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CSE5311 – Module 2 

• This Class • At the end of the classThis Class
– Heaps and Heapsort?

– QuickSort

– Mergesort

– Other Sorting Algorithms

At the  end of the class

Binary trees

Priority queues and heaps

Quicksort 
Worstcase

Bestcase
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Mergesort

Recurrences for Quicksort 
and Mergesort 

Further  Reading
Reference books 
on Algorithms

Course Syllabus
• Review of Asymptotic Analysis and Growth of Functions, Recurrences

• Sorting Algorithms
• Graphs and Graph Algorithms.
• Greedy Algorithms: 

– Minimum spanning tree,Union-Find algorithms, Kruskal's Algorithm, 
– Clustering, 
– Huffman Codes, and 
– Multiphase greedy algorithms. 

• Dynamic Programming: 
– Shortest paths, negative cycles, matrix chain multiplications, sequence alignment, RNA secondary structure, 

application examples.

• Network Flow: 
– Maximum flow problem, Ford-Fulkerson algorithm, augmenting paths, Bipartite matching problem, disjoint 

paths and application problems.
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• NP and Computational tractability: 
– Polynomial time reductions; The Satisfiability problem; NP-Complete problems; and Extending limits of 

tractability.

• Approximation Algorithms, Local Search and Randomized Algorithms
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Heaps and Heapsort

Further  Reading
Reference books 
on Algorithms

SORTING ALGORITHMS

Priority Trees
Building Heaps
Maintaining Heaps
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Maintaining Heaps
Heapsort Algorithm
Analysis of Heapsort Algorithm

Priority Queues

What is a priority queue?
A priority queue is an abstract data type which 
consists of a set of elements. Each element of 
the set has an associated priority or key
Priority is the value of the element or value of 
some component of an  element

Example :
S : {(Brown, 20), (Gray, 22), (Green, 21)} priority based on name 

{(Brown, 20), (Green,21), (Gray, 22)} priority based on age
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Each element could be a record and the priority could be based 
on one of the fields of the record
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Example

A Student's record:

Attributes : Name Age Sex Student No MarksAttributes : Name Age Sex Student No. Marks
Values :       John Brown 21 M 94XYZ23 75

Priority can be based on name, age, student number, or 
marks

Operations performed on priority queues,
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-inserting an element into the set
-finding and deleting from the set an element of   

highest priority

Priority Queues

Priority queues are implemented on partially ordered 
trees (POTs)

POTs are labeled binar trees• POTs are labeled binary trees
• the labels of the nodes are elements with a priority
• the element stored at a node has at least as large a 

priority as the elements stored at the children of 
that node

• the element with the highest priority is at the root of   
the tree
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the tree
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Example

24

21 19

13 14 03 10

72 11
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HEAPS

The heap is a data structure for implementing POT's
Each node of the heap tree corresponds to an 
element of the array that stores the value in the 
node
The tree is filled on all levels except possibly the 
lowest, which are filled from left to right up to a 
point.

An array A  that represents a heap is an object with two attributes
length[A], the number of elements in the array and 

heap-size[A], the number of elements in the heap stored 
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p [ ] p
within the  array A

heap_size[A]  length[A]
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HEAPS (Contd)

The heap comprises elements in locations up to heap-size[A] .
A[1] is the root of the tree.

Position   1      2       3 4 5       6 7 8       9 10

Value 24    21     19 13     14      3 10 2       7 11

Given node with index i,

PARENT(i) is the index of parent of i;PARENT(i) =  i/2

LEFT CHILD(i) is the index of left child of i ;
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LEFT_CHILD(i) is the index of left child of i ;  
LEFT_CHILD(i) = 2i;

RIGHT_CHILD(i) is the index of right child of i; and  
RIGHT_CHILD(i) = 2i +1

Heap Property

THE HEAP PROPERTY
A[PARENT(i)]  A[i]

The heap is based on a binary tree
The height of the heap (as a binary tree) is the 
number of edges on the longest simple downward 
path from the root to a leaf.

The height of a heap with n nodes is O (log n).
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All basic operations on heaps run in O (log n) time.
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20

21

22

23

2h
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n=20+21+22+23 + . . . + 2h = 2h+1-1

Number of nodes at different levels in a Binary Tree

Heap Algorithms

HEAPIFYHEAPIFY
BUILD_HEAP
HEAPSORT
HEAP_EXTRACT_MAX
HEAP_INSERT
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HEAPIFY

The HEAPIFY algorithm checks the heap elements for violation of 
the heap property and restores heap property.
Procedure HEAPIFY (A,i) 
Input: An array A and index i to the array. i =1 if we want to heapify 
the whole tree Subtrees rooted at LEFT CHILD(i) andthe whole tree. Subtrees rooted at LEFT_CHILD(i) and 
RIGHT_CHILD(i) are heaps
Output: The elements of array A forming subtree rooted at i satisfy 
the heap property.

1. l  LEFT_CHILD (i);
2. r  RIGHT_CHILD (i);
3. if l  heap_size[A] and A[l] > A[i]
4. then largest  l;
5 l l t i
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5. else largest  i;
6. if r  heap_size[A] and A[r] > A[largest]
7. then largest  r;
8. if largest  i
9. then exchange A[i]  A[largest]
10. HEAPIFY (A,largest)

7

24 19

21 14 03 10

24

7 19

21 14 03 10

RST,

heap

132 11
132 11

24

21 19

24

21 19

LST; 
heap
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13 14 03 10

72 11

7 14 03 10

132 11
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7 24 19 21 14 03 10 02 13 11

24 7 19 21 14 03 10 02 13 11

24 21 19 07 14 03 10 02 13 1124 21 19 07 14 03 10 02 13 11

24 21 19 13 14 03 10 02 07 11

Procedure HEAPSORT(A)
Input : Array A[1…n], n = length[A]
Output : Sorted array A[1…n]
1 BUILD HEAP[A]
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1. BUILD_HEAP[A]
2. for  i  length[A] down to 2
3. Exchange A[1]  A[i]
4. heap_size[A]  heap_size[A]-1;
5. HEAPIFY(A,1)

BUILD_HEAP

Procedure BUILD_HEAP (A)
Input : An array A of size n = length [A], 
heap_size[A]
Output : A heap of size nOutput : A heap of size n
1. heap_size[A]  length[A]
2. for i  length[A]/2 downto 1
3.                  HEAPIFY(A,i)

18 12 54 75 64          25 42 78 96
18 12 54 96 64 25 42 78 75
18 12 54 96 64 25 42 78 75
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18 12 54 96 64 25 42 78 75
18 96 54 12 64 25 42 78 75
18 96 54 78 64 25 42 12 75
96 18 54 78 64 25 42 12 75
96 78 54 18 64 25 42 12 75
96 78 54 75 64 25 42 12 18
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18

12 54

18 12 54 75 64          25 42 78 96

18

12 54

96 64 25 42

75 64 25 42

9678
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7578

18 12 54 96 64 25 42 78 75

18

12 54

18 12 54 96 64 25 42 78 75

18

96 54

12 64 25 42

96 64 25 42

7578

8/30/2009 M KUMAR              CSE5311 18

7578

18 96 54 12 64 25 42 78 75
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18

96 54

18 96 54 78 64 25 42 12 75

96

78 64 25 42

7512

18 54

78 64 25 42

7512
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96 18 54 78 64 25 42 12 75

96 78 54 18 64 25 42 12 75

96

78 54

18 64 25 42

7512

96

78 54

75 64 25 42
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1812
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n/21+1 n/2

n/22+11

   

Height of each node = 1, at most 1 comparison 

Height of each node = i, at most i comparisons, 1i  h

Height of each node = 2, at most 2 comparisons 
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Height of the root node = h, at most h  comparisons

Running time of Build_heap
1. Each call to HEAPIFY takes  O (log n) time
2. There are O (n) such calls
3. Therefore the running time is at most O( n logn)

However the complexity of BUILD_HEAP is O(n)

Proof :
In an n element heap there are at most n/2h+1 nodes of height hIn an n element heap there are at most n/2h+1 nodes of height h
The time required to heapify a subtree whose root is at a height h is O(h)

(this was proved in the analysis for HEAPIFY)
So the total time taken for BUILD_HEAP is given by,
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We know that

Thus the running time of BUILD_HEAP is given by, O(n)
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The HEAPSORT Algorithm

Procedure HEAPSORT(A)
Input : Array A[1…n], n = length[A]
Output : Sorted array A[1…n]
1. BUILD_HEAP[A]
2. for  i  length[A] down to 2
3. Exchange A[1]  A[i]
4. heap_size[A]  heap_size[A]-1;
5. HEAPIFY(A,1)
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Example : To be given in the lecture

HEAPSORT

Running Time:
Step 1 BUILD_HEAP takes O(n) time, 
Steps 2 to 5 : there are (n-1) calls to HEAPIFY 
which takes O(log n) time
Therefore running time takes  O (n log n)
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HEAP_EXTRACT_MAX

Procedure HEAP_EXTRACT_MAX(A[1…n])
Input : heap(A)p p( )
Output : The maximum element or root, heap (A[1…n-1])
1. if heap_size[A]  1
2. max  A[1];
3. A[1]  A[heap_size[A]];
4. heap_size[A]  heap_size[A]-1;
5. HEAPIFY(A,1)
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6. return max

Running Time : O (log n) time

HEAP_INSERT

Procedure HEAP_INSERT(A, key)
Input : heap(A[1…n]), key - the new element
O tp t heap(A[1 n+1]) ith k in the heapOutput : heap(A[1…n+1]) with k in the heap
1. heap_size[A]  heap_size[A]+1;
2. i  heap_size[A];
3. while i > 1 and A[PARENT(i)] < key
4. A[i]  A[PARENT(i)];
5. i  PARENT(i);
6 A[i]  key
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6. A[i]  key

Running Time : O (log n) time
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Questions:

What is a heap?What is a heap?
What are the running times for heap insertion 
and deletion operations ?
Did you understand HEAPIFY AND and 
HEAPSORT algorithms 
Can you write a heapsort algorithm for 
arranging an array of numbers in descending 
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g g y g
order?

Quicksort

Quicksort algorithm

Quicksort performance

Quicksort analysis
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Quicksort

• The worst case running time of Quicksort algorithm is 
O(n2)

• However, its expected running time is O ( n log n)

• Three-step divide-and-conquer process for sorting a 
subarray A[l..r]

Divide : partition the array A[l..r] into two nonempty 
subarrays A[l..q] and A[q+1,r] such that each element 
of A[l..q] is less than or equal to each element of 
A[q+1,..,r]
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Conquer : sort  the two subarrays  A[l..q] and A[q+1..r] 
by recursive calls to Quicksort

Combine : the subarrays are already sorted  in place. No 
work is needed to combine them

Example
13    02    18 26     76     87     98    11     93     77 65    43 38     09    65     06 
13    02    06 26 76     87     98    11     93     77 65    43 38     09 65     18
13    02    06     09 76 87     98    11 93     77 65    43 38     26 65     18
13 02    06     09 11 87     98     76 93     77 65    43 38     26    65     18
11 02    06     09 13 87     98     76     93     77 65    43 38     26    65     18
11 02    06     09 13 87     98     76     93     77 65    43 38     26    65     18
09 02    06    11 13 87     98     76     93     77 65    43 38     26    65     18
09 02    06 11 13 87     98     76     93     77 65    43 38     26    65     18
06 02    09 11 13 87     98     76     93     77 65    43 38     26    65     18
06 02 09 11 13 87     98     76     93     77 65    43 38     26    65     18
02 06 09 11 13 87     98 76     93     77 65    43 38     26    65     18 
02 06 09 11 13 87     18 76     93 77 65    43 38     26    65 98 
02 06 09 11 13 87 18     76     65 77 65    43 38     26 93 98
02 06 09 11 13 26 18 76     65     77 65    43 38    87 93     98
02 06 09 11 13 18 26 76 65 77 65 43 38 87 93 98
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02 06 09 11 13 18 26 76     65     77 65    43 38 87 93     98
02 06 09 11 13 18 26 76 65     38 65    43 77 87 93     98
02 06 09 11 13 18 26 43 65 38 65    76 77 87 93     98
02 06 09 11 13 18 26 43 38 65 65    76 77 87 93     98
02 06 09 11 13 18 26 38 43 65 65 76 77 87 93     98
02 06 09 11 13 18 26 38 43 65 65 76 77 87 93     98
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Procedure Quicksort(A,l,r)
Input :Unsorted Array (A,l,r)
Output : Sorted subarray A(0..r)
To sort the entire array A, l = 1 and r = length[A]

if l < r
then q  PARTITION(A,l,r)

QUICKSORT(A,l,q-1)
QUICKSORT(A,q+1,r)
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Xy  X y  X

Procedure PARTITION(A,l,r)
Input : Array  A(l .. r)
Output :  A and q such that A[i]  A[q] for all i  q and 

A[j] > A[q] for all j > q.
A[l] i l jx  A[l]; i  l; j r; 

while i < j do
while A[i]  x and i  r do i  i +1;
while A[j] > x and j   l do j  j -1;
if i< j then

exchange A[i]  A[j];
q  j;
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q  j;
exchange A[l]  A[q];

Xy  X y  X
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Running Time of Quicksort

T(n) = n-1 + T(i-1) + T(n-i)
It takes n-1 comparisons for the partition
Then we sort smaller sequences of size i-1 and n-i  
Each element has the same probability of being selected as 
the pivotthe pivot,
The average running time is given by,
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Detailed Analysis – ? Discussion

Mergesort

Like Quicksort, Mergesort algorithm also is based on 
the divide-and–conquer principle. 

fDivide: This step computes the middle of the array, 
takes constant time, (1)

Conquer : Two subproblems, each of size n/2 are 
recursively solved. 

Each subproblem contributes 2T(n/2) to the 
running time
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running time.

Combine: Two sorted sequences are merged, this 
takes (n) time 
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Example

13    02    18     26     76     87     98    11 93     77 65    43 38     09    65     06

13    02    18     26     76     87     98    11     93     77 65    43 38     09    65     06

13 02 18     26 76     87     98    11     93     77 65    43 38     09    65     06

02 13 18 26 76 87 98 11 93 77 65 43 38 09 65 0602    13 18 26 76     87     98    11     93     77 65    43 38     09    65     06

02    13 18     26 76     87     98    11     93     77 65    43 38     09    65     06

02    13 18     26 76     87     98    11 93     77 65    43 38     09    65     06

02    13 18     26 76 87 98    11     93     77 65    43 38     09    65     06

02    13 18     26 76     87 98 11 93     77 65    43 38     09    65     06

02    13 18     26 76     87 11    98 93     77 65    43 38     09    65     06
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02    13 18     26 11     76 87    98 93     77 65    43 38     09    65     06

02    11    13     18 26     76 87    98 93     77 65    43 38     09    65     06

02    11    13     18 26     76 87    98 06     09 38    43 65     65    77     99

02    06    09     11     13     18     26    38 43     65 65    76 77     87    93     98

Procedure MERGESORT(A,l,r)
Input : A an array in the range 1 to n.
Output: Sorted array A.

if l < r
then q  (l+r )/2 ;

MERGESORT(A,l,q)
MERGESORT(A +1 )
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MERGESORT(A,q+1, r)
MERGE (A,l,q,r)
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Procedure MERGE(A,l,q,r)
Inputs: two sorted subarrays A(l, q) and A(q+1, r)
Output : Merged and sorted array A(l, r)

i  l;
j  q+1;
k  0;;
while (i  q) and ( j  r) do

k   k+1;
if A[i]  A[j] then

TEMP[k]  A[i];
i  i +1;

else
TEMP[k]  A[j];
j j +1
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j  j +1;
if j > r then

for t 0 to q – i do
A[r-t]  A[q-t];

for t  0 to k-1 do
A[l +t]  TEMP[t];

Runtime Complexity of Mergesort

n

n/2
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n/2

n
n/4

n/2

n/4
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n/4
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Runtime Complexity of Mergesort

T(n) = 2 T(n/2) + (n)
T(n/2) = 2 T(n/4) + n/2
T(n/4) = 2 T(n/8) + n/4
T(n) = 2{2 T(n/4) + n/2} + n = 4 T(n/4) + 2 nT(n) = 2{2 T(n/4) + n/2} + n = 4 T(n/4) + 2 n
T(n) = 23 T(n/23) + 3n
. . .
T(n) = 2k T(n/2k) +k n If n = 2k then , k = log n 

Therefore, T(n) = 2k T(1) + n log n 
= n (1) + n log n
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( ) g
T(n) = O(n log n)

Questions

What is a pivot element?

Do you understand divide-and-conquer?

What is running time if pivot element is at the centerWhat is running time if pivot element is at the center 
of the array?

How is Mergesort different from Quicksort?

Trace the algorithm with the help of an example?

What is the use of TEMP array?

Do you  know why we execute steps 13 and 14 in the 
MERGE l ith ?
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MERGE algorithm?

What happens if i >q after the while loop (4-11)?
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• Find applications for selection sort

Home Work

• Find applications for selection sort, 
heapsort, quicksort, and mergesort sorting 
algorithms? 

• Which of these problems are suitable for 
different types of sorting operations? 
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• Identify applications for which each sorting 
algorithm works best

Homework - Reference Books

• Insertion Sort• Insertion Sort

• Counting Sort

• Find the Maximum 

• Find the Minimum
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The input is a set S containing n real numbers, and a real number x.

Design an algorithm to determine whether there are two elements of S
whose sum is exactly x. The algorithm should run in O (n log n) time.

Suppose now that the set S is given in a sorted order. Design an algorithm 
to solve the above problem in time O (n).

1. Sort the numbers in O (n log n) time

2. for each number (x1) search the BST to check  to check if you can 
find another (x2) so that x1+x2 = x – takes O (n log n time)

S= [1…..n] i=1 j=n

Whil i < j

2nd

part
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While i < j

IF S[i] + S[j] < x THEN j = j-1 

else if S[i] + S[j] >  x =THEN i = i+1

DONE

T (n) = T(n-1) + O (1)

The input is a sequence of n integers with many duplications such that 
the number of distinct integers in the sequence is O (log n)
Design a sorting algorithm to sort such sequences using at most 
O(log log n) comparisons in the worst case.

Insert each element into a balanced binary search treense t each element into a balanced bina y sea ch t ee
Each node of the tree has a key and a pointer to a linked list 

of all the elements with the same key.
There are O(log n) distinct integers in the input sequence, 

therefore there are O(log n) nodes in the tree.
A height of the tree = log (number of nodes in the tree)
For our tree, height = O( log log n)
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, g ( g g )
We can append the different linked lists (nodes of the tree) 

by performing an inorder traversal of the tree.
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The input is a sequence of elements x1, x2, …, xn, given one at a time. 
Design an O(n) algorithm to compute the kth smallest element using only 
O(k) memory spaces. The value of k is known ahead of time but the value 

of n is not known until the last element is seen.

The input is a sequence of elements, given one at a time, inserted into a 
fi d C h i h i i i i C ( d C’fixed memory space C. In the ith input step xi is put into C (and C’s 
previous content is erased). You can perform any computation 
between two input steps (including, moving the content of C to 
another memory location). 

Create a heap, H  of size k after k items have arrived.
[you have to write the procedure for constructing this heap]

The largest of the k items is at root of the heap, that is H[1].
When a new  element arrives, compare it with 

If C [ l t]  H[1] th di d it
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If C [element]   H[1] then discard it
Else remove Max element from H and insert 

C[element] into H
The above step is repeated for every new arrival and stops when the last 

item has arrived. 
The root of the heap contains the kth smallest element.

The input is d sequences of elements such that each sequence is 
already sorted, and there is a total of n elements. Design an O(n log d) 

algorithm to merge all the sequences into one sorted sequence.

There are d sorted sequences
Place all d minimal elements in heap, that is elements    

A1[1], A2[1], …, Ad[1] are placed  in the heap. 
[you have to write the procedure for constructing this heap]
In each step remove the minimal element in the heap and 

insert the next element from corresponding sequence into 
the heap. For example A3[1] is the minimal element in the 
h i t A3[2] i t th h ft th t t i
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heap,  insert A3[2] into the heap after the extract-min.  
[you have to write procedures for  extracting the minimum 

item from the heap and inserting a new element in the 
heap]
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You are given a collection of n bolts of different widths and n
corresponding nuts. You are allowed to try a nut and bolt 
together, from which you can determine whether the nut is 
larger than the bolt, smaller than the bolt, or matches the bolt 
exactly. However there is no way to compare two nuts 
together or two bolts together. The problem is to match each 
bolt to its nut Design an algorithm for this problem withbolt to its nut. Design an algorithm for this problem with 
average case efficiency of  (n log n).
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Given an array of integers A[1..n], such that, for all i, 1  i < n, we 
have  A[i]-A[i+1]  1. Let A[1] = x and A[n] = y, such that x < y. 
Design an efficient search algorithm to find j such that A[j] = z for a 
given value z, x  z  y. What is the maximal number of comparisons 
to z that your algorithm makes?
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