Greedy Algorithms and Dynamic Programming

The Greedy Principle

- **The problem:** We are required to find a feasible solution that either maximizes or minimizes a given objective solution.
- It is easy to determine a feasible solution but not necessarily an optimal solution.
- The greedy method solves this problem in stages, at each stage, a decision is made considering inputs in an order determined by the selection procedure which may be based on an optimization measure.
- The greedy algorithm always makes the choice that looks best at the moment.
 - For each decision point in the greedy algorithm, the choice that seems best at the moment is chosen
- It makes a local optimal choice that may lead to a global optimal choice.

CSE5311 Greedy_DP

Activity Selection Problem

- Scheduling a resource among several competing activities.
- $S = \{1, 2, 3, ..., n\}$ is the set of *n* proposed activities
- The activities share a resource, which can be used by only one activity at a time -a Tennis Court, a Lecture Hall etc.,
- Each activity *i* has a start time, *si* and a finish time *fi*, where *si* ≤ *fi*.
- When selected, the activity takes place during time (si, fi)
- Activities *i* and *j* are compatible if $si \ge fj$ or $sj \ge fi$
- The activity-selection problem selects the maximum-size set of mutually compatible activities
- The input activities are in order by increasing finishing times.
- $fl \le f2 \le f3 \dots \le fn$; Can be sorted in O($n \log n$) time

CSE5311 Greedy_DP

3

Procedure GREEDY_ACTIVITY_SELECTOR(*s*, *f*) $n \leftarrow length [S];$ $A \leftarrow \{1\};$ $j \leftarrow 1;$ for $i \leftarrow 2$ to n $do \text{ if } si \geq fj$ $then A \leftarrow A \cup \{i\};$ $j \leftarrow i;$

Example

infrequent character f.

The file consists of only 6 characters as shown in the table below. Using the fixed-length binary code, the whole file can be encoded in 300,000 bits.

However using the variable-length code , the file can be encoded in 224,000 bits.

	а	b	С	d	е	f		
Frequency	45	13	12	16	9	5		
(in thousands)								
Fixed-length	000	001	010	011	100	101		
codeword								
Variable-length	0	101	100	111	1101	1100		
codeword								
A variable length code gives frequent characters, short code words								
and infrequent characters long words.								
In the above variable	e-length	code,	1-bit st	ring rep	resents	the most		
frequent character	a, and	a 4-b	it strin	g repre	esents t	the most		

CSE5311 Greedy DP

Let us denote the characters by $C_1, C_2, ..., C_n$ and denote their frequencies by $f_1, f_2, ..., f_n$. Suppose there is an encoding E in which a bit string S_i of length s_i represents C_i , the length of the file compressed by using encoding E is

$$L(E,F) = \sum_{i=1}^{n} s_i \cdot f_i$$

CSE5311 Greedy_DP

Prefix Codes

Greedy Algorithm for Constructing a Huffman Code

The algorithm builds the tree corresponding to the optimal code in a bottom-up manner.

The algorithm begins with a set of |C| leaves and performs a sequence of 'merging' operations to create the tree.

C is the set of characters in the alphabet.

CSE5311 Greedy_DP

Inpu	t : S (a string of characters) and f (an array of
frequ	Jencies). Nut : T (the Huffman tree for S)
Outp	iut. 1 (the Humman tree for S)
1.	insert all characters into a heap H according to their frequencies;
2.	while H is not empty do
3.	if H contains only one character x then
4.	$x \leftarrow root(T);$
5.	else
6.	$z \leftarrow ALLOCATE_NODE();$
7.	$x \leftarrow \text{left}[T,z] \leftarrow \text{EXTRACT}MIN(H);$
8.	$y \leftarrow right[T,z] \leftarrow EXTRACT_MIN(H);$
9.	$f_z \leftarrow f_x + f_y;$
10.	INSERT(H.z):

To find the length of an LCS of lists x and y, we need to find the lengths of the LCSs of all pairs of prefixes. **a** prefix is an initial sublist of a list If $x = (a_1, a_2, a_3, \dots, a_m)$ and $y = (b_1, b_2, b_3, \dots, b_n)$ $0 \le i \le m$ and $0 \le j \le n$ Consider an LCS of the prefix $(a_1, a_2, a_3, \dots, a_i)$ from x and of the prefix $(b_1, b_2, b_3, \dots, b_j)$ from y. If i or j = 0 then one of the prefixes is ε and the only possible common subsequence between x and y is ε and the length of the LCS is zero.


```
Procedure LCS(x,y)
Input : The lists x and y
Output : The longest common subsequence and it's
length
        1. for j \leftarrow 0 to n do
        2.
                L[0,j] ← 0;
        3. for i \leftarrow 1 to m do
               L[i,0] ←0;
        4.
               for j \leftarrow 1 to n do
        5.
                       if a[i] ≠ b[j] then
        6.
        7.
                            L[i,j] \leftarrow \max \{L[i-1,j], L[i,j-1]\};
        8.
                        else
                            L[i,j] \leftarrow 1 + L[i-1,j-1];
        9
                                                                    5
```


The matrix-chain matrix multiplication Given a chain $(A_1, A_2, ..., A_n)$ of n matrices, where for i = 1,2, ..., n matrix A_i has dimension $p_{i-1} \times p_i$, fully parenthesize the product $A_1A_2...A_n$ in a way that minimizes the number of scalar multiplications. The order in which these matrices are multiplied together can have a significant effect on the total number of operations required to evaluate the An optimal solution to an instance of a matrix--chain multiplication problem contains within it optimal solutions to the subproblem instances.

CSE5311 Greedy_DP

Let, P(n) : The number of alternative parenthesizations of a sequence of n matrices

We can split a sequence of n matrices between kth and (k+1)st matrices for any k = 1, 2, ..., n-1 and we can then parenthesize the two resulting subsequences independently,

$$P(n) = \begin{cases} 1 & \text{if } n=1 \\ \sum_{k=1}^{n-1} P(k) \cdot P(n-k) & \text{if } n \ge 2 \end{cases}$$

This is an exponential in n

CSE5311 Greedy_DP

Consider
$$A_1 \times A_2 \times A_3 \times A_4$$

if k =1, then
 $A_1 \times (A_2 \times (A_3 \times A_4))$ or
 $A_1 \times ((A_2 \times A_3) \times A_4)$
if k =2 then
 $(A_1 \times A_2) \times (A_3 \times A_4)$
if k =3 then
 $((A_1 \times A_2) \times A_3) \times A_4$
or $(A_1 \times (A_2 \times A_3)) \times A_4$

Recursive Solution
We'll define the value of an optimal solution recursively in
terms of the optimal solutions to subproblems.
m[i,j] = minimum number of scalar multiplications needed to
compute the matrix A_{i.j}
m[1,n] = minimum number of scalar multiplications needed to
compute the matrix A_{i.i.}
m[1,n] = minimum number of scalar multiplications needed to
compute the matrix A_{i.n}.

If i = j ; the chain consists of just one matrix
A_{i.i.} = A_i - no scalar multiplications
m[i,i] = 0 for i = 1, 2, ..., n.

m[i,j] = minimum cost of computing the subproducts
A_{i..k} and A_{k+1...j} + cost of multiplying these two matrices

Multiplying A_{i..k} and A_{k+1...j} takes p_{i.1}p_k p_j scalar multiplications
m[i,j] = m[i,k] + m[k+1,j] + p_{i.1}p_k p_j for i≤ k < j</pre>

Consider, A1 (30×35)A2 (35×15)A3 (15×5), A4(5×10), A5(10×20), A6(20×25)												
m	j↓/i→ 1	1 0		2	3		4	5	6 			
	2	15,750 7,875		0								
	4	9,375		4,375	750		0					
	5	11,87	75	7,125	2,5	00	1,000	0				
	6	15,12	25	10,500	5,3	75	3,500	5,000	0			
8	j↓/i→ 2 3 4 5 6	1 1 3 3 3	2 - 2 3 3 3	3 - - 3 3 3	4 - - 4 5	5 - - - 5		$(A1A3) \times (A4A6)$ $(A1 \times (A2 \times A3)) \times$ $((A4 \times A5) \times A6)$				
				CSI	E5311	Greed	y_DP			40		

Complexity? With and without DP?

Consider the problem of neatly printing a paragraph on \cdot a printer. The input text is a sequence of *n* words of length l_1, l_2, \ldots, l_n , measured in input characters. We want to print this paragraph neatly on a number of lines that hold a maximum of *M* characters each. Our criterion of "neatness" is as follows. If a given line contains words *i* through *j* and leave exactly one space between words, the number of extra space characters at the end of the line is

$$M-j+i-\sum_{k=i}^{j}l_{k}$$

We wish to minimize the sum, over all the lines except the last of the extra space characters at the ends of lines. Give a dynamic programming algorithm to print a paragraph of n words neatly on a printer. Analyze the running time and space requirements of your algorithm.

CSE5311 Greedy_DP

42

<text><list-item><list-item><list-item><list-item>

• A ski rental agency has *m* pairs of skis, where the height of the *i*th pair of skis is s_i . There are *n* skiers who wish to rent skis, where the height of the *i*th skier is h_i . Ideally, each skier should obtain a pair of skis whose height matches with his own height as closely as possible. Design an efficient algorithm to assign skis so that the sum of the absolute differences of the heights of each skier and his/her skis is minimized.