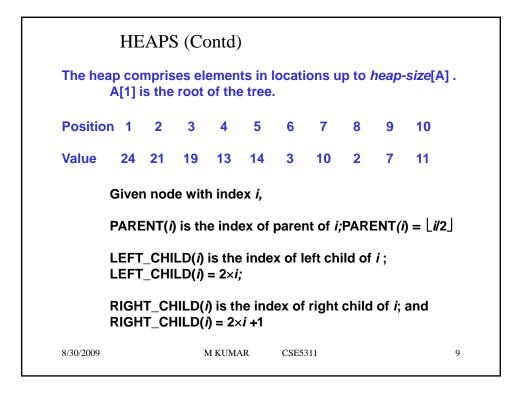
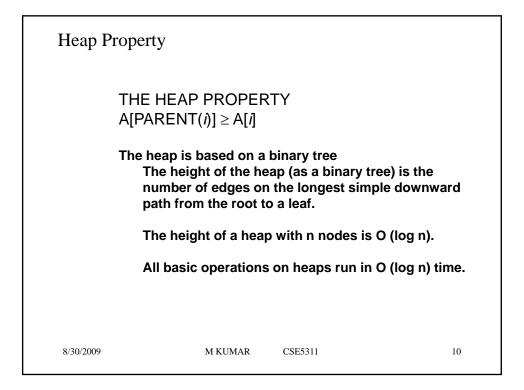
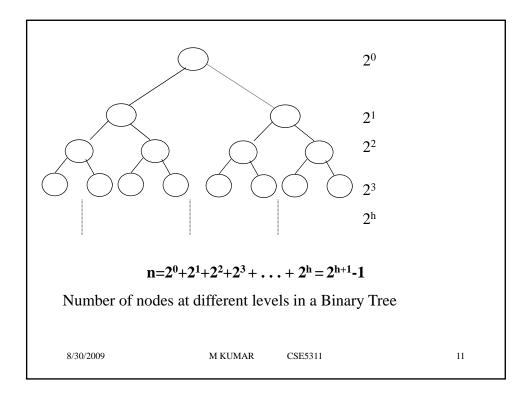
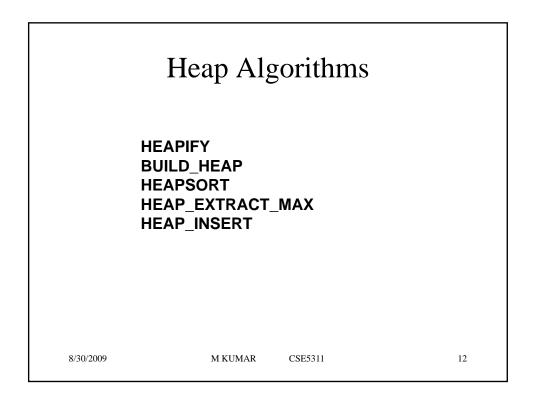
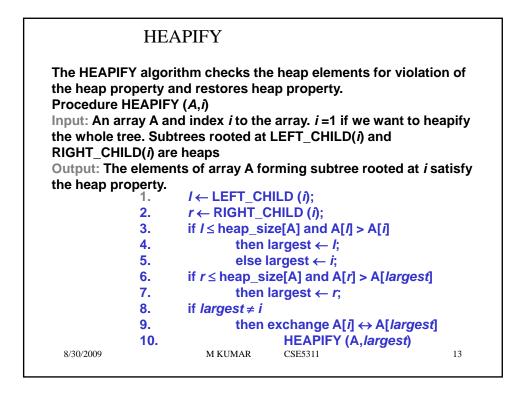

	Course Syllabus
•	Review of Asymptotic Analysis and Growth of Functions, Recurrences
•	Sorting Algorithms
	Graphs and Graph Algorithms.
•	Greedy Algorithms: Minimum spanning tree, Union-Find algorithms, Kruskal's Algorithm, Clustering, Huffman Codes, and Multiphase greedy algorithms,
•	Dynamic Programming: - Shortest paths, negative cycles, matrix chain multiplications, sequence alignment, RNA secondary structure, application examples.
•	 Network Flow: Maximum flow problem, Ford-Fulkerson algorithm, augmenting paths, Bipartite matching problem, disjoint paths and application problems.
•	 NP and Computational tractability: Polynomial time reductions; The Satisfiability problem; NP-Complete problems; and Extending limits of tractability.
	Approximation Algorithms, Local Search and Randomized Algorithms

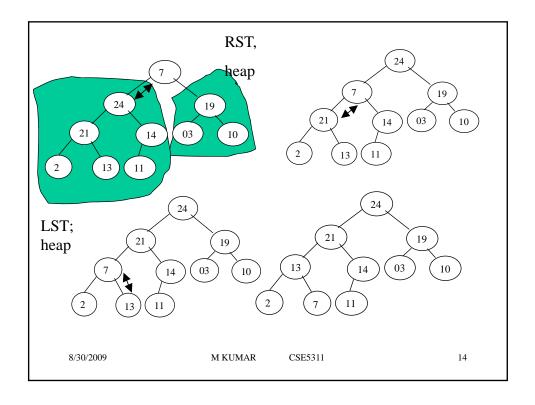


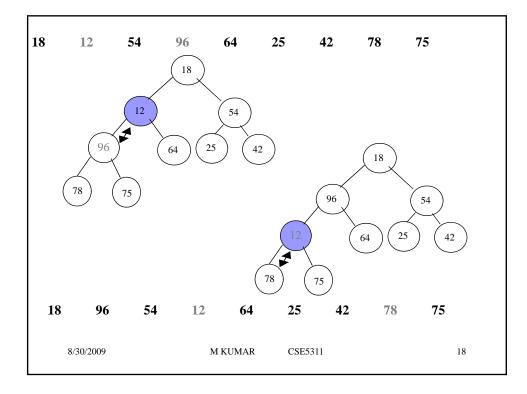

Example				
A Student's reco	rd:			
Attributes : Nar Values : John B	, ge		Student No. 94XYZ23	Marks 75
Priority can be l marks	based on nar	ne, age,	student num	ber, or
-finding a	an element	into the	•	ent of
8/30/2009	M KUMAR	CSE5311		5

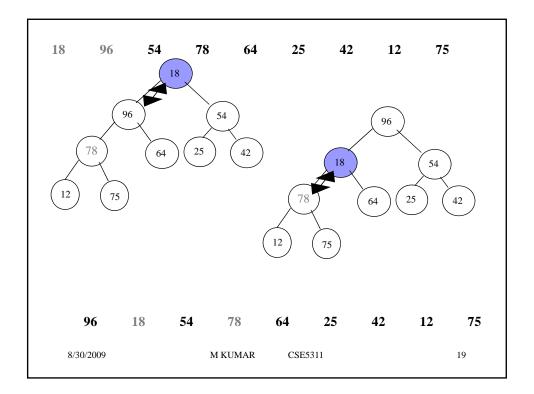




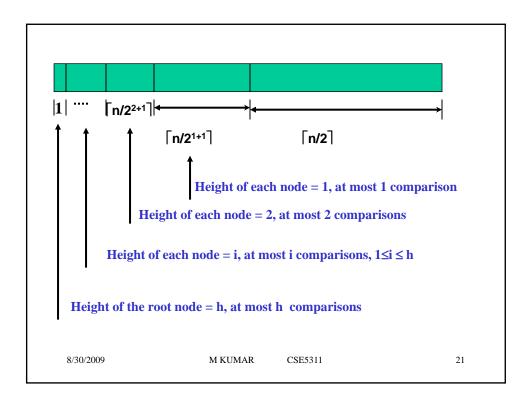

	HEAPS		
element node The tree lowest, v point. An array A that r <i>length</i> [A] <i>heap-size</i> [de of the heap of the array tha is filled on all I which are filled epresents a heap , the number of e	tree correspon at stores the va evels except po from left to righ b is an object with elements in the an of elements in the	ds to an lue in the ossibly the it up to a h two attributes rray and
8/30/2009	M KUMAR	CSE5311	8

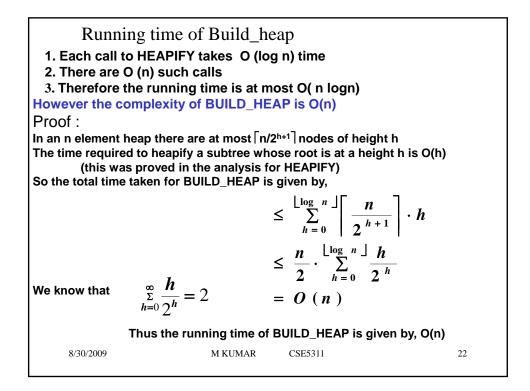


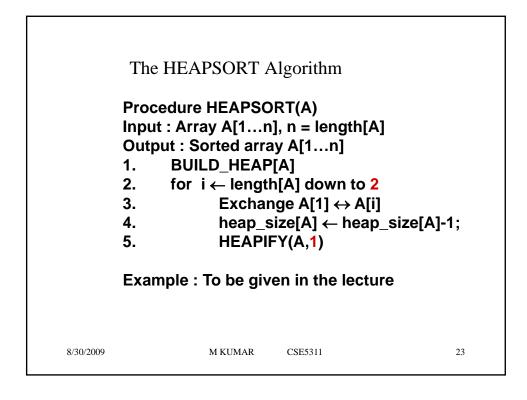


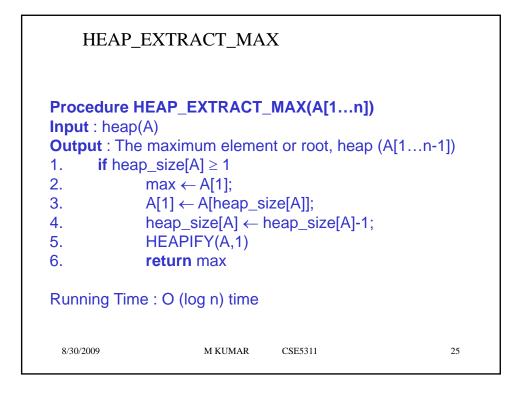


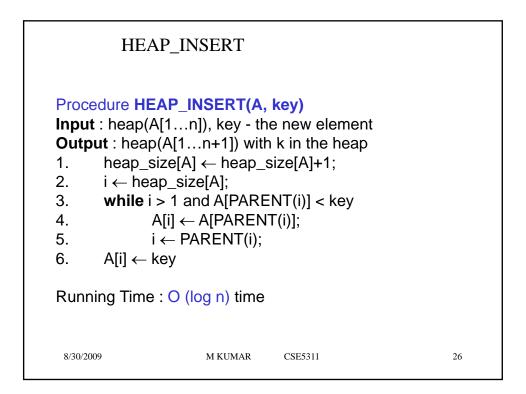

<u>7</u>	24	19	21	14	03	10	02	13	11
24	7	_19	<u>21</u>	14	03	10	02	13	11
24	21	19	<u>07</u>	_14	03	10	02	<u>13</u>	11
24	21	19	13	14	03	10	02	07	11
		ray A[1 Sorted ar 3UILD_H or i ← le E h	.n], n = ray A[1 EAP[A] ngth[A] Exchange	n] down to e A[1] ↔ e[A] ← h	2	·[A]-1;			
8/	30/2009		М	KUMAR	CSE53	11		1	15

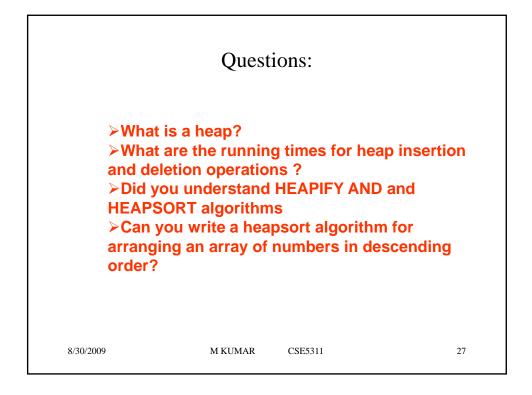

	BU	ILD_	HEAP					
Pro	cedure	BUIL	D_HEA	P (A)				
Inpu	ut:An	array A	A of size	e n = le	ngth [A	\],		
heap	o_size[A]				-		
Out	put:A	heap	of size r	า				
1.	•		$[A] \leftarrow le$		1			
2.			ength[A			1		
3.			APIFY(A	-		-		
		54	75	64	25	42	78	90
18	12	54	15	04	40		10	90
18 18	12 12	54 54	96	64	25 25	42	78	
			96	•••				75 75
18	12	54	96 96	64	25	42	78	75
18 18	12 12	54 54	96 96 12	64 64	25 25 25	42 42	78 78	75 75
18 18 18	12 12 96	54 54 54	96 96 12	64 64 64	25 25 25	42 42 42 42	78 78 78 78	75 75 75
18 18 18 18 18	12 12 96 96	54 54 54 54	96 96 12 78	64 64 64 64	25 25 25 25	42 42 42 42 42	78 78 78 78 12	75 75 75 75

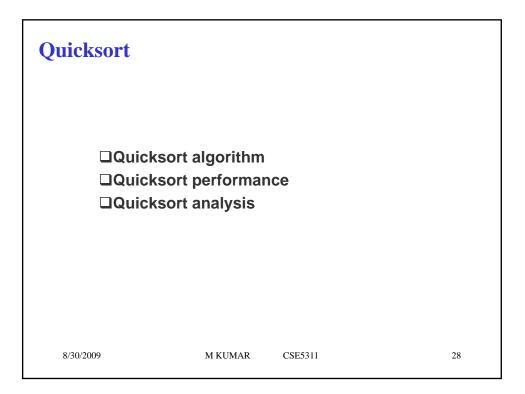




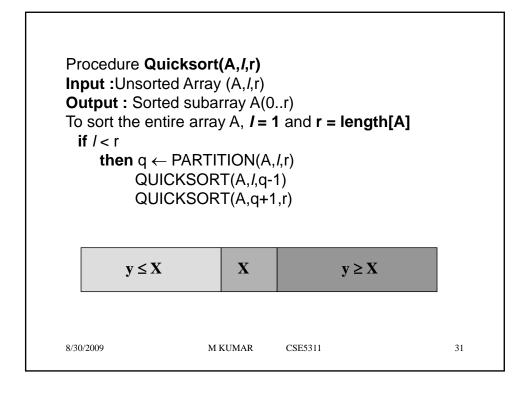




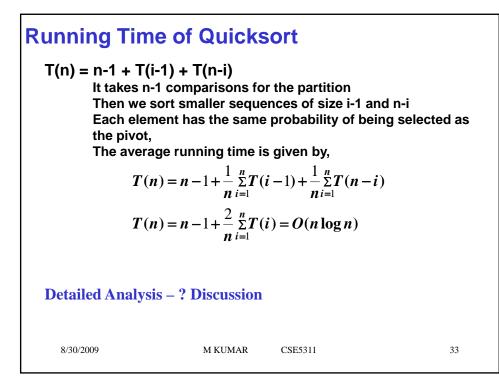


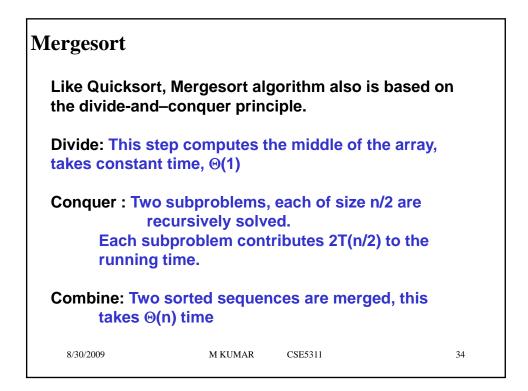


- The worst case running time of Quicksort algorithm is O(n²)
- However, its expected running time is O (n log n)
- Three-step divide-and-conquer process for sorting a subarray A[*l*..r]

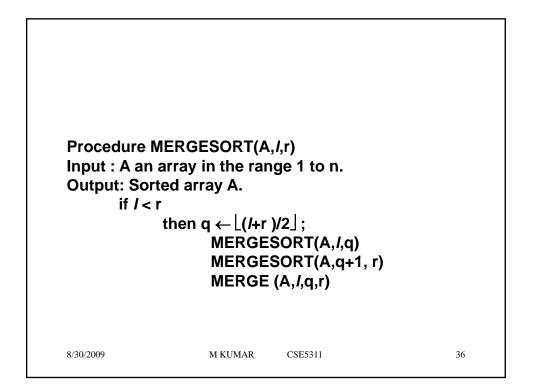

Divide : partition the array A[*l*..r] into two nonempty subarrays A[*l*..q] and A[q+1,r] such that each element of A[*l*..q] is less than or equal to each element of A[q+1,..,r]

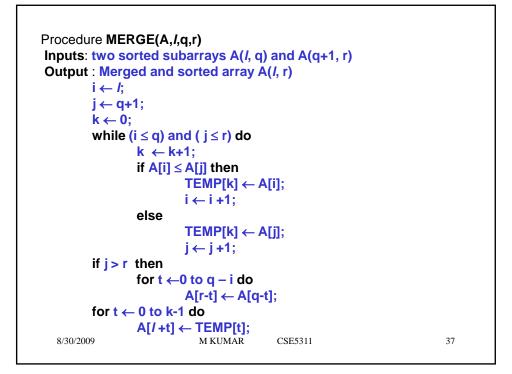
Conquer : sort the two subarrays A[*l*..q] and A[q+1..r] by recursive calls to Quicksort

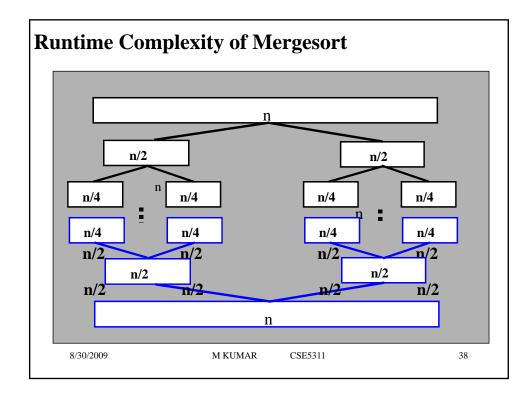

Combine : the subarrays are already sorted in place. No work is needed to combine them


8/30/2009	M KUMAR	CSE5311	29

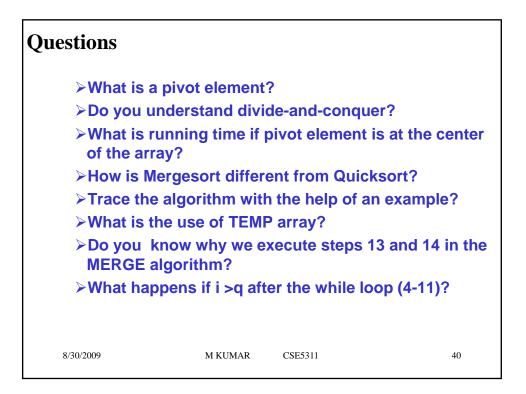
Exa	mp	le													
13	02	18	26	76	87	98	11	93	77	65	43	38	09	65	<u>06</u>
13	02	06	<u>26</u>	76	87	98	11	93	77	65	43	38	<u>09</u>	65	18
13	02	06	09	<u>76</u>	87	98	<u>11</u>	93	77	65	43	38	26	65	18
<u>13</u>	02	06	09	<u>11</u>	87	98	76	93	77	65	43	38	26	65	18
11	02	06	09	13	87	98	76	93	77	65	43	38	26	65	18
<u>11</u>	02	06	<u>09</u>	13	87	98	76	93	77	65	43	38	26	65	18
09	02	06	11	13	87	98	76	93	77	65	43	38	26	65	18
<u>09</u>	02	<u>06</u>	11	13	87	98	76	93	77	65	43	38	26	65	18
06	02	09	11	13	87	98	76	93	77	65	43	38	26	65	18
<u>06</u>	<u>02</u>	09	11	13	87	98	76	93	77	65	43	38	26	65	18
02	06	09	11	13	87	<u>98</u>	76	93	77	65	43	38	26	65	<u>18</u>
02	06	09	11	13	87	18	76	<u>93</u>	77	65	43	38	26	<u>65</u>	98
02	06	09	11	13	<u>87</u>	18	76	65	77	65	43	38	<u>26</u>	93	98
02	06	09	11	13	<u>26</u>	<u>18</u>	76	65	77	65	43	38	87	93	98
02	06	09	11	13	18	26	76	65	<u>77</u>	65	43	<u>38</u>	87	93	98
02	06	09	11	13	18	26	<u>76</u>	65	38	65	<u>43</u>	77	87	93	98
02	06	09	11	13	18	26	43	<u>65</u>	<u>38</u>	65	76	77	87	93	98
02	06	09	11	13	18	26	<u>43</u>	<u>38</u>	65	65	76	77	87	93	98
02	06	09	11	13	18	26	38	43	<u>65</u>	<u>65</u>	76	77	87	93	98
02	06	09	11	13	18	26	38	43	65	65	76	77	87	93	98
	8/30/20	009]	M KUM	IAR	CS	E5311					30	

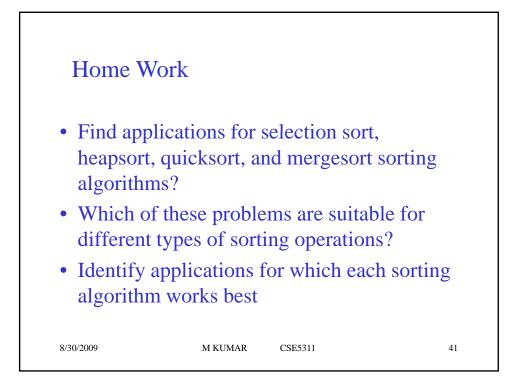


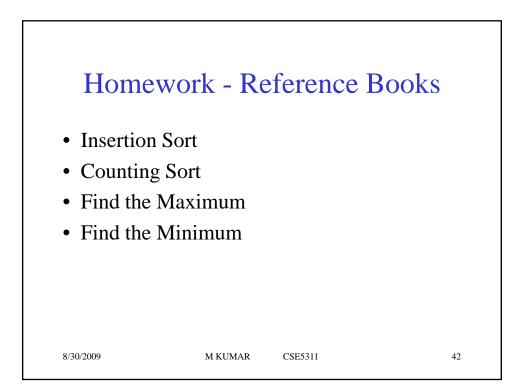

Input : Array	`] for all i ≤ q and	
-	A[i] > A[q] for all			
	$\eta; i \leftarrow l; j \leftarrow r;$	J - 4.		
while				
	ile $A[i] \le x$ and i	≤ r do i	←i+1;	
	ile A[j] > x and j			
if i⊲	< j then		•	
	exchange A[i]	$\leftrightarrow A[j];$		
q ← j;				
excha	nge A[I] \leftrightarrow A[q];			
	y ≤ X	X	$y \ge X$	
8/30/2009	M KUMAR	CSE5311		32

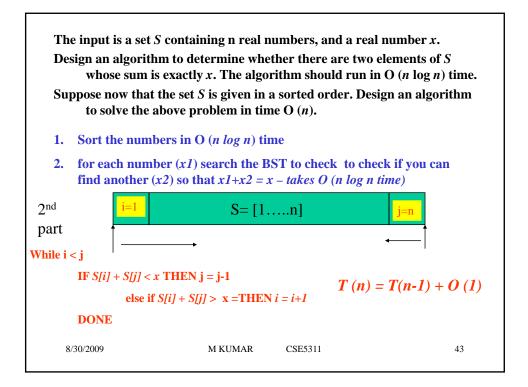


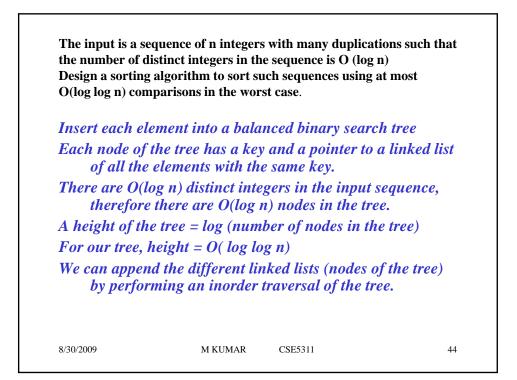
Exai	mp	le													
13	02	18	26	76	87	98	11	93	77	65	43	38	09	65	06
13	02	18	26	76	87	98	11	93	77	65	43	38	09	65	06
<u>13</u>	<u>02</u>	18	26	76	87	98	11	93	77	65	43	38	09	65	06
02	13	<u>18</u>	<u>26</u>	76	87	98	11	93	77	65	43	38	09	65	06
<u>02</u>	13	<u>18</u>	26	76	87	98	11	93	77	65	43	38	09	65	06
02	13	18	26	76	87	98	11	93	77	65	43	38	09	65	06
02	13	18	26	<u>76</u>	<u>87</u>	98	11	93	77	65	43	38	09	65	06
02	13	18	26	76	87	<u>98</u>	<u>11</u>	93	77	65	43	38	09	65	06
02	13	18	26	<u>76</u>	87	<u>11</u>	<u>98</u>	93	77	65	43	38	09	65	06
<u>02</u>	13	18	<u>26</u>	<u>11</u>	<u>76</u>	87	<u>98</u>	93	77	65	43	38	09	65	06
02	11	13	18	26	76	87	98	93	77	65	43	38	09	65	06
<u>02</u>	11	13	<u>18</u>	<u>26</u>	<u>76</u>	<u>87</u>	<u>98</u>	<u>06</u>	09	38	43	65	65	77	<u>99</u>
02	06	09	11	13	18	26	38	43	65	65	76	77	87	93	98
8	8/30/200)9			M	I KUM	AR	CSI	E5311					35	

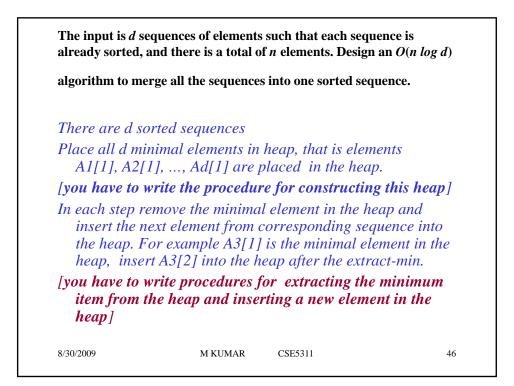


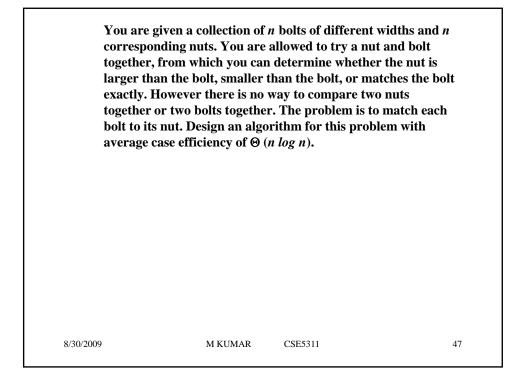





 $T(n) = 2 T(n/2) + \Theta(n)$ T(n/2) = 2 T(n/4) + n/2 T(n/4) = 2 T(n/8) + n/4 $T(n) = 2\{2 T(n/4) + n/2\} + n = 4 T(n/4) + 2 n$ $T(n) = 2^{k} T(n/2^{k}) + k n \text{ If } n = 2^{k} \text{ then }, k = \log n$... $T(n) = 2^{k} T(n/2^{k}) + k n \text{ If } n = 2^{k} \text{ then }, k = \log n$ Therefore, $T(n) = 2^{k} T(1) + n \log n$ $= n \Theta(1) + n \log n$ $T(n) = O(n \log n)$ 830/2009 MKUMAR CSES11


39





of <i>n</i> is not known	until the last eleme	nt is seen	
	until the last cleme	nt 15 seen.	
fixed memory previous cont	space C. In the ith i ent is erased). You c uput steps (including	given one at a time, i nput step xi is put in an perform any com g, moving the conten	to C (and C's putation
Create a heap, H	of size k after k iter	ms have arrived.	
you have to w	rite the procedure f	for constructing this	heap]
The largest of the	k items is at root of	f the heap, that is H[1].
When a new eler	nent arrives, compa	re it with	
If C [ele	ment] $\geq H[1]$ then a	liscard it	
•		lement from H and i [element] into H	nsert
The above step is item has arriv		new arrival and stops	when the last
The root of the h	eap contains the kth	smallest element.	
8/30/2009	M KUMAR	CSE5311	45

Given an array of integers A[1..n], such that, for all $i, 1 \le i < n$, we have $|A[i] - A[i+1]| \le 1$. Let A[1] = x and A[n] = y, such that x < y. Design an efficient search algorithm to find j such that A[j] = z for a given value $z, x \le z \le y$. What is the maximal number of comparisons to z that your algorithm makes?