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Greedy  Algorithms
and Dynamic Programming 
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The Greedy Principle

• The problem: We are required to find a feasible solution 
that either maximizes or minimizes a given objective 
solution.

• It is easy to determine a feasible solution but not necessarily 
an optimal solution.

• The greedy method solves this problem in stages, at each 
stage, a decision is made considering inputs in an order 
determined by the selection procedure which may be  based 
on an optimization measure.

• The greedy algorithm always makes the choice that looks 
best at the moment.
– For each decision point in the greedy algorithm, the 

choice that seems best at the moment is chosen
• It makes a local optimal choice that may lead to a global 

optimal choice.
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Activity Selection Problem
• Scheduling a resource among several competing activities.
• S = {1,2, 3, …, n} is the set of n proposed activities
• The activities share a resource, which can be used by only 

one activity at a time -a Tennis Court, a Lecture Hall etc.,
• Each activity i has a start time, si and a finish time fi, 

where si ≤ fi. 
• When selected, the  activity takes place during time (si, fi)
• Activities i and j are compatible if si ≥ fj or sj ≥ fi
• The activity-selection problem selects the maximum-size 

set of mutually compatible activities
• The input activities are in order by increasing finishing 

times.
• f1 ≤ f2 ≤ f3 … ≤ fn ;  Can be sorted in O(n log n ) time
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Procedure for activity selection (from CLRS)

Procedure GREEDY_ACTIVITY_SELECTOR(s, f)
n ← length [S];
A ← {1};
j ← 1;
for i ← 2 to n

do if si ≥ fj
then A ← A∪ {i};

j ← i;
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• i si fi
• 1 1 4    

• 2 3 5
• 3 0 6
• 4 5 7
• 5 3 8
• 6 5 9
• 7 6 10
• 8 8 11
• 9 8 12
• 10 2 13
• 11 12 14

• Initially we choose activity 1 as 
it has the least finish time.

• Then, activities 2 and 3 are not 
compatible as s2 < f1 and s3 < 
f1.

• We choose activity 4, s4 > f1, 
and add activity 4 to the set A.

• A = {1, 4}
• Activities 5, 6, and 7 are 

incompatible and activity 8 is 
chosen 

• A = {1,4,8}
• Finally activity 10 is 

incompatible and activity 11 is 
chosen 

• A {1,4,8,11}
• The algorithm can schedule a 

set of n activities in Θ (n) time.
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Huffman codes
Huffman codes are used to compress data. We will study 
Huffman's greedy algorithm for encoding compressed data.

Data Compression

• A given file can be considered as a string of 
characters. 

• The work involved in compressing and uncompressing    
should justify the savings in terms of savings in storage area 
and/or communication costs.  

• In ASCII all characters are represented by bit strings of size 7.
• For example if we had  100000 characters in a file 

then we need 700000 bits to  store the file using ASCII. 
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Example
The file consists of only 6 characters as shown in the table below.
Using the fixed-length binary code, the whole file can be encoded in 
300,000 bits. 
However using the variable-length code , the file can be encoded in 
224,000 bits. 

a b c d e f
Frequency 45 13 12 16 9 5
(in thousands)
Fixed-length 000 001 010 011 100 101
codeword
Variable-length 0 101 100 111 1101 1100
codeword
A variable length code gives frequent characters, short code words 
and infrequent characters long words. 
In the above variable-length code,  1-bit string represents the most 
frequent character a, and a 4-bit string represents the most 
infrequent character f. 
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Let us denote the characters by C1, C2, …, Cn and 
denote their frequencies by f1, f2, ,,,, fn.  Suppose there 
is an encoding E in which a bit string Si of length si
represents Ci, the length of the file compressed by 
using encoding E is 
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Prefix Codes
• The prefixes of an encoding of one character 

must not be equal to a complete encoding of 
another character. 

•1100   and 11001 are not valid codes
•because 1100 is a prefix of 11001

• This constraint is called the prefix constraint.  
• Codes in which no codeword is also a prefix of 

some other code word are called prefix codes.  
• Shortening the encoding of one character may 

lengthen the encodings of others. 
• To find an encoding E that satisfies the prefix 

constraint and minimizes L(E,F). 
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The prefix code for file 
can be represented by a 
binary tree in which 
every non leaf node has 
two children.  Consider 
the variable-length code 
of the table above, a tree 
corresponding to the 
variable-length code of 
the table is shown 
below. 
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a:45
5

c:12 b:13

e:9f:5

d:16
Note that the length 
of the code for a 
character is equal to 
the depth of the 
character in the tree 
shown. 
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Greedy Algorithm for Constructing a Huffman 
Code

The algorithm builds the tree corresponding to the 
optimal code in a bottom-up manner.
The algorithm begins with a set of C leaves and 
performs a sequence of 'merging' operations to create 
the tree.
C is the set of characters in the alphabet.
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Procedure Huffman_Encoding(S,f);
Input : S (a string of characters) and f (an array of 
frequencies).
Output : T (the Huffman tree for S)

1. insert all characters into a heap H according to 
their frequencies;

2. while H is not empty do
3. if H contains only one character x then
4. x ← root (T);
5. else
6. z ← ALLOCATE_NODE();
7. x ← left[T,z] ← EXTRACT_MIN(H);
8. y ← right[T,z] ← EXTRACT_MIN(H);
9. fz ← fx + fy;
10. INSERT(H,z);
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f:5 e:9 c:12 b:13 d:16 a:45

c:12 b:13 d:16 a:45
10

14

f:5 e:9

10
14

f:5 e:9

d:16
10

25

c:12 b:13

a:45

•The algorithm is based on a reduction of a problem with n 
characters to a problem with n-1 characters.
•A new character  replaces two existing ones.
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10
25

c:12 b:13
10

14

f:5 e:9

10
30

d:16

a:45

a:45

10
25

c:12 b:13
10

14

f:5 e:9

10
30

d:16

10
55

Suppose  Ci and Cj are two characters with minimal frequency, there 
exists a tree that minimizes L (E,F) in which these characters correspond 
to leaves with the maximal distance from the root.
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10
25

c:12 b:13
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14

f:5 e:9

10
30

d:16

10
55a:45

10
100
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Complexity of the algorithm

Building a heap in step 1 takes O(n) time
Insertions (steps 7 and 8) and 
deletions  (step 10) on H 

take O (log n)   time each
Therefore Steps 2 through 10 take O(n log n) 
time

Thus the overall complexity of the algorithm is 
O( n logn ).
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Dynamic programming techniques

Topics
•Basics of DP
•Matrix-chain 
Multiplication
•Longest Common 
subsequence
• All-pairs Shortest paths

Further Reading

Chapter 16 from 

Textbook
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Dynamic programming

•Solves problems by combining the solutions to subproblems

•DP is applicable when subproblems are not independent
Subproblems share subsubproblems
In such cases a simple 
Divide and Conquer strategy solves common 
subsubproblems.

•In DP every subproblem is solved just once and the solution is 
saved in a table for future reference (avoids re-computation).

•DP is typically applied to optimization problems

•A given problem may have many solutions, DP chooses the 
optimal solution.
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Four stages of Dynamic Programming

♦Characterize the structure of an optimal solution

♦Recursively define the value of an optimal 
solution

♦Compute the value of an optimal solution in a 
bottom-up fashion

♦Construct an optimal solution from computed 
results
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Longest common subsequence

A subsequence is formed from a list by deleting zero or 
more elements  (the remaining elements are in order)

A common subsequence of two lists is a 
subsequence of both. 
The longest common subsequence (LCS) of two 
lists is the longest among the common 
subsequences of the two lists. 

Example:

abcabba and cbabac are two sequences
baba is a subsequence of  both
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a b c a b b a

b a b a

c b a b a c
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To find the length of an LCS of lists x and y, we 
need to find the lengths of the LCSs of all pairs of 
prefixes.

�a prefix is an initial sublist of a list

If x = (a1,a2,a3, . . ., am) and 
y = (b1,b2,b3, . . ., bn)

0 ≤ i ≤ m and 0≤ j≤ n

Consider an LCS of the prefix (a1,a2,a3, . . ., ai) from x 
and of the prefix (b1,b2,b3, . . ., bj) from y. 

If i or j = 0 then one of the prefixes is ε and the only 
possible common subsequence between x and y is ε and 
the length of the LCS is zero.



12

CSE5311 Greedy_DP 23

L(i,j) is the length of the LCS of (a1,a2,a3, . . ., ai) and
(b1,b2,b3, . . ., bj).

BASIS: If i+j = 0, then both i and j are zero and so the LCS 
is ε.

INDUCTION: Consider i and j, and suppose we have 
already computed L(g,h) for any g and h such that 

g+h < i+j.

1.If either i or j is 0 then L(i,j) = 0.
2.If i>0 and j>0, and ai≠ bj then 

L(i,j) = max(L(i,j-1),L(i-1,j)).
3.If i >0 and j> 0, and ai = bj then L(i,j) = L(i-1,j-1)+1.
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ε a b  c  a

ε
a 

  c
   

a 
  b

 

0  0  0  0  0
0  1  1  1  1  

1.If either i or j is 0 then L(i,j) = 0.
2.If i>0 and j>0, and ai≠ bj then 

L(i,j) = max(L(i,j-1),L(i-1,j)).
3.If i >0 and j> 0, and ai = bj then L(i,j) = L(i-1,j-1)+1.

0  1  1  2  2  



13

CSE5311 Greedy_DP 25

Procedure LCS(x,y)
Input : The lists x and y
Output : The longest common subsequence and it's 
length

1. for j ← 0 to n do
2. L[0,j] ← 0;
3. for i ← 1 to m do
4. L[i,0] ←0;  
5. for j ← 1 to n do
6. if a[i] ≠ b[j] then
7. L[i,j] ← max {L[i-1,j],L[i,j-1]};
8. else
9 L[i,j] ← 1+L[i-1,j-1];

CSE5311 Greedy_DP 26

Example:
Consider, lists x = abcabba and y = cbabac

1 2 3 3 3 3 4

1 1 1 2 2 2 3
0 1 1 1 2 2 2

0
0
0
0
0
0

1 2 2 3 3 3 4

0 0 1 1 1 1 1

1 2 2 2 3 3 3

0 0 0 0 0 0 0 0

c
a
b
a
b
c

6
5
4
3
2
1
00

0  a   b   c a   b b a
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Consider another example
abaacbacab and bacabbcaba LCS : bacacab

1 2 3 4 5 5 5 6 7 7
1 2 3 4 4 4 5 6 6 6

6
1 2 3 4 4 4 5 5 5 6

1 2 3 3 4 4 4 4
1 2 3 4 4 4 4 5 5

5 5
1 2 3 3 3 3 4 4 4 4
1 2 2 3 3 3 3 3 3 4
1 2 2 2 2 2 2 3 3 3
1 1 1 1 2 2 2 2 2 2
0 1 1 1 1 1 1 1 1 1`

0
0
0
0
0
0
0
0
0
0

b
a
c
a
b
c
a
a
b
a
0 0 0 0 0 0 0 0 0 0 0 0

0 b a c a b b c a b a
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Matrix-chain Multiplication

Consider the matrix multiplication procedure

MATRIX_MULTIPLY(A,B)
1. if columns[A] ≠ rows[B]
2. then error "incompatible dimensions”
3. else for i ← 1 to rows[A]
4. do for j ←1 to columns[B]
5. do C[i,j] ←0;
6. for k ← 1 to columns [A]
7. do C[i,j] ← C[i,j]+A[i,k]*B[k,j];
8. return C
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The time to compute a matrix product is 
dominated by the number of scalar 
multiplications in line 7.

If matrix A is of size (p×q) and B is of size (q×r), 
then the time to compute the product matrix is 
given by pqr.
Consider three matrices A1, A2, and A3 whose 
dimensions are respectively  
(10×100), (100×5) (5×50).
Now there are two ways to parenthesize these 
multiplications

I ((A1×A2) ×A3) 
II (A1× (A2×A3))
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First Parenthesization

Product A1×A2 requires 10×100×5 = 5000 scalar 
multiplications
A1×A2 is a (10×5) matrix
(A1×A2) ×A3 requires 10 × 5 × 50 = 2500 scalar multiplications.
Total : 7,500 multiplications
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 Second Parenthesization

 Product A2×A3 requires 100×5×50 = 25,000 scalar multiplications 
A2×A3 is a (100×50) matrix
 A1× (A2×A3) requires 10×100×50 = 50,000 scalar multiplications
 Total : 75,000 multiplications.

The first 
parenthesization
is 10 times faster 
than the second 
one!!

How to pick the 
best 
parenthesization
?























=























×






















100×5 5 ×50 100 ×50























=























×























10×100 100 ×50 10 ×50

A2 A3 A2×A3

A2×A3
A1×

(A2 ×A3)
A1

CSE5311 Greedy_DP 32

The matrix-chain matrix multiplication

Given a chain (A1, A2, . . . ,An) of n matrices, where 
for i = 1,2, …, n matrix Ai has dimension pi-1×pi, 
fully parenthesize the product A1A2…An in a way 
that minimizes the number of scalar 
multiplications.

The order in which these matrices are multiplied 
together can have a significant effect on the total 
number of operations required to evaluate the 
product.An optimal solution to an instance of a matrix--chain 

multiplication problem contains within it optimal solutions 
to the subproblem instances.
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Let, P(n) : The number of alternative 
parenthesizations of a sequence  of n matrices

We can split a sequence of n matrices between 
kth and (k+1)st matrices for any k = 1, 2, …, n-1 
and we can then parenthesize the two resulting 
subsequences independently,

This is an exponential in n
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Consider A1×A2 ×A3 ×A4

if k =1,  then 
A1× (A2 ×(A3 ×A4)) or

A1×((A2 ×A3 )×A4)

if k =2  then 
(A1×A2) × (A3 ×A4)

if k =3  then 
((A1×A2) ×A3) ×A4

or (A1×(A2 ×A3)) ×A4
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Structure of the Optimal Parenthesization
A i..j = Ai×Ai+1× . . . × Aj

An optimal parenthesization splits the product
Ai..j = (Ai×Ai+1× . . . × Ak) × (Ak+1×Ak+2× . . . × Aj)  

for 1≤ k < n

The total cost of computing Ai..j
= cost of computing (Ai×Ai+1× . . . × Ak) 
+ cost of computing (Ak+1× Ak+2× . . . × Aj) 
+ cost of multiplying the matrices Ai..k and Ak+1..j.

Ai...k must also be optimal if we want Ai..j to be optimal. If Ai..k
is not optimal then Ai..j is not optimal. Similarly Ak+1..j must 
also be optimal.
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Recursive Solution
We'll define the value of an optimal solution recursively in 
terms of the optimal solutions to subproblems.

m[i,j] = minimum number of scalar multiplications needed to 
compute  the matrix Ai..j
m[1,n] = minimum number of scalar multiplications needed to 
compute  the matrix A1..n.

If i = j ; the chain consists of just one matrix
A i..i = Ai - no scalar multiplications
m[i,i] = 0 for  i = 1, 2, …, n. 

m[i,j] = minimum cost of computing the subproducts
Ai..k and A k+1 ..j + cost of multiplying these two matrices

Multiplying Ai..k and Ak+1....j takes pi-1pk pj scalar multiplications
m[i,j] = m[i,k] + m[k+1,j] + pi-1pk pj for i≤ k < j
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The optimal parenthesization must use one 
of these values for k, we need to check 
them all to find the best solution.

Therefore, 
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Let s[i,j] be the value of k at which we can split the 
product  Ai× Ai+1× . . . × Aj
to obtain the optimal parenthesization.
s[i,j]  equals a value of k such that
m[i,j] = m[i,k] + m[k+1,j] + pi-1pk pj for i≤ k < j
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Input: sequence (p0,p1,…pn) 
Output : an auxiliary table m[1..n,1..n] with m[i,j] 
costs and another auxiliary table s[1..n,1..n] with 
records of index k which achieves optimal cost in 
computing m[i,j]
1. n←length[p]-1;
2. for i ← 1 to n
3. do m[i,i] ←0;
4. for l ← 2 to n
5. do for i ← 1 to n-l+1
6. do j ← i+l-1
7. m[i,j]←∞;
8. for k ← i to j-1
9. do q ←m[i,k]+m[k+1,j]+pi-1pkpj;
10. if q < m[i,j];
11. then m[i,j] ←q;
12. s[i,j] ←k;
13. return m and s

Procedure Matrix_Chain_Order (p)
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Consider Four Matrices 

A1 : 10 × 20   A2 : 20×50

A3: 50×1 A4 : 1 ×100

m[i,j] = m[i,k] + m[k+1,j] + pi-1pk pj for i≤ k < j

Consider A1×A2 ×A3 ×A4

if k =1,  then 
A1× (A2 ×(A3 ×A4))

A1×((A2 ×A3 )×A4)

if k =2  then 
(A1×A2) × (A3 ×A4)

if k =3  then 
((A1×A2) ×A3) ×A4

and (A1×(A2 ×A3)) ×A4

MIN[(10,000+500),(1000+200) 

10 ×50

20 ×1

j↓ i→ 1 2 3 4
1 0 -- -- --
2 10,000 0 -- --
3 1200 1000 0 --
4 2200 3000 5000 0
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Consider, A1 (30×35)A2 (35×15)A3 (15×5), 
A4(5×10), A5(10×20), A6(20×25)

j↓/i→ 1 2 3 4 5 6
1 0 -- -- -- -- --
2 15,750 0 -- -- -- --
3 7,875 2,625 0 -- -- --
4 9,375 4,375 750 0 -- --
5 11,875 7,125 2,500 1,000 0 --
6 15,125 10,500 5,375 3,500 5,000 0

m

j↓/i→ 1 2 3 4 5
2 1 - - - -
3 1 2 - - -
4 3 3 3 - -
5 3 3 3 4 -
6 3 3 3 5 5

s

(A1..A3)× (A4..A6)

(A1 × (A2 × A3)) ×

((A4 × A5) × A6)
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Complexity? With and without DP?

• T(1) ≥ 1
• T(n) ≥ 1 + 

• T(n) ≥
• Exponential in n

1)1)()(
1

1
≥+−+∑

−

=

nforknTkT
n

k

∑
−

=

+
1

1
)(2

n

i
niT

CSE5311 Greedy_DP 42

 Consider the problem of neatly printing a paragraph on 
a printer. The input text is a sequence of n words of 
length   l1,l2, . . ., ln, measured in input characters. We 
want to print this paragraph neatly on a number of lines 
that hold a maximum of M characters each. Our 
criterion of "neatness" is as follows. If a given line 
contains words i through j and leave exactly one space 
between words, the number of extra space characters at 
the end  of the line is

We wish to minimize the sum, over all the lines except the 
last of the extra space characters at the ends of lines.  
Give a dynamic programming algorithm to print a 
paragraph of n words neatly on a printer. Analyze the 
running time and space requirements of your algorithm.
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Hints 

• Assume that no word is longer than a line
• Determine the cost of a line containing 

words i through j (cost is the number of 
free spaces)

• We want to minimize the sum of line costs 
over all lines in the paragraph.

• Try to represent the above by a recursive 
expression   
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• A ski rental agency has m pairs of skis, 
where the height of the ith pair of skis is 
si. There are n skiers who wish to rent 
skis, where the height of the ith skier is hi. 
Ideally, each skier should obtain a pair of 
skis whose height matches with his own 
height as closely as possible. Design an 
efficient algorithm to assign skis so that 
the sum of the absolute differences of the 
heights of each skier and his/her skis is 
minimized.


