
1

Greedy Algorithms
and Dynamic Programming

CSE5311 Greedy_DP 2

The Greedy Principle

• The problem: We are required to find a feasible solution
that either maximizes or minimizes a given objective
solution.

• It is easy to determine a feasible solution but not necessarily
an optimal solution.

• The greedy method solves this problem in stages, at each
stage, a decision is made considering inputs in an order
determined by the selection procedure which may be based
on an optimization measure.

• The greedy algorithm always makes the choice that looks
best at the moment.
– For each decision point in the greedy algorithm, the

choice that seems best at the moment is chosen
• It makes a local optimal choice that may lead to a global

optimal choice.

2

CSE5311 Greedy_DP 3

Activity Selection Problem
• Scheduling a resource among several competing activities.
• S = {1,2, 3, …, n} is the set of n proposed activities
• The activities share a resource, which can be used by only

one activity at a time -a Tennis Court, a Lecture Hall etc.,
• Each activity i has a start time, si and a finish time fi,

where si ≤ fi.
• When selected, the activity takes place during time (si, fi)
• Activities i and j are compatible if si ≥ fj or sj ≥ fi
• The activity-selection problem selects the maximum-size

set of mutually compatible activities
• The input activities are in order by increasing finishing

times.
• f1 ≤ f2 ≤ f3 … ≤ fn ; Can be sorted in O(n log n) time

CSE5311 Greedy_DP 4

Procedure for activity selection (from CLRS)

Procedure GREEDY_ACTIVITY_SELECTOR(s, f)
n ← length [S];
A ← {1};
j ← 1;
for i ← 2 to n

do if si ≥ fj
then A ← A∪ {i};

j ← i;

3

CSE5311 Greedy_DP 5

• i si fi
• 1 1 4

• 2 3 5
• 3 0 6
• 4 5 7
• 5 3 8
• 6 5 9
• 7 6 10
• 8 8 11
• 9 8 12
• 10 2 13
• 11 12 14

• Initially we choose activity 1 as
it has the least finish time.

• Then, activities 2 and 3 are not
compatible as s2 < f1 and s3 <
f1.

• We choose activity 4, s4 > f1,
and add activity 4 to the set A.

• A = {1, 4}
• Activities 5, 6, and 7 are

incompatible and activity 8 is
chosen

• A = {1,4,8}
• Finally activity 10 is

incompatible and activity 11 is
chosen

• A {1,4,8,11}
• The algorithm can schedule a

set of n activities in Θ (n) time.

CSE5311 Greedy_DP 6

Huffman codes
Huffman codes are used to compress data. We will study
Huffman's greedy algorithm for encoding compressed data.

Data Compression

• A given file can be considered as a string of
characters.

• The work involved in compressing and uncompressing
should justify the savings in terms of savings in storage area
and/or communication costs.

• In ASCII all characters are represented by bit strings of size 7.
• For example if we had 100000 characters in a file

then we need 700000 bits to store the file using ASCII.

4

CSE5311 Greedy_DP 7

Example
The file consists of only 6 characters as shown in the table below.
Using the fixed-length binary code, the whole file can be encoded in
300,000 bits.
However using the variable-length code , the file can be encoded in
224,000 bits.

a b c d e f
Frequency 45 13 12 16 9 5
(in thousands)
Fixed-length 000 001 010 011 100 101
codeword
Variable-length 0 101 100 111 1101 1100
codeword
A variable length code gives frequent characters, short code words
and infrequent characters long words.
In the above variable-length code, 1-bit string represents the most
frequent character a, and a 4-bit string represents the most
infrequent character f.

CSE5311 Greedy_DP 8

Let us denote the characters by C1, C2, …, Cn and
denote their frequencies by f1, f2, ,,,, fn. Suppose there
is an encoding E in which a bit string Si of length si
represents Ci, the length of the file compressed by
using encoding E is

∑
=

⋅=
n

i
ii fsFEL

1
),(

5

CSE5311 Greedy_DP 9

Prefix Codes
• The prefixes of an encoding of one character

must not be equal to a complete encoding of
another character.

•1100 and 11001 are not valid codes
•because 1100 is a prefix of 11001

• This constraint is called the prefix constraint.
• Codes in which no codeword is also a prefix of

some other code word are called prefix codes.
• Shortening the encoding of one character may

lengthen the encodings of others.
• To find an encoding E that satisfies the prefix

constraint and minimizes L(E,F).

CSE5311 Greedy_DP 10

The prefix code for file
can be represented by a
binary tree in which
every non leaf node has
two children. Consider
the variable-length code
of the table above, a tree
corresponding to the
variable-length code of
the table is shown
below.

1

1
1

1

0

00

0

10 100

55

3025

14

a:45
5

c:12 b:13

e:9f:5

d:16
Note that the length
of the code for a
character is equal to
the depth of the
character in the tree
shown.

6

CSE5311 Greedy_DP 11

Greedy Algorithm for Constructing a Huffman
Code

The algorithm builds the tree corresponding to the
optimal code in a bottom-up manner.
The algorithm begins with a set of C leaves and
performs a sequence of 'merging' operations to create
the tree.
C is the set of characters in the alphabet.

CSE5311 Greedy_DP 12

Procedure Huffman_Encoding(S,f);
Input : S (a string of characters) and f (an array of
frequencies).
Output : T (the Huffman tree for S)

1. insert all characters into a heap H according to
their frequencies;

2. while H is not empty do
3. if H contains only one character x then
4. x ← root (T);
5. else
6. z ← ALLOCATE_NODE();
7. x ← left[T,z] ← EXTRACT_MIN(H);
8. y ← right[T,z] ← EXTRACT_MIN(H);
9. fz ← fx + fy;
10. INSERT(H,z);

7

CSE5311 Greedy_DP 13

f:5 e:9 c:12 b:13 d:16 a:45

c:12 b:13 d:16 a:45
10

14

f:5 e:9

10
14

f:5 e:9

d:16
10

25

c:12 b:13

a:45

•The algorithm is based on a reduction of a problem with n
characters to a problem with n-1 characters.
•A new character replaces two existing ones.

CSE5311 Greedy_DP 14

10
25

c:12 b:13
10

14

f:5 e:9

10
30

d:16

a:45

a:45

10
25

c:12 b:13
10

14

f:5 e:9

10
30

d:16

10
55

Suppose Ci and Cj are two characters with minimal frequency, there
exists a tree that minimizes L (E,F) in which these characters correspond
to leaves with the maximal distance from the root.

8

CSE5311 Greedy_DP 15

10
25

c:12 b:13
10

14

f:5 e:9

10
30

d:16

10
55a:45

10
100

CSE5311 Greedy_DP 16

Complexity of the algorithm

Building a heap in step 1 takes O(n) time
Insertions (steps 7 and 8) and
deletions (step 10) on H

take O (log n) time each
Therefore Steps 2 through 10 take O(n log n)
time

Thus the overall complexity of the algorithm is
O(n logn).

9

Dynamic programming techniques

Topics
•Basics of DP
•Matrix-chain
Multiplication
•Longest Common
subsequence
• All-pairs Shortest paths

Further Reading

Chapter 16 from

Textbook

CSE5311 Greedy_DP 18

Dynamic programming

•Solves problems by combining the solutions to subproblems

•DP is applicable when subproblems are not independent
Subproblems share subsubproblems
In such cases a simple
Divide and Conquer strategy solves common
subsubproblems.

•In DP every subproblem is solved just once and the solution is
saved in a table for future reference (avoids re-computation).

•DP is typically applied to optimization problems

•A given problem may have many solutions, DP chooses the
optimal solution.

10

CSE5311 Greedy_DP 19

Four stages of Dynamic Programming

♦Characterize the structure of an optimal solution

♦Recursively define the value of an optimal
solution

♦Compute the value of an optimal solution in a
bottom-up fashion

♦Construct an optimal solution from computed
results

CSE5311 Greedy_DP 20

Longest common subsequence

A subsequence is formed from a list by deleting zero or
more elements (the remaining elements are in order)

A common subsequence of two lists is a
subsequence of both.
The longest common subsequence (LCS) of two
lists is the longest among the common
subsequences of the two lists.

Example:

abcabba and cbabac are two sequences
baba is a subsequence of both

11

CSE5311 Greedy_DP 21

a b c a b b a

b a b a

c b a b a c

CSE5311 Greedy_DP 22

To find the length of an LCS of lists x and y, we
need to find the lengths of the LCSs of all pairs of
prefixes.

�a prefix is an initial sublist of a list

If x = (a1,a2,a3, . . ., am) and
y = (b1,b2,b3, . . ., bn)

0 ≤ i ≤ m and 0≤ j≤ n

Consider an LCS of the prefix (a1,a2,a3, . . ., ai) from x
and of the prefix (b1,b2,b3, . . ., bj) from y.

If i or j = 0 then one of the prefixes is ε and the only
possible common subsequence between x and y is ε and
the length of the LCS is zero.

12

CSE5311 Greedy_DP 23

L(i,j) is the length of the LCS of (a1,a2,a3, . . ., ai) and
(b1,b2,b3, . . ., bj).

BASIS: If i+j = 0, then both i and j are zero and so the LCS
is ε.

INDUCTION: Consider i and j, and suppose we have
already computed L(g,h) for any g and h such that

g+h < i+j.

1.If either i or j is 0 then L(i,j) = 0.
2.If i>0 and j>0, and ai≠ bj then

L(i,j) = max(L(i,j-1),L(i-1,j)).
3.If i >0 and j> 0, and ai = bj then L(i,j) = L(i-1,j-1)+1.

CSE5311 Greedy_DP 24

ε a b c a

ε
a

 c

a
 b

0 0 0 0 0
0 1 1 1 1

1.If either i or j is 0 then L(i,j) = 0.
2.If i>0 and j>0, and ai≠ bj then

L(i,j) = max(L(i,j-1),L(i-1,j)).
3.If i >0 and j> 0, and ai = bj then L(i,j) = L(i-1,j-1)+1.

0 1 1 2 2

13

CSE5311 Greedy_DP 25

Procedure LCS(x,y)
Input : The lists x and y
Output : The longest common subsequence and it's
length

1. for j ← 0 to n do
2. L[0,j] ← 0;
3. for i ← 1 to m do
4. L[i,0] ←0;
5. for j ← 1 to n do
6. if a[i] ≠ b[j] then
7. L[i,j] ← max {L[i-1,j],L[i,j-1]};
8. else
9 L[i,j] ← 1+L[i-1,j-1];

CSE5311 Greedy_DP 26

Example:
Consider, lists x = abcabba and y = cbabac

1 2 3 3 3 3 4

1 1 1 2 2 2 3
0 1 1 1 2 2 2

0
0
0
0
0
0

1 2 2 3 3 3 4

0 0 1 1 1 1 1

1 2 2 2 3 3 3

0 0 0 0 0 0 0 0

c
a
b
a
b
c

6
5
4
3
2
1
00

0 a b c a b b a

14

CSE5311 Greedy_DP 27

Consider another example
abaacbacab and bacabbcaba LCS : bacacab

1 2 3 4 5 5 5 6 7 7
1 2 3 4 4 4 5 6 6 6

6
1 2 3 4 4 4 5 5 5 6

1 2 3 3 4 4 4 4
1 2 3 4 4 4 4 5 5

5 5
1 2 3 3 3 3 4 4 4 4
1 2 2 3 3 3 3 3 3 4
1 2 2 2 2 2 2 3 3 3
1 1 1 1 2 2 2 2 2 2
0 1 1 1 1 1 1 1 1 1`

0
0
0
0
0
0
0
0
0
0

b
a
c
a
b
c
a
a
b
a
0 0 0 0 0 0 0 0 0 0 0 0

0 b a c a b b c a b a

CSE5311 Greedy_DP 28

Matrix-chain Multiplication

Consider the matrix multiplication procedure

MATRIX_MULTIPLY(A,B)
1. if columns[A] ≠ rows[B]
2. then error "incompatible dimensions”
3. else for i ← 1 to rows[A]
4. do for j ←1 to columns[B]
5. do C[i,j] ←0;
6. for k ← 1 to columns [A]
7. do C[i,j] ← C[i,j]+A[i,k]*B[k,j];
8. return C

15

CSE5311 Greedy_DP 29

The time to compute a matrix product is
dominated by the number of scalar
multiplications in line 7.

If matrix A is of size (p×q) and B is of size (q×r),
then the time to compute the product matrix is
given by pqr.
Consider three matrices A1, A2, and A3 whose
dimensions are respectively
(10×100), (100×5) (5×50).
Now there are two ways to parenthesize these
multiplications

I ((A1×A2) ×A3)
II (A1× (A2×A3))

CSE5311 Greedy_DP 30

First Parenthesization

Product A1×A2 requires 10×100×5 = 5000 scalar
multiplications
A1×A2 is a (10×5) matrix
(A1×A2) ×A3 requires 10 × 5 × 50 = 2500 scalar multiplications.
Total : 7,500 multiplications























=























×























10×100 100 ×5 10 ×5























=























×























10×5 5 ×50 10 ×50

A1

A1×A2
(A1×A2)
×A3

A3

A1 A2 A1×A2

16

CSE5311 Greedy_DP 31

 Second Parenthesization

 Product A2×A3 requires 100×5×50 = 25,000 scalar multiplications
A2×A3 is a (100×50) matrix
 A1× (A2×A3) requires 10×100×50 = 50,000 scalar multiplications
 Total : 75,000 multiplications.

The first
parenthesization
is 10 times faster
than the second
one!!

How to pick the
best
parenthesization
?























=























×






















100×5 5 ×50 100 ×50























=























×























10×100 100 ×50 10 ×50

A2 A3 A2×A3

A2×A3
A1×

(A2 ×A3)
A1

CSE5311 Greedy_DP 32

The matrix-chain matrix multiplication

Given a chain (A1, A2, . . . ,An) of n matrices, where
for i = 1,2, …, n matrix Ai has dimension pi-1×pi,
fully parenthesize the product A1A2…An in a way
that minimizes the number of scalar
multiplications.

The order in which these matrices are multiplied
together can have a significant effect on the total
number of operations required to evaluate the
product.An optimal solution to an instance of a matrix--chain

multiplication problem contains within it optimal solutions
to the subproblem instances.

17

CSE5311 Greedy_DP 33

∑
−

=
≥−⋅

=





= 1

1
2

11
n

k
nifknPkP

nif
nP

)()(
)(

Let, P(n) : The number of alternative
parenthesizations of a sequence of n matrices

We can split a sequence of n matrices between
kth and (k+1)st matrices for any k = 1, 2, …, n-1
and we can then parenthesize the two resulting
subsequences independently,

This is an exponential in n

CSE5311 Greedy_DP 34

Consider A1×A2 ×A3 ×A4

if k =1, then
A1× (A2 ×(A3 ×A4)) or

A1×((A2 ×A3)×A4)

if k =2 then
(A1×A2) × (A3 ×A4)

if k =3 then
((A1×A2) ×A3) ×A4

or (A1×(A2 ×A3)) ×A4

18

CSE5311 Greedy_DP 35

Structure of the Optimal Parenthesization
A i..j = Ai×Ai+1× . . . × Aj

An optimal parenthesization splits the product
Ai..j = (Ai×Ai+1× . . . × Ak) × (Ak+1×Ak+2× . . . × Aj)

for 1≤ k < n

The total cost of computing Ai..j
= cost of computing (Ai×Ai+1× . . . × Ak)
+ cost of computing (Ak+1× Ak+2× . . . × Aj)
+ cost of multiplying the matrices Ai..k and Ak+1..j.

Ai...k must also be optimal if we want Ai..j to be optimal. If Ai..k
is not optimal then Ai..j is not optimal. Similarly Ak+1..j must
also be optimal.

CSE5311 Greedy_DP 36

Recursive Solution
We'll define the value of an optimal solution recursively in
terms of the optimal solutions to subproblems.

m[i,j] = minimum number of scalar multiplications needed to
compute the matrix Ai..j
m[1,n] = minimum number of scalar multiplications needed to
compute the matrix A1..n.

If i = j ; the chain consists of just one matrix
A i..i = Ai - no scalar multiplications
m[i,i] = 0 for i = 1, 2, …, n.

m[i,j] = minimum cost of computing the subproducts
Ai..k and A k+1 ..j + cost of multiplying these two matrices

Multiplying Ai..k and Ak+1....j takes pi-1pk pj scalar multiplications
m[i,j] = m[i,k] + m[k+1,j] + pi-1pk pj for i≤ k < j

19

CSE5311 Greedy_DP 37

The optimal parenthesization must use one
of these values for k, we need to check
them all to find the best solution.

Therefore,









+++
<≤

=
=

− jki pppjkmkim
jki

jiif
jim

11

0

]},[],[{
min],[

Let s[i,j] be the value of k at which we can split the
product Ai× Ai+1× . . . × Aj
to obtain the optimal parenthesization.
s[i,j] equals a value of k such that
m[i,j] = m[i,k] + m[k+1,j] + pi-1pk pj for i≤ k < j

CSE5311 Greedy_DP 38

Input: sequence (p0,p1,…pn)
Output : an auxiliary table m[1..n,1..n] with m[i,j]
costs and another auxiliary table s[1..n,1..n] with
records of index k which achieves optimal cost in
computing m[i,j]
1. n←length[p]-1;
2. for i ← 1 to n
3. do m[i,i] ←0;
4. for l ← 2 to n
5. do for i ← 1 to n-l+1
6. do j ← i+l-1
7. m[i,j]←∞;
8. for k ← i to j-1
9. do q ←m[i,k]+m[k+1,j]+pi-1pkpj;
10. if q < m[i,j];
11. then m[i,j] ←q;
12. s[i,j] ←k;
13. return m and s

Procedure Matrix_Chain_Order (p)

20

CSE5311 Greedy_DP 39

Consider Four Matrices

A1 : 10 × 20 A2 : 20×50

A3: 50×1 A4 : 1 ×100

m[i,j] = m[i,k] + m[k+1,j] + pi-1pk pj for i≤ k < j

Consider A1×A2 ×A3 ×A4

if k =1, then
A1× (A2 ×(A3 ×A4))

A1×((A2 ×A3)×A4)

if k =2 then
(A1×A2) × (A3 ×A4)

if k =3 then
((A1×A2) ×A3) ×A4

and (A1×(A2 ×A3)) ×A4

MIN[(10,000+500),(1000+200)

10 ×50

20 ×1

j↓ i→ 1 2 3 4
1 0 -- -- --
2 10,000 0 -- --
3 1200 1000 0 --
4 2200 3000 5000 0

CSE5311 Greedy_DP 40

Consider, A1 (30×35)A2 (35×15)A3 (15×5),
A4(5×10), A5(10×20), A6(20×25)

j↓/i→ 1 2 3 4 5 6
1 0 -- -- -- -- --
2 15,750 0 -- -- -- --
3 7,875 2,625 0 -- -- --
4 9,375 4,375 750 0 -- --
5 11,875 7,125 2,500 1,000 0 --
6 15,125 10,500 5,375 3,500 5,000 0

m

j↓/i→ 1 2 3 4 5
2 1 - - - -
3 1 2 - - -
4 3 3 3 - -
5 3 3 3 4 -
6 3 3 3 5 5

s

(A1..A3)× (A4..A6)

(A1 × (A2 × A3)) ×

((A4 × A5) × A6)

21

CSE5311 Greedy_DP 41

Complexity? With and without DP?

• T(1) ≥ 1
• T(n) ≥ 1 +

• T(n) ≥
• Exponential in n

1)1)()(
1

1
≥+−+∑

−

=

nforknTkT
n

k

∑
−

=

+
1

1
)(2

n

i
niT

CSE5311 Greedy_DP 42

 Consider the problem of neatly printing a paragraph on
a printer. The input text is a sequence of n words of
length l1,l2, . . ., ln, measured in input characters. We
want to print this paragraph neatly on a number of lines
that hold a maximum of M characters each. Our
criterion of "neatness" is as follows. If a given line
contains words i through j and leave exactly one space
between words, the number of extra space characters at
the end of the line is

We wish to minimize the sum, over all the lines except the
last of the extra space characters at the ends of lines.
Give a dynamic programming algorithm to print a
paragraph of n words neatly on a printer. Analyze the
running time and space requirements of your algorithm.

∑
=

−+−
j

ik
klijM

22

CSE5311 Greedy_DP 43

Hints

• Assume that no word is longer than a line
• Determine the cost of a line containing

words i through j (cost is the number of
free spaces)

• We want to minimize the sum of line costs
over all lines in the paragraph.

• Try to represent the above by a recursive
expression

CSE5311 Greedy_DP 44

• A ski rental agency has m pairs of skis,
where the height of the ith pair of skis is
si. There are n skiers who wish to rent
skis, where the height of the ith skier is hi.
Ideally, each skier should obtain a pair of
skis whose height matches with his own
height as closely as possible. Design an
efficient algorithm to assign skis so that
the sum of the absolute differences of the
heights of each skier and his/her skis is
minimized.

