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Greedy Algorithms 

TOPICS 

• Greedy Strategy 

• Activity Selection 

• Minimum Spanning Tree 

• Shortest Paths 

• Huffman Codes 

• Fractional Knapsack 
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The Greedy Principle 

•  The problem: We are required to find a feasible solution that 
either maximizes or minimizes a given objective solution. 

•  It is easy to determine a feasible solution but not necessarily an 
optimal solution. 

•  The greedy method solves this problem in stages, at each stage, 
a decision is made considering inputs in an order determined by 
the selection procedure which may be  based on an optimization 
measure. 

•  The greedy algorithm always makes the choice that looks best at 
the moment. 
–  For each decision point in the greedy algorithm, the choice that 

seems best at the moment is chosen 
•  It makes a local optimal choice that may lead to a global optimal 

choice. 
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Activity Selection Problem 

•  Scheduling a resource among several competing 
activities. 

•  S = {1,2, 3, …, n} is the set of n proposed activities 
•  The activities share a resource, which can be used by only 

one activity at a time -a Tennis Court, a Lecture Hall etc., 
•  Each activity i has a start time, si and a finish time fi, where 

si ≤ fi.  
•  When selected, the  activity takes place during time (si, fi) 
•  Activities i and j are compatible if si ≥ fj or sj ≥ fi  
•  The activity-selection problem selects the maximum-size 

set of mutually compatible activities 
•  The input activities are in order by increasing finishing 

times. 
•  f1 ≤ f2 ≤ f3 … ≤ fn ;  Can be sorted in O (n log n ) time 
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Procedure for activity selection (from CLRS) 

Procedure GREEDY_ACTIVITY_SELECTOR(s, f) 
n ← length [S]; in order of increasing finishing times; 
A ← {1}; first job to finish 
j ← 1; 
for i ← 2 to n 
  do if si ≥ fj 
   then A ← A∪ {i}; 
    j ← i; 
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•  i  si  fi       
•  1  1  4     

•  2  3  5 
•  3  0  6 
•  4  5  7 
•  5  3  8 
•  6  5  9 
•  7  6  10 
•  8  8  11 
•  9  8  12 
•  10  2  13 
•  11  12  14 

•  Initially we choose activity 1 as 
it has the least finish time. 

•  Then, activities 2 and 3 are not 
compatible as s2 < f1 and s3 < f1. 

•  We choose activity 4, s4 > f1, 
and add activity 4 to the set A. 

•  A = {1, 4} 
•  Activities 5, 6, and 7 are 

incompatible and activity 8 is 
chosen  

•  A = {1,4,8} 
•  Finally activity 10 is 

incompatible and activity 11 is 
chosen  

•  A {1,4,8,11} 
•  The algorithm can schedule a 

set of n activities in Θ (n) time. 
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Greedy Algorithms 

•  Minimum Cost Spanning Tree 
–  Kruskal’s algorithm 
–  Prim’s Algorithm 

•  Single Source Shortest Path 
•  Huffman Codes 
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Minimum-Cost Spanning Trees 

Consider a network of computers connected through bidirectional 
links. Each link is associated with a positive cost: the cost of 
sending a message on each link.  

This network can be represented by an undirected graph with 
positive costs on each edge.  

In bidirectional networks we can assume that the cost of sending 
a message on a link does not depend on the direction.   

Suppose we want to broadcast a message to all the computers 
from an arbitrary computer.  

The cost of the broadcast is the sum of the costs of links used to 
forward the message.  
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Minimum-Cost Spanning Trees 

•  Find a fixed connected subgraph, containing all the vertices 
such that the sum of the costs of  the edges in the subgraph is 
minimum.  This subgraph  is a tree as it does not contain any 
cycles.   

•  Such a tree is called the spanning tree since it spans the entire 
graph G.  

•  A given graph may have more than one spanning tree 
•  The minimum-cost spanning tree (MCST) is one whose edge 

weights add up to the least among all the spanning trees 
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MCST 
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MCST 

•  The Problem: Given an undirected connected weighted graph G 
=(V,E), find a spanning tree T of G of minimum cost. 

•  Greedy Algorithm for finding the Minimum Spanning Tree of a 
Graph G =(V,E) 

The algorithm is also called Kruskal's algorithm. 

•  At each step of the algorithm, one of several possible choices must 
be made, 

•  The greedy strategy: make the choice that is the best at the moment 
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Kruskal's Algorithm 

•  Procedure MCST_G(V,E)  
•  (Kruskal's Algorithm) 
•  Input: An undirected graph G(V,E) with a cost function c on the edges 
•  Output: T the minimum cost spanning tree for G 
•  T ← 0; 
•  VS ←0; 
•  for each vertex v ∈ V do 
•        VS = VS ∪ {v}; 
•  sort the edges of E in nondecreasing order of weight  
•  while |VS| > 1  do 
•     choose (v,w) an edge E of lowest cost; 
•     delete (v,w) from E; 
•      if v and w are in different sets W1 and W2 in VS do 
•     W1 = W1 ∪ W2; 
•        VS = VS - W2; 
•      T ← T∪ (v,w); 
•  return T 
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Kruskals_ MCST 

•  The algorithm maintains a collection VS of disjoint sets of vertices  
•  Each set W in VS represents a connected set of vertices forming a 

spanning tree 
•  Initially, each vertex is in a set by itself in VS 
•  Edges are chosen from E in order of increasing cost, we consider 

each edge (v, w) in turn; v, w ∈ V. 
•  If v and w are already in the same set (say W) of VS, we discard the 

edge 
•  If v and w are in distinct sets W1 and W2 (meaning v and/or w  not 

in T) we merge W1 with W2 and add (v, w) to T. 



9/21/09 CSE 5311 Fall 2007 
M Kumar 

13 

Kruskals_ MCST 
Consider the example graph shown earlier,  
The edges in nondecreasing order 
[(A,D),1],[(C,D),1],[(C,F),2],[(E,F),2],[(A,F),3],

[(A,B),3], 
[(B,E),4],[(D,E),5],[(B,C),6] 
EdgeActionSets in VSSpanning Tree, T =[{A},

{B},{C},{D},{E},{F}]{0}(A,D)merge 
[{A,D}, {B},{C}, {E}, {F}] {(A,D)} (C,D) merge 
[{A,C,D}, {B}, {E}, {F}] {(A,D), (C,D)} (C,F) 

merge 
[{A,C,D,F},{B},{E}]{(A,D),(C,D), (C,F)} (E,F) 

merge 
[{A,C,D,E,F},{B}]{(A,D),(C,D), (C,F),(E,F)}(A,F) 

reject 
[{A,C,D,E,F},{B}]{(A,D),(C,D), (C,F), (E,F)}(A,B) 

merge 
[{A,B,C,D,E,F}]{(A,D),(A,B),(C,D), (C,F),(E,F)}

(B,E) reject 
(D,E) reject 
(B,C) reject 
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The equivalent Graph and the MCST 
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Kruskals_ MCST Complexity 
•  Steps 1 thru 4 take time  O (V) 
•  Step 5 sorts the edges in nondecreasing order in O (E log E ) time 
•  Steps 6 through 13 take O (E) time 
•  The total time for the algorithm is therefore given by O (E log E) 
•  The edges can be maintained in a heap data structure with the property,  
•  E[PARENT(i)] ≤ E[i] 
•  remember, this property is the opposite of the one used in the heapsort 

algorithm earlier. This  property can be used to sort  data elements in 
nonincreasing order.  

•  Construct a heap of the edge weights, the edge with lowest cost is at the      
root 

•  During each step of edge removal, delete the root  (minimum element) 
from the heap and rearrange the heap. 

•  The use of heap data structure reduces the time taken because at every 
step we are only picking up the minimum or root element rather than 
sorting the edge weights. 
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Prim’s Algorithm 
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Single-Source Shortest Paths  

A motorist wishes to 
find the shortest  
possible route from 
from Perth to  
Brisbane. Given the 
map of Australia on 
which the distance 
between each pair of 
cities is marked, how 
can we determine 
the shortest route?  
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Single Source Shortest Path 

•  In a shortest-paths problem, we are given a weighted, directed 
graph G = (V,E), with weights assigned to each edge in the graph. 
The weight of the path p = (v0, v1, v2, …, vk) is the sum of the 
weights of its constituent edges: 

•  v0 → v1 → v2  .   .    . → vk-1→ vk 
•   

•  The shortest-path from  u to v is given by 
•  d(u,v) =  min {weight (p) : if there are one or more paths  from u to v 
•            = ∞ otherwise 
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The single-source shortest paths problem  

Given G (V,E), find the shortest path from a given vertex  
 u ∈ V to every vertex v ∈ V ( u ≠v).  

For each vertex v ∈ V in the weighted directed graph, d[v] represents 
the distance from u to v. 

Initially, d[v] = 0 when u = v. 
   d[v] = ∞ if (u,v) is not an edge 
              d[v] = weight of edge (u,v) if (u,v) exists. 

Dijkstra's Algorithm : At every step of the algorithm, we compute, 
  d[y] = min {d[y], d[x] + w(x,y)}, where x,y ∈ V. 

Dijkstra's algorithm is based on the greedy principle because at 
every step we pick the path of least weight.  



9/21/09 CSE 5311 Fall 2007 
M Kumar 

19 

•  Dijkstra's Algorithm : At every step of the 
algorithm, we compute, 

   d[y] = min {d[y], d[x] + w(x,y)}, where x,y ∈ V. 
•  Dijkstra's algorithm is based on the greedy 

principle because at every step we pick the path 
of least path.  
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Example: 

Step 
 # 

Vertex to 
be marked Distance to vertex Unmarked 

vertices 
u a b c d e f g h 

0 u 0 1 5 ∞ 9 ∞ ∞ ∞ ∞ a,b,c,d,e,f,g,h 

1 a 0 1 5 3 9 ∞ ∞ ∞ ∞ b,c,d,e,f,g,h 
2 c 0 1 5 3 7 ∞ 12 ∞ ∞ b,d,e,f,g,h 
3 b 0 1 5 3 7 8 12 ∞ ∞ d,e,f,g,h 
4 d 0 1 5 3 7 8 12 11 ∞ e,f,g,h 
5 e 0 1 5 3 7 8 12 11 9 f,g,h 
6 h 0 1 5 3 7 8 12 11 9 g,h 
7 g 0 1 5 3 7 8 12 11 9 h 
8 f 0 1 5 3 7 8 12 11 9 -- 
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Dijkstra's Single-source shortest path 

•  Procedure Dijkstra's Single-source shortest path_G(V,E,u) 
•  Input: G =(V,E), the weighted directed graph and v the source vertex 
•  Output: for each vertex, v, d[v] is the length of the shortest path from u to v. 
•  mark vertex u; 
•  d[u] ← 0;  
•  for each unmarked vertex  v ∈ V do 
•    if edge (u,v) exists d [v] ← weight (u,v); 
•     else d[v] ← ∞; 
•  while there exists an unmarked vertex do 
•    let v be an unmarked vertex such that d[v] is minimal; 
•    mark vertex v; 
•    for all edges (v,x) such that x is unmarked do 
•      if d[x] > d[v] + weight[v,x] then 
•       d[x] ← d[v] + weight[v,x] 
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•  Complexity of Dijkstra's algorithm: 
•  Steps 1 and 2 take Θ (1) time 
•  Steps 3 to 5 take O(V) time 
•  The vertices are arranged in a heap in order of their 

paths from u 
•  Updating the length of a path takes O(log V) time. 
•  There are V iterations,  and at most E updates 
•  Therefore the algorithm takes O((E+V) log V) 

time. 
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Huffman codes 

Huffman codes are used to compress data. We will study 
Huffman's greedy algorithm for encoding compressed data. 

Data Compression 

•   A given file can be considered as a string of    
 characters.  

•   The work involved in compressing and uncompressing     
 should justify the savings in terms of storage area and/or 
 communication costs.   

•   In ASCII all characters are represented by bit  strings of size 7. 
•   For example if we had  100000 characters in a file   

 then we need 700000 bits to  store the file using ASCII.  
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Example 
The file consists of only 6 characters as shown in the table below. 
Using the fixed-length binary code, the whole file can be encoded in 300,000 
bits.  
However using the variable-length code , the file can be encoded in 224,000 
bits.  

   a  b  c  d  e  f   
Frequency   45  13  12  16  9  5  
(in thousands)   
Fixed-length  000  001  010  011  100  101 
codeword    
Variable-length  0  101  100  111  1101  1100   
codeword   

A variable length coding scheme assigns frequent characters, short code 
words and infrequent characters, long code words.  
In the above variable-length code,  1-bit string represents the most frequent 
character a, and a 4-bit string represents the most infrequent character f.  
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Let us denote the characters by C1, C2, …, Cn and 
denote their frequencies by f1, f2, ,,,, fn.  Suppose there 
is an encoding E in which a bit string Si of length si 
represents Ci, the length of the file compressed by 
using encoding E is  
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Prefix Codes 
•   The prefixes of an encoding of one character 

 must not be  equal to a complete encoding of 
 another character.  

• 1100   and 11001 are not valid codes 
• because 1100 is a prefix of 11001 

•   This constraint is called the prefix constraint.   
•   Codes in which no codeword is also a prefix of 

 some other  code word are called prefix codes.   
•   Shortening the encoding of one character may 

 lengthen the encodings of others.  
•   To find an encoding E that satisfies the prefix 

  constraint and minimizes L(E,F).  
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The prefix code for file 
can be represented by a 
binary tree in which 
every non leaf node has 
two children.  Consider 
the variable-length code 
of the table above, a tree 
corresponding to the 
variable-length code of 
the table is shown 
below.  

1 

1 
1 

1 

0 

0 0 

0 

1 0 100 

55 

30 25 

14 

a:45 

5 

c:12 b:13 

e:9 f:5 

d:16 Note that the length 
of the code for a 
character is equal to 
the depth of the 
character in the tree 
shown.  

0  101  100  111  1101  1100 
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Greedy Algorithm for Constructing a Huffman Code 

The algorithm builds the tree corresponding to the 
optimal code in a bottom-up manner. 
The algorithm begins with a set of C leaves and 
performs a sequence of 'merging' operations to create 
the tree. 
 C is the set of characters in the alphabet. 
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Procedure Huffman_Encoding(S,f); 
Input : S (a string of characters) and f (an array of 
frequencies). 
Output : T (the Huffman tree for S) 

1.  insert all characters into a heap H according to 
     their frequencies; 

2.  while H is not empty do   
3.       if  H contains only one character x then 
4.   x ← root (T); 
5.       else   
6.   z ← ALLOCATE_NODE(); 
7.   x ← left[T,z] ← EXTRACT_MIN(H); 
8.   y ← right[T,z] ← EXTRACT_MIN(H); 
9.   fz ← fx + fy; 
10.   INSERT(H,z); 
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f:5 e:9 c:12 b:13 d:16 a:45 

c:12 b:13 d:16 a:45 
1 0 

14 

f:5 e:9 

1 0 
14 

f:5 e:9 

d:16 
1 0 

25 

c:12 b:13 

a:45 

• The algorithm is based on a reduction of a problem with n 
characters to a problem with n-1 characters. 
• A new character  replaces two existing ones. 



9/21/09 CSE 5311 Fall 2007 
M Kumar 

32 

1 0 
25 

c:12 b:13 
1 0 

14 

f:5 e:9 

1 0 
30 

d:16 

a:45 

a:45 

1 0 
25 

c:12 b:13 
1 0 

14 

f:5 e:9 

1 0 
30 

d:16 

1 0 
55 

Suppose  Ci and Cj are two characters with minimal frequency, there 
exists a tree that minimizes L (E,F) in which these characters correspond 
to leaves with the maximal distance from the root. 
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1 0 
25 

c:12 b:13 
1 0 

14 

f:5 e:9 

1 0 
30 

d:16 

1 0 
55 a:45 

1 0 
100 

0  101  100  111  1101  1100 
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Complexity of the algorithm 

Building a heap in step 1 takes O(n) time 
Insertions (steps 7 and 8) and  
deletions  (step 10) on H  

 take O (log n)   time each 
Therefore Steps 2 through 10 take O(n logn) time 

Thus the overall complexity of the algorithm is  
 O( n logn ). 
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•  The fractional knapsack problem  
•  Limited supply of each item 
•  Each item has a size and a value per unit (e.g., Pound) 

–  greedy strategy 
•  Compute value per Pound  for each item 
•  Arrange these in non-increasing order 
•  Fill sack with the item of greatest value per pound until either 

the item is exhausted or the sack is full 
•  If sack is not full, fill the remainder with the next item in the 

list 
•  Repeat until sack is full 

How about a 0-1 Knapsack?? Can we use Greedy strategy? 
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Problems  

1.  Suppose that we have a set of k activities to schedule among n 
number of lecture halls; activity i starts at time si and terminates at 
time fi 1 ≤ i ≤ k. We wish to schedule all activities using as few 
lecture halls as possible. Give an efficient greedy algorithm to 
determine which activity should use which lecture hall.  

2.  You are required to purchase n different types of  items. Currently 
each item costs $D. However, the items will become more 
expensive according to exponential growth curves. In particular the 
cost of item j increases by a factor rj > 1 each month, where rj is a 
given parameter. This means that if item j is purchased t months 
from now, it will cost D×rj

t. Assume that the growth rates are 
distinct, that is ri = rj for items i ≠ j. Given that you can buy only one 
item each month, design an algorithm that takes n rates of growth 
r1, r2, …, rn, and computes an order in which to buy the items so 
that the total amount spent is minimized.   


