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Module 3 - Graph Algorithms

This week
G h t i lGraph terminology
Stacks and Queues
Breadth-first-search
Depth-first-search
Connected Components
Analysis of BFS and DFS 
Algorithms
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Algorithms

Please see Reference Books

Course Syllabus
• Review of Asymptotic Analysis and Growth of Functions, Recurrences

• Sorting Algorithms

• Graphs and Graph Algorithms.
• Greedy Algorithms: 

– Minimum spanning tree,Union-Find algorithms, Kruskal's Algorithm, 
– Clustering, 
– Huffman Codes, and 
– Multiphase greedy algorithms. 

• Dynamic Programming: 
– Shortest paths, negative cycles, matrix chain multiplications, sequence alignment, RNA secondary structure, 

application examples.

• Network Flow: 
– Maximum flow problem, Ford-Fulkerson algorithm, augmenting paths, Bipartite matching problem, disjoint 

paths and application problems.
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• NP and Computational tractability: 
– Polynomial time reductions; The Satisfiability problem; NP-Complete problems; and Extending limits of 

tractability.

• Approximation Algorithms, Local Search and Randomized Algorithms
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Graph Preliminaries

Examples of modeling by Graphs

DarwinDarwin

Adelaide

Brisbane

Sydney

Melbourne

Perth

Module 
1

Module3

Module 2

Module 4 Module 5

Module 6 Module 7
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Graph Terminologies

• A Graph consists of a set 'V' of vertices (or nodes) and a set
'E' of edges (or links).

• A graph can be directed or undirected.

• Edges in a directed graph are ordered pairs.

• The order between the two vertices is important.

– Example: (S,P) is an ordered pair because the edge
starts at S and terminates at P.

– The edge is unidirectional
Ed f di t d h f d d i
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– Edges of an undirected graph form unordered pairs.

• A multigraph is a graph with possibly several edges between
the same pair of vertices.

• Graphs that are not multigraphs are called simple graphs.
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Graph Terminologies (Contd)

P
S

D A

QR

T

A

E

C
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G1: Undirected Graph G2: Directed Graph 

BC

Graph Terminologies

The degree d(v) of a vertex v is the number of edges
incident to v.

d (A) = three, d (D) = two
In directed graphs indegree is the number of incomingIn directed graphs, indegree is the number of incoming
edges at the vertex and outdegree is the number of
outgoing edges from the vertex.

The indegree of P is 2, its outdegree is 1.
The indegree of Q is 1, its outdegree is 1. P

S
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Paths and Cycles

A path from vertex v1 to vk is a sequence
of vertices v1,v2, …, vk that are connected
by edges (v1,v2), (v2,v3), …, (vk-1,vk).

Path from D to E: (D A B E)

D

B

A

E

C
Path from D to E: (D,A,B,E)
Edges in the path: (D,A), (A,B), (B,E)

A path is simple if each vertex in it appears
only once.

DABE is a simple path.
ABCDAE is not a simple path.

Vertex u is said to be reachable from v if there is a path QR

T

PS

8/30/2009 M KUMAR              CSE5311 7

p
from v to u.
A circuit is a path whose first and last vertices are the
same.

DAEBCEAD, ABEA, DABECD, SPQRS, STRS are
circuits

Paths and Cycles

A simple circuit is a cycle if except for the first (and last) 
vertex, no other vertex appears more than once. 

ABEA, DABECD, SPQRS, and  STRS are cycles.

A Hamiltonian cycle of a graph G is a cycle that contains
all the vertices of G

DABECD is a Hamiltonian cycle of G1
PQRSTP is a Hamiltonian of G2. PS
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A subgraph of a graph G = (V,E) is a graph H(U,F) such 
that U  V and FE. 

H1 {[U1:A,E,C,D], F1:[ (A,E),(E,C),(C,D),(D,A)]} is 
a subgraph of G1

H2 {[U2:S,P,T],F2:[(S,P),(S,T),(T,P)]} is a 
subgraph of G2subgraph of G2.

D

B

A

E

C

D
A

E

C QR

T

PS

T

PS
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Spanning tree of G1

B

Spanning Tree

A spanning tree of a 
graph G is a  subgraph of 

QR

T

PS

G that 
is a tree and contains all 
the vertices of G.

D A
D A

P
S

QR
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Connectivity

A graph is said to be connected if there is a path from
any vertex to any other vertex in the graph.

G1 and G2 are both connected graphs
A forest is a graph that does not contain a cycle.g p y
A tree is a connected forest.

T

D A

E

PS
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QR

T

C B

G(A,B,C,D,E,P,Q,R,S,T) is  a forest  
G(A,B,C,D,E) is  a tree 

Connectivity
A spanning forest of an undirected graph G is a subgraph of G that is 
a forest and contains all the vertices of G.
If a graph G(V,E) is not connected, then it can be partitioned in a 
unique way into a set of connected subgraphs called connected 
componentscomponents.

A connected component of G  is a connected subgraph of G 
such that no other connected subgraph of G contains it.

T

D A

E

PS
(A,B,C,D,E) and (P,Q,R,S,T)  are 
connected components
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QRC B

G(A,B,C,D,E,P,Q,R,S,T) is  a forest  
G(A,B,C,D,E) is  a tree 
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Graph Representations

D A

G1: undirected graph
Adjacency Matrix

A B C D E D

B

A

E

C

A B C D E
A 0 1 0 1 1
B 1 0 1 0 1
C 0 1 0 1 1
D 1 0 1 0 0
E 1 1 1 0 0

Adjacency list
A B D E
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A B D E
B A C E
C B D E
D A C \
E A B C

Graph Representations

G2: Directed
Graph
Adjacency matrix

P Q R S T

QR

T

PS
P Q R S T

P 0 1 0 0 0
Q 0 0 1 0 0
R 0 0 0 1 0
S 1 0 0 0 1
T 1 0 1 0 0

Adjacency list
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Qj y
P Q /
Q R /
R S /
S P T
T P R
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Depth-first search

Procedure DFS_Tree G(V,E)
Input: G = (V,E); S is a stack - initially empty;

’x’ refers to the top of stack;
initially mark all vertices  ’new’;
L[x] refers to the adjacency list of xL[x] refers to the adjacency list of x.
T  {0};

Output : The DFS tree T;

1. v old;  v V
2. push (S,v);
3. while  S is nonempty do 
4. while  there exists a vertex w in L[x] and marked new  do

O (V  +  E )
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[ ]
5. T  T  (x,w) ;
6. w  old;
7. push w onto S
8. pop S

DFS

AD
A B

E

C B

A B C

A B C
D

A B C
D
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E
DD
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DFS
Initially, T = {0}; S {0}, A,B,C,D,E (all new)
Starts at A :  A,  S :  {A}, L[A] = {B,D,E}

Pick B from L[A]; T = {(A,B)} and B (it's marked old}
S = {A,B}, L[B] = {A,C,E}
Pick C from L[B]; T = {(A,B), (B,C)} and C[ ]; {( , ), ( , )}
S = {A,B,C}; L[C] = {B,D,E}
Pick D from L[C] ; T = {(A,B), (B,C), (C,D)} and D
S = { A,B,C, D} ; L[D] ={A,C}; no new vertices;
S = { A,B,C}; L[C] = { B,D,E}
Pick E from L[C]; T ={ (A,B), (B,C), (C,D),(C,E)} and E
S = { A,B,C,E} ; L[E] = {A,B,C}
S = { A,B,C};  L[C] = { B,D,E}
S { A B} L[B] { A C E }

D A
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S ={ A,B} ; L[B]= { A,C,E }
S ={A} ; L[A] = { B,C,E}
S = {0}

B

E

C

DFSD

B

A

E

C

A
A A
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B

C

A
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B A
B B
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D
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Procedure BFS_Tree G(V,E)
Input: G = (V,E); Q is a queue - initially empty;

x Q : remove  the front item of  queue and 
denote it by x;

i iti ll k ll ti ’ ’

Breadth-first search

initially mark all vertices  ’new’;
L[x] refers to the adjacency list of x. 
T  {0}

Output: The BFS tree T; 
1. v old;  v V
2. insert (Q,v); 
3. while Q is nonempty do
4. x  Q
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Q
5.  for each  vertex  w in L[x] and marked ’new’
6. T  T  {x,w} ;
7. w  old;
8. insert (Q,w);

BFS

A B

E

A B

A
D

E

A B

D

A B

E
C B

E
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BFS
Initially, T = {0}; Q {0}, A,B,C,D,E (all new)
Starts at A :  A,  Q :  {A}, L[A] = {B,D,E}

Pick B from L[A]; T = {(A,B)} and B (it's marked old}
Q = {B}, L[A] = {B,D,E}
Pick D from L[A]; T = {(A,B), (A,D)} and D[ ]; {( , ), ( , )}
Q = {B,D}; L[A] = {B,D,E}
Pick E from L[A] ; T = {(A,B), (A,D), (A,E)} and E
Q = { B,D,E} ; L[A] ={B,D,E}; no new vertices;
Dequeue,  Q = {D,E} L[B]  = { A,C,E};
Pick C from L[B]; T ={ (A,B), (A,D), (A,E),(B,C)} and C
Q = {E, C} ; L[D] = {A,C}
Q = {C} ; L[E] = {A,B,C}
Q { 0) L[C] (B C E)

A
D
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Q = { 0) ; L[C] = (B,C,E)
Q = {0};

C B

E

A B C
DAD

A B

E
E

C B
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DFS and BFS

• Procedure DFS_Tree G(V,E)
• Input: G = (V,E); S is a stack - initially 

empty;
• ’x’ refers to the top of stack;

• Procedure BFS_Tree G(V,E)
• Input: G = (V,E); Q is a queue - initially 

empty;
• x Q : remove  the front item of  

queue and denote it by x;
• initially mark all vertices  ’new’;
• L[x] refers to the adjacency list of x.
• T  {0};
• Output : The DFS tree T;

• 1. v old;  v V
• 2. push (S,v);
• 3. while  S is nonempty do 
• 4. while  there exists a vertex w in 

L[x] and marked new  do
• 5. T  T  (x,w) ;

queue and denote it by x;
• initially mark all vertices  ’new’;
• L[x] refers to the adjacency list of x. 
• T  {0}
• Output: The BFS tree T; 
• 1. v old;  v V
• 2. insert (Q,v); 
• 3. while Q is nonempty do
• 4. x  Q
• 5.  for each  vertex  w in L[x] 

and marked ’new’ do
• 6 T  T  {x w} ;
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• 6. w  old;
• 7. push w onto S
• 8. pop S

• 6. T  T  {x,w} ;
• 7. w  old;
• 8. insert (Q,w);

Connected Components of a Graph

The connected component of a graph G = (V,E) is a maximal set of 
vertices U  V such that for every pair of vertices u and v in U, we 
have both u and v reachable from each other.  In the following we 
give an algorithm for finding the connected components of an g g g p
undirected graph.

Procedure Connected_Components G(V,E)
Input : G (V,E) 
Output : Number of Connected Components and G1, G2 etc, 
the connected components
1. V'  V;
2. c  0;
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3. while V'  0 do
4. choose  u  V' ;
5. T  all nodes reachable from u (by DFS_Tree)
6. V' V' - T;
7. c  c+1;
8. Gc  T;
9. T  0; 
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Suppose the DFS tree starts at A, we traverse from pp ,
A  B  C  D and do not explore the vertices F, G, and 
H at all! The DFS_tree algorithm does not  work with 
graphs having two or more connected parts.

We have to modify the DFS_Tree algorithm to find a DFS 
forest of the given graph. 
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DFS Forest

Procedure DFSForest _G(V,E)
Input: G = (V,E); S is a stack - initially empty;

’x’ refers to the top of stack; initially 
mark all vertices  ’new’;

L[x] refers to the adjacency list of x.
F  {0}; The DFS Forest

• Procedure DFS_Tree G(V,E)
• Input: G = (V,E); S is a stack - initially 

empty;
• ’x’ refers to the top of stack;
• initially mark all vertices  ’new’;

L[ ] f h dj liF  {0}; The DFS Forest
Output: The DFS tree F;
1. For each vertex  v  V do
2. if v is new
3. v old;  
4. push (S,v);
5. while S is nonempty do
6. while there exists a 
vertex w in L[x] and marked 

new  do
( )

• L[x] refers to the adjacency list 
of x.

• T  {0};
• Output : The DFS tree T;

• 1. v old;  v V
• 2. push (S,v);
• 3. while  S is nonempty do 
• 4. while  there exists a vertex w 

in L[x] and 
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7. F  F  (x,w) ;
8. w  old;
9. push w onto S
10. pop S

marked new  do
• 5. T  T  (x,w) ;
• 6. w  old;
• 7. push w onto S
• 8. pop S
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DFS Forest

BA F

D C H

G

F
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HGF

DCBA

Questions
 Do you know the difference between a simple graph and a 

multiple graph?

 What is an adjacency matrix ?

 What is a Hamiltonian path? What is an Euler path?

 Given a graph, can you find the Hamiltonian and Eulerian paths?

 Given a graph, can you perform DFS and BFS traversals?

 What is the difference between a cycle and a path?

 What are the complexities  of basic operations on stacks and 
queues? Give proof

8/30/2009 M KUMAR              CSE5311 28

queues? Give proof. 
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Minimum-Cost Spanning Trees

Consider a network of computers connected through 
bidirectional links. Each link is associated with a 
positive cost: the cost of sending a message on each p g g
link. 

This network can be represented by an undirected graph 
with positive costs on each edge. 

In bidirectional networks we can assume that the cost of 
sending a message on link does not depend on the 
direction.  
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Suppose we want to broadcast a message to all the 
computers from an arbitrary computer. 

The cost of the broadcast is the sum of the costs of links 
used to forward the message. 

Minimum-Cost Spanning Trees

• Find a fixed connected subgraph,  containing all the d a ed co ected subg ap , co ta g a t e
vertices such that the sum of the costs of  the edges in 
the subgraph is minimum.  This subgraph  is a tree as it 
does not contain any cycles.  

• Such a tree is called the spanning tree since it spans the 
entire graph G. 

•
A i h h th i t
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A given graph may have more than one spanning tree
• The minimum-cost spanning tree (MCST) is one whose 

edge weights add up to the least among all the spanning 
trees
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MCST
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A Local Area Network 
D

The equivalent Graph and the MCST

MCST
• The Problem: Given an undirected connected weighted 

graph G =(V E) find a spanning tree T of G of minimumgraph G =(V,E), find a spanning tree T of G of minimum 
cost.

• Greedy Algorithm for finding the Minimum Spanning 
Tree of a Graph G =(V,E)

The algorithm is also called Kruskal's algorithm.
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• At each step of the algorithm , one of several possible 
choices must be made,

• The greedy strategy: make the choice that is the best at the 
moment
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Kruskal's Algorithm
• Procedure MCST_G(V,E) 
• (Kruskal's Algorithm)
• Input: An undirected graph G(V,E) with a cost function c on the edges
• Output: T the minimum cost spanning tree for Gp p g
• T  0;
• VS 0;
• for each vertex v  V do
• VS = VS  {v};
• sort the edges of E in nondecreasing order of weight 
• while VS > 1  do
• choose (v,w) an edge E of lowest cost;
• delete (v,w) from E;
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• if v and w are in different sets W1 and W2 in VS do
• W1 = W1  W2;
• VS = VS - W2;
• T  T (v,w);
• return T

MCST

• The algorithm maintains a collection VS of disjoint sets of 
verticesvertices 

• Each set W in VS represents a connected set of vertices 
forming a spanning tree

• Initially, each vertex is in a set by itself in VS
• Edges are chosen from E in order of increasing cost, we 

consider each edge (v, w) in turn; v, w  V.
• If v and w are already in the same set (say W) of VS, we
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If v and w are already in the same set (say W) of VS, we 
discard the edge

• If v and w are in distinct sets W1 and W2 (meaning v 
and/or w  not in T) we merge W1 with W2 and add (v, w) 
to T.
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MCST
Consider the example graph shown earlier, 

The edges in nondecreasing order

[(A,D),1],[(C,D),1],[(C,F),2],[(E,F),2],[(A,F),3],[(A,B),3],

F

E

D

C

B

A

1

2 1

4

5

2 6

3 3

E

2

[(B,E),4],[(D,E),5],[(B,C),6]

EdgeActionSets in VSSpanning Tree, T =[{A},{B},{C},{D},{E},{F}]{0}(A,D)merge

[{A,D}, {B},{C}, {E}, {F}] {(A,D)} (C,D) merge

[{A,C,D}, {B}, {E}, {F}] {(A,D), (C,D)} (C,F) merge

[{A,C,D,F},{B},{E}]{(A,D),(C,D), (C,F)} (E,F) merge

[{A,C,D,E,F},{B}]{(A,D),(C,D), (C,F),(E,F)}(A,F) reject

{A C } { } {(A ) (C ) (C ) ( )}(A )
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[{A,C,D,E,F},{B}]{(A,D),(C,D), (C,F), (E,F)}(A,B) merge

[{A,B,C,D,E,F}]{(A,D),(A,B),(C,D), (C,F),(E,F)}(B,E) reject

(D,E) reject

(B,C) reject

Complexity
• Steps 1 thru 4 take time  O (V)
• Step 5 sorts the edges in nondecreasing order in O (E log E ) time
• Steps 6 through 13 take O (E) time
• The total time for the algorithm is therefore given by O (E log E)
• The edges can be maintained in a heap data structure with the property, 
• E[PARENT(i)]  E[i]
• remember, this property is the opposite of the one used in the heapsort 

algorithm earlier during Week  2. This  property can be used to sort  data 
elements in nonincreasing order. 

• Construct a heap of the edge weights, the edge with lowest cost is at the      
root
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• During each step of edge removal, delete the root  (minimum element) 
from the heap and rearrange the heap.

• The use of heap data structure reduces the time taken because at every 
step we are only picking up the minimum or root element rather than 
sorting the edge weights.
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• Single Source Shortest Paths• Single Source Shortest Paths

• All Pairs Shortest Path Problem
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Single-Source Shortest Paths

A t i t i h t
 

Darwin

Adelaide 

Brisbane

Sydney

M lb

Perth

A motorist wishes to 
find the shortest  
possible route from 
from Perth to  
Brisbane. Given the 
map of Australia on 
which the distance 
between each pair of 
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Melbourne
p

cities is marked, how 
can we determine 
the shortest route? 
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Single Source Shortest Path

• In a shortest-paths problem, we are given a weighted, a s o test pat s p ob e , we a e g ve a we g ted,
directed graph G = (V,E), with weights assigned to each 
edge in the graph. The weight of the path p = (v0, v1, v2, 
…, vk) is the sum of the weights of its constituent edges:

• v0  v1  v2  .   .    .  vk-1 vk
•
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• The shortest-path from  u to v is given by
• d(u,v) =  min {weight (p) : if there are one or more paths  

from u to v
• =  otherwise

The single-source shortest paths problem

Given G (V,E), find the shortest path from a given vertex 
u  V to every vertex v  V ( u v). 

For each vertex v  V in the weighted directed graph, d[v] represents g g p , [ ] p
the distance from u to v.

Initially, d[v] = 0 when u = v.
d[v] =  if (u,v) is not an edge
d[v] = weight of edge (u,v) if (u,v) exists.

Dijkstra's Algorithm : At every step of the algorithm, we compute,
d[ ] i {d[ ] d[ ] + ( )} h V
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d[y] = min {d[y], d[x] + w(x,y)}, where x,y  V.

Dijkstra's algorithm is based on the greedy principle because at 
every step we pick the path of least weight. 
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3 9 2 

5 1 u 
b a 

1 4 9 

2 4 d 
e c 

3 2 

g h f 

Example:

Step
#

Vertex to
be 
marked

Distance to vertex Unmarked 
vertices

u a b c d e f g h

0 u 0 1 5  9     a,b,c,d,e,f,g,h

1 a 0 1 5 3 9     b,c,d,e,f,g,h

2 c 0 1 5 3 7  12   b,d,e,f,g,h

3 b 0 1 5 3 7 8 12   d e f g h
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3 b 0 1 5 3 7 8 12   d,e,f,g,h

4 d 0 1 5 3 7 8 12 11  e,f,g,h

5 e 0 1 5 3 7 8 12 11 9 f,g,h

6 h 0 1 5 3 7 8 12 11 9 g,h

7 g 0 1 5 3 7 8 12 11 9 h

8 f 0 1 5 3 7 8 12 11 9 --
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Dijkstra's Single-source shortest path

• Procedure Dijkstra's Single-source shortest path_G(V,E,u)
• Input: G =(V,E), the weighted directed graph and u the source vertex
• Output: for each vertex, v, d[v] is the length of the shortest path from u to v.
• mark vertex u;
• d[u]  0; 
• for each unmarked vertex  v  V do
• if edge (u,v) exists d [v]  weight (u,v);
• else d[v] ;
• while there exists an unmarked vertex do
• let v be an unmarked vertex such that d[v] is minimal;
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• let v be an unmarked vertex such that d[v] is minimal;
• mark vertex v;
• for all edges (v,x) such that x is unmarked do
• if d[x] > d[v] + weight[v,x] then
• d[x]  d[v] + weight[v,x]

Analysis
• Complexity of Dijkstra's algorithm:

• Steps 1 and 2 take  (1) time

 • Steps 3 to 5 take O(V) time

• The vertices are arranged in a heap in order of their paths 
from u

• Updating the length of a path takes O(log V) time.

• There are V iterations,  and at most E updates

• Therefore the algorithm takes O((E+V) log V)
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• Therefore the algorithm takes O((E+V) log V) 
time.
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All-Pairs Shortest Path Problem
Consider a shortest path p from vertex i to vertex j
If i =j then there is no path from i to j.
If i  j , then we decompose the path p into two parts,

k

i
j

j p p p p
dist(i,k) and dist(k,j)

dist (i,j) = dist(i,k) + dist(k,j)

Recursive solution  

8/30/2009 M KUMAR              CSE5311 45









1)]},(),([),,(min{

0),(
),(

kifjkdistkidistjidist

kifjiw
jidist

Floyd' s Algorithm for Shortest Paths

• Procedure FLOYDs_G=[V,E]
••

Input: nn matrix W representing the edge weights of an n-vertex directed 
graph.            That is W =w(i,j)  where, (Negative weights are allowed)

• Output: shortest path matrix, dist(i,j) is the shortest path between vertices i
and j.

•
• for v  1 to n do
• for w  1 to n do
• dist[v,w] arc[v,w];
• for u  1 to n do
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• for u  1 to n do
• for v  1 to n do
• for w  1 to n do
• if dist[v,u] + dist[u,w] < dist[v,w] then
• dist[v,w]  dist[v,u] + dist[u,w] 
• Complexity : (n3)
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2

2

3

4

1

1

GA

B C

D  

A B C D E F G

A 0 1    4 

B  0 2   3 2

C   0 2   

3
EF
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D    0   2

E   4 1 0  3

F     3 0 4

G 2  5    0
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G

B

2
4

1

Distances after using A as the pivot
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22

2

2  

3

4

1

1  

GA

B C

D  

EF

A

F

4

A
B C D E F G

A 0 1    4 

B  0 2   3 2

g p
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B  0 2   3 2

C   0 2   

D    0   2

E   4 1 0  3

F     3 0 4

G 2 3 5   6 0

A B C D E F G

 

2 5

4 3

3 4

2  2

2

2  

3

4

1

1  

GA

B C  

D  

E  F

A 0 1 3   4 3

B  0 2   3 2

C   0 2   

D    0   2

E   4 1 0  3
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F     3 0 4

G 2 3 5   6 0

Distances after using B as the pivot
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2 5

4 3

3 4

2  2

2

2  

3

4

1

1  

GA

B C  

D  

E  F
A B C D E F G

A 0 1 3 5 7 4 3

B 4 0 2 4 6 3 2

C 6 7 0 2 13 10 4

D 4 5 7 0 11 8 2

E 5 6 4 1 0 9 3
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F 6 7 7 4 3 0 4

G 2 3 5 7 9 6 0

Distances after using G as the pivot

Transitive Closure

• Given a directed graph G=(V,E), the transitive closure C =(V,F) of G g p ( , ), ( , )
is a directed graph such that there is an edge (v,w) in C if and only if 
there is a directed path from v to w in G. 

• Security Problem: the vertices correspond to the users and the edges 
correspond to permissions. The transitive closure identifies for each 
user all other users with permission (either directly or indirectly) to use 
his or her account. There are many more applications of transitive 
closure. 
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• The recursive definition for transitive closure is









Ejiandijf

Ejiandjiif
jit

),(1

),(0
),(
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Warshall's Algorithm for Transitive 
Closure

• Procedure WARSHALL's(G=[V,E])
•

Input: nn matrix A representing the edge weights of an n-vertex  
directed graph. That is a =a(i,j)  where,

• Output: transitive closure matrix, t(i,j)  =1 if there is a path from i to j, 
0 otherwise

• for v  1 to n do
• for w  1 to n do
• t[v,w]  a(v,w)
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• for u  1 to n do
• for v  1 to n do
• for w  1 to n do
• if NOT t[v,w] then
• t[v,w]  t[v,u] AND t[u,w] 
• return T

• Hamiltonian Cycle

• Eulerian Path

• Biconnected Components

• Bipartite Graph Matching
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Hamiltonian Cycle

• Visit each vertex (except first and last exactl 
once)once) 

• Can we use a variation of DFS to find the 
Hamiltonian Cycle?

• Finding the Hamiltonian cycle in a given 
graph is an NP-Complete problem. 
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• We will study NP-Complete problems and 
the heuristic solutions for the Hamiltonian 
Cycle problem later in the course 

Euler Path

• Traverse through every edge g y g
exactly once

• In the traversal, you arrive at a 
vertex using one edge and leave the 
same vertex using another edge.

– Therefore every vertex should be 
of even degree 

– This is a condition for the 
existence of the Euler path in a 

u
ba

d
ec

g hf
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given graph
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Euler cycle
• Note: a disconnected graph G does not have an Euler path.

• Every node should have even degree.

1. Start a DFS-like search on G at any arbitrary node ‘x’1. Start a DFS like search on G at any arbitrary  node x

2. Continue DFS until a cycle is found
a. That is the path returns to ‘x’ – we have a cycle  -- x-x1-x2 …x

b. Remove the edges of the cycle from G, to obtain G = G- cycle.

c. All nodes with connectivity ‘=2’  will be removed as well

d. If G is null, then the cycle above is the Euler cycle. 

e. Else, nodes with connectivity  equal to 4 are greater will remain.

f Pick the first node ‘y’ of the above cycle that is retained in the new G
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f. Pick the first node y  of the above cycle, that is retained in the new G. 

3. Set x equal to y and repeat the above step 

4. Repeat above steps until G is null 

5. The Euler cycle is x-x1-x2-x3- …x.  If any xi was further explored, replace 
such xi with its corresponding cycle. 

u ba

d ec

a

u d ec

e

h

g hf c

u b

d ec

u

b

e

g hf g

c

gf

g

f

d
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g hf

d

c

d
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g
hf

4

56

7
8

9
10

Biconnected Components

• Bionnected Components
• Bridges
• Articulation Points

u
ba

d
ec

g hf k

aubedc, ehg, hlm, 
fijk – biconnected 
components

cf is a bridge
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i j l
m

c, f, e, and h are 
articulation points

Find the biconnected components in the graph? 



31

Definitions

• Vertex ‘a’ is an articulation point in G, if the removal of 
‘a’ splits G into two or more parts.p p
– Consider any two vertices, u and v of G – if every path between u

and v in G contains ‘a’ then, a is an articulation point. 

– G is biconnected if there is exists at least one path between u and v
not containing a. 

– A graph with no articulation points is biconnected. 

• Biconnected components of a graph are separated by articulation 
points
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points.

• A bridge is a link connecting two articulation points. 

u
ba

a

u

b

e

c

d
f

The DFS of the 
given Graph 

d
ec

g hf

i j

k

l

h

m

l

g
k

j

i
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i j l
m

Each edge e E is either an edge in the 
depth-first spanning forest or it connects 
an ancestor to a descendent in some tree 
of the depth-first spanning forest. The 
latter are called back edges. 
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Algorithms

• A vertex a  V of G is an articulation point if any one of 
two conditions below are satisfied

i h f h d h fi i f f d i h– a is the root of the depth-first spanning forest of G and it has 

multiple child vertices. 
– If a is not the root –

– Let C (x) represent a child of x and 

– A (x) represent an ancestor of x. 

– D (x) represent a descendent of x.

th f hild C( ) th i t b k d b t

f

k

j

i

8/30/2009 M KUMAR              CSE5311 63

– then for some child C(a),  there exists no back edge between a 
D(C(a)) and a proper A(a). Proper – does not include itself.

–

Bipartite Matching

a
b

c

d

e

f
g

hi
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Bipartite Matching

a
b

a

a

b d

c
d

e

f
g

hi

c

ge

i

f
h

a c e g i
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a c e g i

b d f h

Bipartite matching

• Find the BFS tree of the given graph G
• Mark the root of the tree ‘blue’• Mark the root of the tree blue
• Mark all nodes at the next level, the children of 

the root node ‘red’. 
• Mark the next level of nodes, blue and repeat the 

two-coloring for alternating levels
• If the adjacency list of any node has other color 

nodes at the same level then the graph is not
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nodes at the same level, then the graph is not 
bipartite

• The adjacency list of each node must have nodes 
of a different color
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