
9/21/09 CSE 5311 Fall 2007
M Kumar

1

Greedy Algorithms

TOPICS

• Greedy Strategy

• Activity Selection

• Minimum Spanning Tree

• Shortest Paths

• Huffman Codes

• Fractional Knapsack

9/21/09 CSE 5311 Fall 2007
M Kumar

2

The Greedy Principle

•  The problem: We are required to find a feasible solution that
either maximizes or minimizes a given objective solution.

•  It is easy to determine a feasible solution but not necessarily an
optimal solution.

•  The greedy method solves this problem in stages, at each stage,
a decision is made considering inputs in an order determined by
the selection procedure which may be based on an optimization
measure.

•  The greedy algorithm always makes the choice that looks best at
the moment.
–  For each decision point in the greedy algorithm, the choice that

seems best at the moment is chosen
•  It makes a local optimal choice that may lead to a global optimal

choice.

9/21/09 CSE 5311 Fall 2007
M Kumar

3

Activity Selection Problem

•  Scheduling a resource among several competing
activities.

•  S = {1,2, 3, …, n} is the set of n proposed activities
•  The activities share a resource, which can be used by only

one activity at a time -a Tennis Court, a Lecture Hall etc.,
•  Each activity i has a start time, si and a finish time fi, where

si ≤ fi.
•  When selected, the activity takes place during time (si, fi)
•  Activities i and j are compatible if si ≥ fj or sj ≥ fi
•  The activity-selection problem selects the maximum-size

set of mutually compatible activities
•  The input activities are in order by increasing finishing

times.
•  f1 ≤ f2 ≤ f3 … ≤ fn ; Can be sorted in O (n log n) time

9/21/09 CSE 5311 Fall 2007
M Kumar

4

Procedure for activity selection (from CLRS)

Procedure GREEDY_ACTIVITY_SELECTOR(s, f)
n ← length [S]; in order of increasing finishing times;
A ← {1}; first job to finish
j ← 1;
for i ← 2 to n
 do if si ≥ fj
 then A ← A∪ {i};
 j ← i;

9/21/09 CSE 5311 Fall 2007
M Kumar

5

•  i si fi
•  1 1 4

•  2 3 5
•  3 0 6
•  4 5 7
•  5 3 8
•  6 5 9
•  7 6 10
•  8 8 11
•  9 8 12
•  10 2 13
•  11 12 14

•  Initially we choose activity 1 as
it has the least finish time.

•  Then, activities 2 and 3 are not
compatible as s2 < f1 and s3 < f1.

•  We choose activity 4, s4 > f1,
and add activity 4 to the set A.

•  A = {1, 4}
•  Activities 5, 6, and 7 are

incompatible and activity 8 is
chosen

•  A = {1,4,8}
•  Finally activity 10 is

incompatible and activity 11 is
chosen

•  A {1,4,8,11}
•  The algorithm can schedule a

set of n activities in Θ (n) time.

9/21/09 CSE 5311 Fall 2007
M Kumar

6

Greedy Algorithms

•  Minimum Cost Spanning Tree
–  Kruskal’s algorithm
–  Prim’s Algorithm

•  Single Source Shortest Path
•  Huffman Codes

9/21/09 CSE 5311 Fall 2007
M Kumar

7

Minimum-Cost Spanning Trees

Consider a network of computers connected through bidirectional
links. Each link is associated with a positive cost: the cost of
sending a message on each link.

This network can be represented by an undirected graph with
positive costs on each edge.

In bidirectional networks we can assume that the cost of sending
a message on a link does not depend on the direction.

Suppose we want to broadcast a message to all the computers
from an arbitrary computer.

The cost of the broadcast is the sum of the costs of links used to
forward the message.

9/21/09 CSE 5311 Fall 2007
M Kumar

8

Minimum-Cost Spanning Trees

•  Find a fixed connected subgraph, containing all the vertices
such that the sum of the costs of the edges in the subgraph is
minimum. This subgraph is a tree as it does not contain any
cycles.

•  Such a tree is called the spanning tree since it spans the entire
graph G.

•  A given graph may have more than one spanning tree
•  The minimum-cost spanning tree (MCST) is one whose edge

weights add up to the least among all the spanning trees

9/21/09 CSE 5311 Fall 2007
M Kumar

9

MCST

9/21/09 CSE 5311 Fall 2007
M Kumar

10

MCST

•  The Problem: Given an undirected connected weighted graph G
=(V,E), find a spanning tree T of G of minimum cost.

•  Greedy Algorithm for finding the Minimum Spanning Tree of a
Graph G =(V,E)

The algorithm is also called Kruskal's algorithm.

•  At each step of the algorithm, one of several possible choices must
be made,

•  The greedy strategy: make the choice that is the best at the moment

9/21/09 CSE 5311 Fall 2007
M Kumar

11

Kruskal's Algorithm

•  Procedure MCST_G(V,E)
•  (Kruskal's Algorithm)
•  Input: An undirected graph G(V,E) with a cost function c on the edges
•  Output: T the minimum cost spanning tree for G
•  T ← 0;
•  VS ←0;
•  for each vertex v ∈ V do
•  VS = VS ∪ {v};
•  sort the edges of E in nondecreasing order of weight
•  while |VS| > 1 do
•  choose (v,w) an edge E of lowest cost;
•  delete (v,w) from E;
•  if v and w are in different sets W1 and W2 in VS do
•  W1 = W1 ∪ W2;
•  VS = VS - W2;
•  T ← T∪ (v,w);
•  return T

9/21/09 CSE 5311 Fall 2007
M Kumar

12

Kruskals_ MCST

•  The algorithm maintains a collection VS of disjoint sets of vertices
•  Each set W in VS represents a connected set of vertices forming a

spanning tree
•  Initially, each vertex is in a set by itself in VS
•  Edges are chosen from E in order of increasing cost, we consider

each edge (v, w) in turn; v, w ∈ V.
•  If v and w are already in the same set (say W) of VS, we discard the

edge
•  If v and w are in distinct sets W1 and W2 (meaning v and/or w not

in T) we merge W1 with W2 and add (v, w) to T.

9/21/09 CSE 5311 Fall 2007
M Kumar

13

Kruskals_ MCST
Consider the example graph shown earlier,
The edges in nondecreasing order
[(A,D),1],[(C,D),1],[(C,F),2],[(E,F),2],[(A,F),3],

[(A,B),3],
[(B,E),4],[(D,E),5],[(B,C),6]
EdgeActionSets in VSSpanning Tree, T =[{A},

{B},{C},{D},{E},{F}]{0}(A,D)merge
[{A,D}, {B},{C}, {E}, {F}] {(A,D)} (C,D) merge
[{A,C,D}, {B}, {E}, {F}] {(A,D), (C,D)} (C,F)

merge
[{A,C,D,F},{B},{E}]{(A,D),(C,D), (C,F)} (E,F)

merge
[{A,C,D,E,F},{B}]{(A,D),(C,D), (C,F),(E,F)}(A,F)

reject
[{A,C,D,E,F},{B}]{(A,D),(C,D), (C,F), (E,F)}(A,B)

merge
[{A,B,C,D,E,F}]{(A,D),(A,B),(C,D), (C,F),(E,F)}

(B,E) reject
(D,E) reject
(B,C) reject

F

E
D

C

B
A

1

2 1
4
5

2 6
3 3

F

E
D

C

B
A

1

2 1
2

3

The equivalent Graph and the MCST

9/21/09 CSE 5311 Fall 2007
M Kumar

14

Kruskals_ MCST Complexity
•  Steps 1 thru 4 take time O (V)
•  Step 5 sorts the edges in nondecreasing order in O (E log E) time
•  Steps 6 through 13 take O (E) time
•  The total time for the algorithm is therefore given by O (E log E)
•  The edges can be maintained in a heap data structure with the property,
•  E[PARENT(i)] ≤ E[i]
•  remember, this property is the opposite of the one used in the heapsort

algorithm earlier. This property can be used to sort data elements in
nonincreasing order.

•  Construct a heap of the edge weights, the edge with lowest cost is at the
root

•  During each step of edge removal, delete the root (minimum element)
from the heap and rearrange the heap.

•  The use of heap data structure reduces the time taken because at every
step we are only picking up the minimum or root element rather than
sorting the edge weights.

9/21/09 CSE 5311 Fall 2007
M Kumar

15

Prim’s Algorithm

F

E

D
C

B

A

1

2 1

4

5

2 6

3 3

F

D

B

A

2

1

3 The equivalent Graph and the MCST

C 1
D

A

1

C 1
D

A

1

E

2

F

2

C 1
D

A

1 E

2

F

2

C 1
D

A

1

9/21/09 CSE 5311 Fall 2007
M Kumar

16

Single-Source Shortest Paths

A motorist wishes to
find the shortest
possible route from
from Perth to
Brisbane. Given the
map of Australia on
which the distance
between each pair of
cities is marked, how
can we determine
the shortest route?

9/21/09 CSE 5311 Fall 2007
M Kumar

17

Single Source Shortest Path

•  In a shortest-paths problem, we are given a weighted, directed
graph G = (V,E), with weights assigned to each edge in the graph.
The weight of the path p = (v0, v1, v2, …, vk) is the sum of the
weights of its constituent edges:

•  v0 → v1 → v2 . . . → vk-1→ vk
• 

•  The shortest-path from u to v is given by
•  d(u,v) = min {weight (p) : if there are one or more paths from u to v
•  = ∞ otherwise

9/21/09 CSE 5311 Fall 2007
M Kumar

18

The single-source shortest paths problem

Given G (V,E), find the shortest path from a given vertex
 u ∈ V to every vertex v ∈ V (u ≠v).

For each vertex v ∈ V in the weighted directed graph, d[v] represents
the distance from u to v.

Initially, d[v] = 0 when u = v.
 d[v] = ∞ if (u,v) is not an edge
 d[v] = weight of edge (u,v) if (u,v) exists.

Dijkstra's Algorithm : At every step of the algorithm, we compute,
 d[y] = min {d[y], d[x] + w(x,y)}, where x,y ∈ V.

Dijkstra's algorithm is based on the greedy principle because at
every step we pick the path of least weight.

9/21/09 CSE 5311 Fall 2007
M Kumar

19

•  Dijkstra's Algorithm : At every step of the
algorithm, we compute,

 d[y] = min {d[y], d[x] + w(x,y)}, where x,y ∈ V.
•  Dijkstra's algorithm is based on the greedy

principle because at every step we pick the path
of least path.

9/21/09 CSE 5311 Fall 2007
M Kumar

20

9/21/09 CSE 5311 Fall 2007
M Kumar

21

Example:

Step
 #

Vertex to
be marked Distance to vertex Unmarked

vertices
u a b c d e f g h

0 u 0 1 5 ∞ 9 ∞ ∞ ∞ ∞ a,b,c,d,e,f,g,h

1 a 0 1 5 3 9 ∞ ∞ ∞ ∞ b,c,d,e,f,g,h
2 c 0 1 5 3 7 ∞ 12 ∞ ∞ b,d,e,f,g,h
3 b 0 1 5 3 7 8 12 ∞ ∞ d,e,f,g,h
4 d 0 1 5 3 7 8 12 11 ∞ e,f,g,h
5 e 0 1 5 3 7 8 12 11 9 f,g,h
6 h 0 1 5 3 7 8 12 11 9 g,h
7 g 0 1 5 3 7 8 12 11 9 h
8 f 0 1 5 3 7 8 12 11 9 --

9/21/09 CSE 5311 Fall 2007
M Kumar

22

Dijkstra's Single-source shortest path

•  Procedure Dijkstra's Single-source shortest path_G(V,E,u)
•  Input: G =(V,E), the weighted directed graph and v the source vertex
•  Output: for each vertex, v, d[v] is the length of the shortest path from u to v.
•  mark vertex u;
•  d[u] ← 0;
•  for each unmarked vertex v ∈ V do
•  if edge (u,v) exists d [v] ← weight (u,v);
•  else d[v] ← ∞;
•  while there exists an unmarked vertex do
•  let v be an unmarked vertex such that d[v] is minimal;
•  mark vertex v;
•  for all edges (v,x) such that x is unmarked do
•  if d[x] > d[v] + weight[v,x] then
•  d[x] ← d[v] + weight[v,x]

9/21/09 CSE 5311 Fall 2007
M Kumar

23

•  Complexity of Dijkstra's algorithm:
•  Steps 1 and 2 take Θ (1) time
•  Steps 3 to 5 take O(V) time
•  The vertices are arranged in a heap in order of their

paths from u
•  Updating the length of a path takes O(log V) time.
•  There are V iterations, and at most E updates
•  Therefore the algorithm takes O((E+V) log V)

time.

9/21/09 CSE 5311 Fall 2007
M Kumar

24

Huffman codes

Huffman codes are used to compress data. We will study
Huffman's greedy algorithm for encoding compressed data.

Data Compression

•  A given file can be considered as a string of
 characters.

•  The work involved in compressing and uncompressing
 should justify the savings in terms of storage area and/or
 communication costs.

•  In ASCII all characters are represented by bit strings of size 7.
•  For example if we had 100000 characters in a file

 then we need 700000 bits to store the file using ASCII.

9/21/09 CSE 5311 Fall 2007
M Kumar

25

Example
The file consists of only 6 characters as shown in the table below.
Using the fixed-length binary code, the whole file can be encoded in 300,000
bits.
However using the variable-length code , the file can be encoded in 224,000
bits.

 a b c d e f
Frequency 45 13 12 16 9 5
(in thousands)
Fixed-length 000 001 010 011 100 101
codeword
Variable-length 0 101 100 111 1101 1100
codeword

A variable length coding scheme assigns frequent characters, short code
words and infrequent characters, long code words.
In the above variable-length code, 1-bit string represents the most frequent
character a, and a 4-bit string represents the most infrequent character f.

9/21/09 CSE 5311 Fall 2007
M Kumar

26

Let us denote the characters by C1, C2, …, Cn and
denote their frequencies by f1, f2, ,,,, fn. Suppose there
is an encoding E in which a bit string Si of length si
represents Ci, the length of the file compressed by
using encoding E is

9/21/09 CSE 5311 Fall 2007
M Kumar

27

Prefix Codes
•  The prefixes of an encoding of one character

 must not be equal to a complete encoding of
 another character.

• 1100 and 11001 are not valid codes
• because 1100 is a prefix of 11001

•  This constraint is called the prefix constraint.
•  Codes in which no codeword is also a prefix of

 some other code word are called prefix codes.
•  Shortening the encoding of one character may

 lengthen the encodings of others.
•  To find an encoding E that satisfies the prefix

 constraint and minimizes L(E,F).

9/21/09 CSE 5311 Fall 2007
M Kumar

28

The prefix code for file
can be represented by a
binary tree in which
every non leaf node has
two children. Consider
the variable-length code
of the table above, a tree
corresponding to the
variable-length code of
the table is shown
below.

1

1
1

1

0

0 0

0

1 0 100

55

30 25

14

a:45

5

c:12 b:13

e:9 f:5

d:16 Note that the length
of the code for a
character is equal to
the depth of the
character in the tree
shown.

0 101 100 111 1101 1100

9/21/09 CSE 5311 Fall 2007
M Kumar

29

Greedy Algorithm for Constructing a Huffman Code

The algorithm builds the tree corresponding to the
optimal code in a bottom-up manner.
The algorithm begins with a set of C leaves and
performs a sequence of 'merging' operations to create
the tree.
 C is the set of characters in the alphabet.

9/21/09 CSE 5311 Fall 2007
M Kumar

30

Procedure Huffman_Encoding(S,f);
Input : S (a string of characters) and f (an array of
frequencies).
Output : T (the Huffman tree for S)

1. insert all characters into a heap H according to
 their frequencies;

2. while H is not empty do
3. if H contains only one character x then
4. x ← root (T);
5. else
6. z ← ALLOCATE_NODE();
7. x ← left[T,z] ← EXTRACT_MIN(H);
8. y ← right[T,z] ← EXTRACT_MIN(H);
9. fz ← fx + fy;
10. INSERT(H,z);

9/21/09 CSE 5311 Fall 2007
M Kumar

31

f:5 e:9 c:12 b:13 d:16 a:45

c:12 b:13 d:16 a:45
1 0

14

f:5 e:9

1 0
14

f:5 e:9

d:16
1 0

25

c:12 b:13

a:45

• The algorithm is based on a reduction of a problem with n
characters to a problem with n-1 characters.
• A new character replaces two existing ones.

9/21/09 CSE 5311 Fall 2007
M Kumar

32

1 0
25

c:12 b:13
1 0

14

f:5 e:9

1 0
30

d:16

a:45

a:45

1 0
25

c:12 b:13
1 0

14

f:5 e:9

1 0
30

d:16

1 0
55

Suppose Ci and Cj are two characters with minimal frequency, there
exists a tree that minimizes L (E,F) in which these characters correspond
to leaves with the maximal distance from the root.

9/21/09 CSE 5311 Fall 2007
M Kumar

33

1 0
25

c:12 b:13
1 0

14

f:5 e:9

1 0
30

d:16

1 0
55 a:45

1 0
100

0 101 100 111 1101 1100

9/21/09 CSE 5311 Fall 2007
M Kumar

34

Complexity of the algorithm

Building a heap in step 1 takes O(n) time
Insertions (steps 7 and 8) and
deletions (step 10) on H

 take O (log n) time each
Therefore Steps 2 through 10 take O(n logn) time

Thus the overall complexity of the algorithm is
 O(n logn).

9/21/09 CSE 5311 Fall 2007
M Kumar

35

•  The fractional knapsack problem
•  Limited supply of each item
•  Each item has a size and a value per unit (e.g., Pound)

–  greedy strategy
•  Compute value per Pound for each item
•  Arrange these in non-increasing order
•  Fill sack with the item of greatest value per pound until either

the item is exhausted or the sack is full
•  If sack is not full, fill the remainder with the next item in the

list
•  Repeat until sack is full

How about a 0-1 Knapsack?? Can we use Greedy strategy?

9/21/09 CSE 5311 Fall 2007
M Kumar

36

Problems

1.  Suppose that we have a set of k activities to schedule among n
number of lecture halls; activity i starts at time si and terminates at
time fi 1 ≤ i ≤ k. We wish to schedule all activities using as few
lecture halls as possible. Give an efficient greedy algorithm to
determine which activity should use which lecture hall.

2.  You are required to purchase n different types of items. Currently
each item costs $D. However, the items will become more
expensive according to exponential growth curves. In particular the
cost of item j increases by a factor rj > 1 each month, where rj is a
given parameter. This means that if item j is purchased t months
from now, it will cost D×rj

t. Assume that the growth rates are
distinct, that is ri = rj for items i ≠ j. Given that you can buy only one
item each month, design an algorithm that takes n rates of growth
r1, r2, …, rn, and computes an order in which to buy the items so
that the total amount spent is minimized.

