 M KUMAR CSE5311 4

Each element could be a record and the priority could be based
on one of the fields of the record

3

Example

A Student's record:

Attributes : Name Age Sex Student No MarksAttributes : Name Age Sex Student No. Marks
Values : John Brown 21 M 94XYZ23 75

Priority can be based on name, age, student number, or
marks

Operations performed on priority queues,

8/30/2009 M KUMAR CSE5311 5

-inserting an element into the set
-finding and deleting from the set an element of

highest priority

Priority Queues

Priority queues are implemented on partially ordered
trees (POTs)

POTs are labeled binar trees• POTs are labeled binary trees
• the labels of the nodes are elements with a priority
• the element stored at a node has at least as large a

priority as the elements stored at the children of
that node

• the element with the highest priority is at the root of
the tree

8/30/2009 M KUMAR CSE5311 6

the tree

4

Example

24

21 19

13 14 03 10

72 11

8/30/2009 M KUMAR CSE5311 7

HEAPS

The heap is a data structure for implementing POT's
Each node of the heap tree corresponds to an
element of the array that stores the value in the
node
The tree is filled on all levels except possibly the
lowest, which are filled from left to right up to a
point.

An array A that represents a heap is an object with two attributes
length[A], the number of elements in the array and

heap-size[A], the number of elements in the heap stored

8/30/2009 M KUMAR CSE5311 8

p [] p
within the array A

heap_size[A]  length[A]

5

HEAPS (Contd)

The heap comprises elements in locations up to heap-size[A] .
A[1] is the root of the tree.

Position 1 2 3 4 5 6 7 8 9 10

Value 24 21 19 13 14 3 10 2 7 11

Given node with index i,

PARENT(i) is the index of parent of i;PARENT(i) = i/2

LEFT CHILD(i) is the index of left child of i ;

8/30/2009 M KUMAR CSE5311 9

LEFT_CHILD(i) is the index of left child of i ;
LEFT_CHILD(i) = 2i;

RIGHT_CHILD(i) is the index of right child of i; and
RIGHT_CHILD(i) = 2i +1

Heap Property

THE HEAP PROPERTY
A[PARENT(i)]  A[i]

The heap is based on a binary tree
The height of the heap (as a binary tree) is the
number of edges on the longest simple downward
path from the root to a leaf.

The height of a heap with n nodes is O (log n).

8/30/2009 M KUMAR CSE5311 10

All basic operations on heaps run in O (log n) time.

6

20

21

22

23

2h

8/30/2009 M KUMAR CSE5311 11

n=20+21+22+23 + . . . + 2h = 2h+1-1

Number of nodes at different levels in a Binary Tree

Heap Algorithms

HEAPIFYHEAPIFY
BUILD_HEAP
HEAPSORT
HEAP_EXTRACT_MAX
HEAP_INSERT

8/30/2009 M KUMAR CSE5311 12

7

HEAPIFY

The HEAPIFY algorithm checks the heap elements for violation of
the heap property and restores heap property.
Procedure HEAPIFY (A,i)
Input: An array A and index i to the array. i =1 if we want to heapify
the whole tree Subtrees rooted at LEFT CHILD(i) andthe whole tree. Subtrees rooted at LEFT_CHILD(i) and
RIGHT_CHILD(i) are heaps
Output: The elements of array A forming subtree rooted at i satisfy
the heap property.

1. l  LEFT_CHILD (i);
2. r  RIGHT_CHILD (i);
3. if l  heap_size[A] and A[l] > A[i]
4. then largest  l;
5 l l t i

8/30/2009 M KUMAR CSE5311 13

5. else largest  i;
6. if r  heap_size[A] and A[r] > A[largest]
7. then largest  r;
8. if largest  i
9. then exchange A[i]  A[largest]
10. HEAPIFY (A,largest)

7

24 19

21 14 03 10

24

7 19

21 14 03 10

RST,

heap

132 11
132 11

24

21 19

24

21 19

LST;
heap

8/30/2009 M KUMAR CSE5311 14

13 14 03 10

72 11

7 14 03 10

132 11

8

7 24 19 21 14 03 10 02 13 11

24 7 19 21 14 03 10 02 13 11

24 21 19 07 14 03 10 02 13 1124 21 19 07 14 03 10 02 13 11

24 21 19 13 14 03 10 02 07 11

Procedure HEAPSORT(A)
Input : Array A[1…n], n = length[A]
Output : Sorted array A[1…n]
1 BUILD HEAP[A]

8/30/2009 M KUMAR CSE5311 15

1. BUILD_HEAP[A]
2. for i  length[A] down to 2
3. Exchange A[1]  A[i]
4. heap_size[A]  heap_size[A]-1;
5. HEAPIFY(A,1)

BUILD_HEAP

Procedure BUILD_HEAP (A)
Input : An array A of size n = length [A],
heap_size[A]
Output : A heap of size nOutput : A heap of size n
1. heap_size[A]  length[A]
2. for i  length[A]/2 downto 1
3. HEAPIFY(A,i)

18 12 54 75 64 25 42 78 96
18 12 54 96 64 25 42 78 75
18 12 54 96 64 25 42 78 75

8/30/2009 M KUMAR CSE5311 16

18 12 54 96 64 25 42 78 75
18 96 54 12 64 25 42 78 75
18 96 54 78 64 25 42 12 75
96 18 54 78 64 25 42 12 75
96 78 54 18 64 25 42 12 75
96 78 54 75 64 25 42 12 18

9

18

12 54

18 12 54 75 64 25 42 78 96

18

12 54

96 64 25 42

75 64 25 42

9678

8/30/2009 M KUMAR CSE5311 17

7578

18 12 54 96 64 25 42 78 75

18

12 54

18 12 54 96 64 25 42 78 75

18

96 54

12 64 25 42

96 64 25 42

7578

8/30/2009 M KUMAR CSE5311 18

7578

18 96 54 12 64 25 42 78 75

10

18

96 54

18 96 54 78 64 25 42 12 75

96

78 64 25 42

7512

18 54

78 64 25 42

7512

8/30/2009 M KUMAR CSE5311 19

96 18 54 78 64 25 42 12 75

96 78 54 18 64 25 42 12 75

96

78 54

18 64 25 42

7512

96

78 54

75 64 25 42

8/30/2009 M KUMAR CSE5311 20

1812

11

n/21+1 n/2

n/22+11

   

Height of each node = 1, at most 1 comparison

Height of each node = i, at most i comparisons, 1i  h

Height of each node = 2, at most 2 comparisons

8/30/2009 M KUMAR CSE5311 21

Height of the root node = h, at most h comparisons

Running time of Build_heap
1. Each call to HEAPIFY takes O (log n) time
2. There are O (n) such calls
3. Therefore the running time is at most O(n logn)

However the complexity of BUILD_HEAP is O(n)

Proof :
In an n element heap there are at most n/2h+1 nodes of height hIn an n element heap there are at most n/2h+1 nodes of height h
The time required to heapify a subtree whose root is at a height h is O(h)

(this was proved in the analysis for HEAPIFY)
So the total time taken for BUILD_HEAP is given by,

 

 

2
log

log

0
1

hn

h
n

n

n

h
h



 








8/30/2009 M KUMAR CSE5311 22

We know that

Thus the running time of BUILD_HEAP is given by, O(n)

)(
22 0

nO

hn
h

h






2
20




h h

h

12

The HEAPSORT Algorithm

Procedure HEAPSORT(A)
Input : Array A[1…n], n = length[A]
Output : Sorted array A[1…n]
1. BUILD_HEAP[A]
2. for i  length[A] down to 2
3. Exchange A[1]  A[i]
4. heap_size[A]  heap_size[A]-1;
5. HEAPIFY(A,1)

8/30/2009 M KUMAR CSE5311 23

Example : To be given in the lecture

HEAPSORT

Running Time:
Step 1 BUILD_HEAP takes O(n) time,
Steps 2 to 5 : there are (n-1) calls to HEAPIFY
which takes O(log n) time
Therefore running time takes O (n log n)

8/30/2009 M KUMAR CSE5311 24

13

HEAP_EXTRACT_MAX

Procedure HEAP_EXTRACT_MAX(A[1…n])
Input : heap(A)p p()
Output : The maximum element or root, heap (A[1…n-1])
1. if heap_size[A]  1
2. max  A[1];
3. A[1]  A[heap_size[A]];
4. heap_size[A]  heap_size[A]-1;
5. HEAPIFY(A,1)

8/30/2009 M KUMAR CSE5311 25

6. return max

Running Time : O (log n) time

HEAP_INSERT

Procedure HEAP_INSERT(A, key)
Input : heap(A[1…n]), key - the new element
O tp t heap(A[1 n+1]) ith k in the heapOutput : heap(A[1…n+1]) with k in the heap
1. heap_size[A]  heap_size[A]+1;
2. i  heap_size[A];
3. while i > 1 and A[PARENT(i)] < key
4. A[i]  A[PARENT(i)];
5. i  PARENT(i);
6 A[i]  key

8/30/2009 M KUMAR CSE5311 26

6. A[i]  key

Running Time : O (log n) time

14

Questions:

What is a heap?What is a heap?
What are the running times for heap insertion
and deletion operations ?
Did you understand HEAPIFY AND and
HEAPSORT algorithms
Can you write a heapsort algorithm for
arranging an array of numbers in descending

8/30/2009 M KUMAR CSE5311 27

g g y g
order?

Quicksort

Quicksort algorithm

Quicksort performance

Quicksort analysis

8/30/2009 M KUMAR CSE5311 28

15

Quicksort

• The worst case running time of Quicksort algorithm is
O(n2)

• However, its expected running time is O (n log n)

• Three-step divide-and-conquer process for sorting a
subarray A[l..r]

Divide : partition the array A[l..r] into two nonempty
subarrays A[l..q] and A[q+1,r] such that each element
of A[l..q] is less than or equal to each element of
A[q+1,..,r]

8/30/2009 M KUMAR CSE5311 29

Conquer : sort the two subarrays A[l..q] and A[q+1..r]
by recursive calls to Quicksort

Combine : the subarrays are already sorted in place. No
work is needed to combine them

Example
13 02 18 26 76 87 98 11 93 77 65 43 38 09 65 06
13 02 06 26 76 87 98 11 93 77 65 43 38 09 65 18
13 02 06 09 76 87 98 11 93 77 65 43 38 26 65 18
13 02 06 09 11 87 98 76 93 77 65 43 38 26 65 18
11 02 06 09 13 87 98 76 93 77 65 43 38 26 65 18
11 02 06 09 13 87 98 76 93 77 65 43 38 26 65 18
09 02 06 11 13 87 98 76 93 77 65 43 38 26 65 18
09 02 06 11 13 87 98 76 93 77 65 43 38 26 65 18
06 02 09 11 13 87 98 76 93 77 65 43 38 26 65 18
06 02 09 11 13 87 98 76 93 77 65 43 38 26 65 18
02 06 09 11 13 87 98 76 93 77 65 43 38 26 65 18
02 06 09 11 13 87 18 76 93 77 65 43 38 26 65 98
02 06 09 11 13 87 18 76 65 77 65 43 38 26 93 98
02 06 09 11 13 26 18 76 65 77 65 43 38 87 93 98
02 06 09 11 13 18 26 76 65 77 65 43 38 87 93 98

8/30/2009 M KUMAR CSE5311 30

02 06 09 11 13 18 26 76 65 77 65 43 38 87 93 98
02 06 09 11 13 18 26 76 65 38 65 43 77 87 93 98
02 06 09 11 13 18 26 43 65 38 65 76 77 87 93 98
02 06 09 11 13 18 26 43 38 65 65 76 77 87 93 98
02 06 09 11 13 18 26 38 43 65 65 76 77 87 93 98
02 06 09 11 13 18 26 38 43 65 65 76 77 87 93 98

16

Procedure Quicksort(A,l,r)
Input :Unsorted Array (A,l,r)
Output : Sorted subarray A(0..r)
To sort the entire array A, l = 1 and r = length[A]

if l < r
then q  PARTITION(A,l,r)

QUICKSORT(A,l,q-1)
QUICKSORT(A,q+1,r)

8/30/2009 M KUMAR CSE5311 31

Xy  X y  X

Procedure PARTITION(A,l,r)
Input : Array A(l .. r)
Output : A and q such that A[i]  A[q] for all i  q and

A[j] > A[q] for all j > q.
A[l] i l jx  A[l]; i  l; j r;

while i < j do
while A[i]  x and i  r do i  i +1;
while A[j] > x and j  l do j  j -1;
if i< j then

exchange A[i]  A[j];
q  j;

8/30/2009 M KUMAR CSE5311 32

q  j;
exchange A[l]  A[q];

Xy  X y  X

17

Running Time of Quicksort

T(n) = n-1 + T(i-1) + T(n-i)
It takes n-1 comparisons for the partition
Then we sort smaller sequences of size i-1 and n-i
Each element has the same probability of being selected as
the pivotthe pivot,
The average running time is given by,

)log()()(

)()()(














n

i

n

i

n

i

nnOiT
n

nnT

inT
n

iT
n

nnT

1

11

2
1

1
1

1
1

8/30/2009 M KUMAR CSE5311 33

Detailed Analysis – ? Discussion

Mergesort

Like Quicksort, Mergesort algorithm also is based on
the divide-and–conquer principle.

fDivide: This step computes the middle of the array,
takes constant time, (1)

Conquer : Two subproblems, each of size n/2 are
recursively solved.

Each subproblem contributes 2T(n/2) to the
running time

8/30/2009 M KUMAR CSE5311 34

running time.

Combine: Two sorted sequences are merged, this
takes (n) time

18

Example

13 02 18 26 76 87 98 11 93 77 65 43 38 09 65 06

13 02 18 26 76 87 98 11 93 77 65 43 38 09 65 06

13 02 18 26 76 87 98 11 93 77 65 43 38 09 65 06

02 13 18 26 76 87 98 11 93 77 65 43 38 09 65 0602 13 18 26 76 87 98 11 93 77 65 43 38 09 65 06

02 13 18 26 76 87 98 11 93 77 65 43 38 09 65 06

02 13 18 26 76 87 98 11 93 77 65 43 38 09 65 06

02 13 18 26 76 87 98 11 93 77 65 43 38 09 65 06

02 13 18 26 76 87 98 11 93 77 65 43 38 09 65 06

02 13 18 26 76 87 11 98 93 77 65 43 38 09 65 06

8/30/2009 M KUMAR CSE5311 35

02 13 18 26 11 76 87 98 93 77 65 43 38 09 65 06

02 11 13 18 26 76 87 98 93 77 65 43 38 09 65 06

02 11 13 18 26 76 87 98 06 09 38 43 65 65 77 99

02 06 09 11 13 18 26 38 43 65 65 76 77 87 93 98

Procedure MERGESORT(A,l,r)
Input : A an array in the range 1 to n.
Output: Sorted array A.

if l < r
then q  (l+r)/2 ;

MERGESORT(A,l,q)
MERGESORT(A +1)

8/30/2009 M KUMAR CSE5311 36

MERGESORT(A,q+1, r)
MERGE (A,l,q,r)

19

Procedure MERGE(A,l,q,r)
Inputs: two sorted subarrays A(l, q) and A(q+1, r)
Output : Merged and sorted array A(l, r)

i  l;
j  q+1;
k  0;;
while (i  q) and (j  r) do

k  k+1;
if A[i]  A[j] then

TEMP[k]  A[i];
i  i +1;

else
TEMP[k]  A[j];
j j +1

8/30/2009 M KUMAR CSE5311 37

j  j +1;
if j > r then

for t 0 to q – i do
A[r-t]  A[q-t];

for t  0 to k-1 do
A[l +t]  TEMP[t];

Runtime Complexity of Mergesort

n

n/2

n

n/2

n
n/4

n/2

n/4

n/2

n/4

n/2

n/4

n/2
n/4 n/4 n/4 n/4

8/30/2009 M KUMAR CSE5311 38

/ /

n

/

n

/

nn

n/2 n/2
n/2 n/2 n/2 n/2

20

Runtime Complexity of Mergesort

T(n) = 2 T(n/2) + (n)
T(n/2) = 2 T(n/4) + n/2
T(n/4) = 2 T(n/8) + n/4
T(n) = 2{2 T(n/4) + n/2} + n = 4 T(n/4) + 2 nT(n) = 2{2 T(n/4) + n/2} + n = 4 T(n/4) + 2 n
T(n) = 23 T(n/23) + 3n
. . .
T(n) = 2k T(n/2k) +k n If n = 2k then , k = log n

Therefore, T(n) = 2k T(1) + n log n
= n (1) + n log n

8/30/2009 M KUMAR CSE5311 39

() g
T(n) = O(n log n)

Questions

What is a pivot element?

Do you understand divide-and-conquer?

What is running time if pivot element is at the centerWhat is running time if pivot element is at the center
of the array?

How is Mergesort different from Quicksort?

Trace the algorithm with the help of an example?

What is the use of TEMP array?

Do you know why we execute steps 13 and 14 in the
MERGE l ith ?

8/30/2009 M KUMAR CSE5311 40

MERGE algorithm?

What happens if i >q after the while loop (4-11)?

21

• Find applications for selection sort

Home Work

• Find applications for selection sort,
heapsort, quicksort, and mergesort sorting
algorithms?

• Which of these problems are suitable for
different types of sorting operations?

8/30/2009 M KUMAR CSE5311 41

• Identify applications for which each sorting
algorithm works best

Homework - Reference Books

• Insertion Sort• Insertion Sort

• Counting Sort

• Find the Maximum

• Find the Minimum

8/30/2009 M KUMAR CSE5311 42

22

The input is a set S containing n real numbers, and a real number x.

Design an algorithm to determine whether there are two elements of S
whose sum is exactly x. The algorithm should run in O (n log n) time.

Suppose now that the set S is given in a sorted order. Design an algorithm
to solve the above problem in time O (n).

1. Sort the numbers in O (n log n) time

2. for each number (x1) search the BST to check to check if you can
find another (x2) so that x1+x2 = x – takes O (n log n time)

S= [1…..n] i=1 j=n

Whil i < j

2nd

part

8/30/2009 M KUMAR CSE5311 43

While i < j

IF S[i] + S[j] < x THEN j = j-1

else if S[i] + S[j] > x =THEN i = i+1

DONE

T (n) = T(n-1) + O (1)

The input is a sequence of n integers with many duplications such that
the number of distinct integers in the sequence is O (log n)
Design a sorting algorithm to sort such sequences using at most
O(log log n) comparisons in the worst case.

Insert each element into a balanced binary search treense t each element into a balanced bina y sea ch t ee
Each node of the tree has a key and a pointer to a linked list

of all the elements with the same key.
There are O(log n) distinct integers in the input sequence,

therefore there are O(log n) nodes in the tree.
A height of the tree = log (number of nodes in the tree)
For our tree, height = O(log log n)

8/30/2009 M KUMAR CSE5311 44

, g (g g)
We can append the different linked lists (nodes of the tree)

by performing an inorder traversal of the tree.

23

The input is a sequence of elements x1, x2, …, xn, given one at a time.
Design an O(n) algorithm to compute the kth smallest element using only
O(k) memory spaces. The value of k is known ahead of time but the value

of n is not known until the last element is seen.

The input is a sequence of elements, given one at a time, inserted into a
fi d C h i h i i i i C (d C’fixed memory space C. In the ith input step xi is put into C (and C’s
previous content is erased). You can perform any computation
between two input steps (including, moving the content of C to
another memory location).

Create a heap, H of size k after k items have arrived.
[you have to write the procedure for constructing this heap]

The largest of the k items is at root of the heap, that is H[1].
When a new element arrives, compare it with

If C [l t]  H[1] th di d it

8/30/2009 M KUMAR CSE5311 45

If C [element]  H[1] then discard it
Else remove Max element from H and insert

C[element] into H
The above step is repeated for every new arrival and stops when the last

item has arrived.
The root of the heap contains the kth smallest element.

The input is d sequences of elements such that each sequence is
already sorted, and there is a total of n elements. Design an O(n log d)

algorithm to merge all the sequences into one sorted sequence.

There are d sorted sequences
Place all d minimal elements in heap, that is elements

A1[1], A2[1], …, Ad[1] are placed in the heap.
[you have to write the procedure for constructing this heap]
In each step remove the minimal element in the heap and

insert the next element from corresponding sequence into
the heap. For example A3[1] is the minimal element in the
h i t A3[2] i t th h ft th t t i

8/30/2009 M KUMAR CSE5311 46

heap, insert A3[2] into the heap after the extract-min.
[you have to write procedures for extracting the minimum

item from the heap and inserting a new element in the
heap]

24

You are given a collection of n bolts of different widths and n
corresponding nuts. You are allowed to try a nut and bolt
together, from which you can determine whether the nut is
larger than the bolt, smaller than the bolt, or matches the bolt
exactly. However there is no way to compare two nuts
together or two bolts together. The problem is to match each
bolt to its nut Design an algorithm for this problem withbolt to its nut. Design an algorithm for this problem with
average case efficiency of  (n log n).

8/30/2009 M KUMAR CSE5311 47

Given an array of integers A[1..n], such that, for all i, 1  i < n, we
have A[i]-A[i+1]  1. Let A[1] = x and A[n] = y, such that x < y.
Design an efficient search algorithm to find j such that A[j] = z for a
given value z, x  z  y. What is the maximal number of comparisons
to z that your algorithm makes?

8/30/2009 M KUMAR CSE5311 48

