String Matching Algorithms

Topics

- Basics of Strings
- □Brute-force String Matcher
- Rabin-Karp String Matching Algorithm
- KMP Algorithm

In string matching problems, it is required to find the occurrences of a pattern in a text.

These problems find applications in text processing, text-editing, computer security, and DNA sequence analysis.

Find and Change in word processing

Sequence of the human cyclophilin 40 gene

CCCAGTCTGG AATACAGTGG CGCGATCTCG GTTCACTGCA

ACCGCCGCCT CCCGGGTTCA AACGATTCTC CTGCCTCAGC

CGCGATCTCG: DNA binding protein GATA-1

CCCGGG: DNA binding protein Sma 1

C: Cytosine, G: Guanine, A: Adenosine, T: Thymine

CSE5311 Kumar

Text: T[1..n] of length n and Pattern P[1..m] of length m. The elements of P and T are characters drawn from a finite alphabet set Σ .

For example $\Sigma = \{0,1\}$ or $\Sigma = \{a,b,\ldots,z\}$, or $\Sigma = \{c,g,a,t\}$. The character arrays of P and T are also referred to as strings of characters.

Pattern P is said to occur with shift s in text T

```
if 0 \le s \le n-m and T[s+1...s+m] = P[1...m] or T[s+j] = P[j] for 1 \le j \le m,
```

such a shift is called a valid shift.

The string-matching problem is the problem of finding all valid shifts with which a given pattern P occurs in a given text *T*.

CSE5311 Kumar

Brute force string-matching algorithm

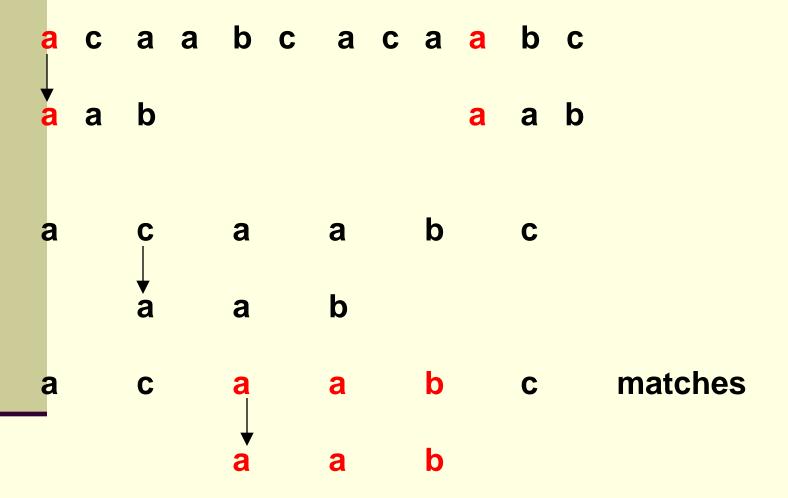
To find all valid shifts or possible values of s so that P[1..m] = T[s+1..s+m]; There are n-m+1 possible values of s.

Procedure BF_String_Matcher(T,P)

```
1. n \leftarrow \text{length} [T];
```

- 2. $m \leftarrow length[P]$;
- 3. for $s \leftarrow 0$ to n-m
- 4. do if P[1..m] = T[s+1..s+m]
- 5. then shift s is valid

This algorithm takes $\Theta((n-m+1)m)$ in the worst case.



CSE5311 Kumar

Rabin-Karp Algorithm

Let $\Sigma = \{0,1,2,\ldots,9\}$. We can view a string of k consecutive characters as representing a length-k decimal number. Let p denote the decimal number for P[1..m] Let t_s denote the decimal value of the length-m substring T[s+1...s+m] of T[1...n] for $s=0,1,\ldots,n-m$.

 $t_s = p$ if and only if T[s+1..s+m] = P[1..m], and s is a valid shift.

p = P[m] + 10(P[m-1] + 10(P[m-2] + ... + 10(P[2] + 10(P[1]))We can compute p in O(m) time.

Similarly we can compute t_0 from T[1..m] in O(m) time.

CSE5311 Kumar

$$6378 = 8 + 7 \times 10 + 3 \times 10^{2} + 6 \times 10^{3}$$

$$= 8 + 10 (7 + 10 (3 + 10(6)))$$

$$= 8 + 70 + 300 + 6000$$

$$p = P[m] + 10(P[m-1] + 10(P[m-2] + ... + 10(P[2] + 10(P[1]))$$

 t_{s+1} can be computed from t_s in constant time.

$$t_{s+1} = 10(t_s - 10^{m-1} T[s+1]) + T[s+m+1]$$

Example :
$$T = 314152$$

$$t_s = 31415$$
, $s = 0$, $m = 5$ and $T[s+m+1] = 2$

$$t_{s+1}$$
= 10(31415 –10000*3) +2 = 14152

Thus p and t_0 , t_1 , ..., t_{n-m} can all be computed in O(n+m) time.

And all occurences of the pattern *P[1..m*] in the text *T[1..n]* can be found in time *O(n+m)*.

However, p and t_s may be too large to work with conveniently.

CSE5311 Kumar

Do we have a simple solution!!

Computation of p and t_0 and the recurrence is done using modulus q.

In general, with a d-ary alphabet $\{0,1,...,d$ -1 $\}$, q is chosen such that $d \times q$ fits within a computer word.

The recurrence equation can be rewritten as

 $t_{s+1} = (d(t_s - T[s+1]h) + T[s+m+1]) \mod q,$ where $h = d^{m-1} (\mod q)$ is the value of the digit "1" in the high order position of an m-digit text window.

Note that $t_s \equiv p \mod q$ does not imply that $t_s \equiv p$.

However, if t_s is not equivalent to $p \mod q$, then $t_s \neq p$, and the shift s is invalid.

We use $t_s \equiv p \mod q$ as a fast heuristic test to rule out the invalid shifts.

Further testing is done to eliminate spurious hits.

- an explicit test to check whether

$$P[1..m] = T[s+1..s+m]$$

CSE5311 Kumar

$$t_{s+1} = (d(t_s - T[s+1]h) + T[s+m+1]) \mod q$$

 $h = d^{m-1} (mod q)$

Example:

$$T = 31415$$
; $P = 26$, $n = 5$, $m = 2$, $q = 11$

```
Procedure RABIN-KARP-MATCHER(T,P,d,q)
Input: Text T, pattern P, radix d (which is typically = |\Sigma|),
and the prime q.
Output: valid shifts s where P matches
         1. n \leftarrow \text{length}[T];
         2. m \leftarrow \text{length}[P];
         3. h \leftarrow d^{m-1} \mod q;
         4. p \leftarrow 0;
         5. t_0 \leftarrow 0;
         6, for i \leftarrow 1 to m
         7. do p \leftarrow (d \times p + P[i] \mod q;
                      t_o \leftarrow (d \times t_o + T[i] \mod q;
         9. for s \leftarrow 0 to n-m
         10. do if p = t_s
                            then if P[1..m] = T[s+1..s+m]
         11.
                                     then "pattern occurs with shift 's'
         12.
         13.
                      if s < n-m
                            then t_{s+1} \leftarrow (d(t_s - T[s+1]h) + T[s+m+1]) \mod q;
         14.
```

Comments on Rabin-Karp Algorithm

□All characters are interpreted as radix-d digits
□h is initiated to the value of high order digit position of an m-digit window
□p and t₀ are computed in O(m+m) time
□The loop of line 9 takes Θ((n-m+1)m) time
The loop 6-8 takes O(m) time
The overall running time is O((n-m)m)

Exercises

- -- Home work
 - Study KMP Algorithm for String Matching
 - -- Knuth Morris Pratt (KMP)
 - Study Boyer-Moore Algorithm for String matching
- Extend Rabin-Karp method to the problem of searching a text string for an occurrence of any one of a given set of k patterns? Start by assuming that all k patterns have the same length. Then generalize your solution to allow the patterns to have different lengths.
- Let P be set of n points in the plane. We define the depth of a point in P as the number of convex hulls that need to be peeled (removed) for p to become a vertex of the convex hull. Design an $O(n^2)$ algorithm to find the depths of **all** points in P.
- The input is two strings of characters A = a1, a2,..., an and B = b1, b2, ..., bn. Design an O(n) time algorithm to determine whether B is a cyclic shift of A. In other words, the algorithm should determine whether there exists an index k, $1 \le k \le n$ such that $ai = b(k+i) \mod n$, for all i, $1 \le i \le n$.