
1

Kumar String matching 1

String Matching Algorithms

Topics
Basics of Strings
Brute-force String Matcher
Rabin-Karp String Matching

Algorithm
KMP Algorithm

Kumar String matching 2

In string matching problems, it is required to find the
occurrences of a pattern in a text.

These problems find applications in text processing,
text-editing, computer security, and DNA sequence
analysis.

Find and Change in word processing

Sequence of the human cyclophilin 40 gene
CCCAGTCTGG AATACAGTGG CGCGATCTCG GTTCACTGCA

ACCGCCGCCT CCCGGGTTCA AACGATTCTC CTGCCTCAGC

CGCGATCTCG : DNA binding protein GATA-1

CCCGGG : DNA binding protein Sma 1

C: Cytosine, G : Guanine, A : Adenosine, T : Thymine

2

Kumar String matching 3

Text : T[1..n] of length n and Pattern P[1..m] of length m.
The elements of P and T are characters drawn from a finite
alphabet set Σ.
For example Σ= {0,1} or Σ = {a,b, . . . , z}, or Σ = {c, g, a, t}.
The character arrays of P and T are also referred to as
strings of characters.
Pattern P is said to occur with shift s in text T

if 0 ≤ s ≤ n-m and
T[s+1..s+m] = P[1..m] or
T[s+j] = P[j] for 1 ≤ j ≤m,

such a shift is called a valid shift.
The string-matching problem is the problem of finding all
valid shifts with which a given pattern P occurs in a given
text T.

Kumar String matching 4

Brute force string-matching algorithm

To find all valid shifts or possible values of s so that
P[1..m] = T[s+1..s+m] ;
There are n-m+1 possible values of s.

Procedure BF_String_Matcher(T,P)

1. n ← length [T];
2. m ← length[P];
3. for s ← 0 to n-m
4. do if P[1..m] = T[s+1..s+m]
5. then shift s is valid

This algorithm takes Θ((n-m+1)m) in the worst case.

3

Kumar String matching 5

a c a a b c a c a a b c

a a b a a b

a c a a b c

a a b

a c a a b c matches

a a b

Kumar String matching 6

Rabin-Karp Algorithm

Let Σ = {0,1,2, . . .,9}.
We can view a string of k consecutive characters as
representing a length-k decimal number.
Let p denote the decimal number for P[1..m]
Let ts denote the decimal value of the length-m
substring T[s+1..s+m] of T[1..n] for s = 0, 1, . . ., n-m.

ts = p if and only if
T[s+1..s+m] = P[1..m], and s is a valid shift.

p = P[m] + 10(P[m-1] +10(P[m-2]+ . . . +10(P[2]+10(P[1]))
We can compute p in O(m) time.

Similarly we can compute t0 from T[1..m] in O(m) time.

4

Kumar String matching 7

p = P[m] + 10(P[m-1] +10(P[m-2]+ . . . +10(P[2]+10(P[1]))

6378 = 8 + 7 × 10 + 3 × 102 + 6 × 103

= 8 + 10 (7 + 10 (3 + 10(6)))

= 8 + 70 + 300 + 6000

m =4

Kumar String matching 8

ts+1 can be computed from ts in constant time.

ts+1 = 10(ts –10m-1 T[s+1])+ T[s+m+1]

Example : T = 314152
ts = 31415, s = 0, m= 5 and T[s+m+1] = 2

ts+1= 10(31415 –10000*3) +2 = 14152

Thus p and t0, t1, . . ., tn-m can all be computed in O(n+m)
time.
And all occurences of the pattern P[1..m] in the text
T[1..n] can be found in time O(n+m).

However, p and ts may be too large to work with
conveniently.
Do we have a simple solution!!

5

Kumar String matching 9

Computation of p and t0 and the recurrence is done modulus q.

In general, with a d-ary alphabet {0,1,…,d-1}, q is chosen such that
d×q fits within a computer word.

The recurrence equation can be rewritten as
ts+1 = (d(ts –T[s+1]h)+ T[s+m+1]) mod q,

where h = dm-1(mod q) is the value of the digit “1” in the high
order position of an m-digit text window.

Note that ts ≡ p mod q does not imply that ts = p.
However, if ts is not equivalent to p mod q ,
then ts≠ p, and the shift s is invalid.

We use ts ≡ p mod q as a fast heuristic test to rule out the
invalid shifts.
Further testing is done to eliminate spurious hits.

- an explicit test to check whether
P[1..m] = T[s+1..s+m]

Kumar String matching 10

ts+1 = (d(ts –T[s+1]h)+ T[s+m+1]) mod q

h = dm-1(mod q)

Example :

T = 31415; P = 26, n = 5, m = 2, q = 11

p = 26 mod 11 = 4

t0 = 31 mod 11 = 9

t1 = (10(9 - 3(10) mod 11) + 4) mod 11

= (10 (9- 8) + 4) mod 14 = 14 mod 11 = 3

6

Kumar String matching 11

Procedure RABIN-KARP-MATCHER(T,P,d,q)
Input : Text T, pattern P, radix d (which is typically =Σ),
and the prime q.
Output : valid shifts s where P matches

1. n ← length[T];
2. m ← length[P];
3. h ← dm-1 mod q;
4. p ← 0;
5. t0 ← 0;
6. for i ← 1 to m
7. do p ← (d×p + P[i] mod q;
8. t0 ← (d×t0 +T[i] mod q;
9. for s ← 0 to n-m
10. do if p = ts
11. then if P[1..m] = T[s+1..s+m]
12. then “pattern occurs with shift “ s
13. if s < n-m
14. then ts+1 ← (d(ts –T[s+1]h)+ T[s+m+1]) mod q;

Kumar String matching 12

Comments on Rabin-Karp Algorithm

All characters are interpreted as radix-d digits
h is initiated to the value of high order digit position of an

m-digit window
p and t0 are computed in O(m+m) time
The loop of line 9 takes Θ((n-m+1)m) time

The loop 6-8 takes O(m) time
The overall running time is O((n-m)+m)

7

Kumar String matching 13

Knuth Morris Pratt(KMP) Algorithm

Pseudocode :

KMP-Matcher (T, P)
n ← length (T)
m ← length (P)
π ← Compute-Prefix-Function (P)
q ← 0
for i = 1 to n
while q > 0 and P[q+1] ≠ T [i] ;

do q ← π [q]
if P[q+1] = T [i]

then q ← q + 1
if q = m

then print ``Pattern occurs
with shift'' (i - m)

q ← π [q]
Compute-Prefix-Function (P)

Compute Prefix Function (P)
m ← length [P]
π[1] ← 0
k ← 0
for q ← 2 to m

do while k > 0 and P[k+1]≠ P[q]
do k ← π[k]

if P[k+1] = P[q]
then k ← k+1

π [q] ← k
return π

Kumar String matching 14

• Given the pattern P [1..q] matches text chs
T[s+1.. S+q]

What is the least shift s’ > s such that
P[1..k] = T[s’+1, .. s’+k], s’+k = s+q
Given pattern P[1..m], the prefix function for

the pattern P is the function
π : {1,2, … m } → {0,1, …m-1} such that
π [q] = max { k: k < q and Pk is a suffix of Pq

8

Kumar String matching 15

babcbaabababcab

acababa

babcbaabababcab

acababa

ababa

aba

q

k

s

s’ = s+2

Kumar String matching 16

1065432100π[i]

acbabababaP[i]

10987654321i

9

Kumar String matching 17

KMP algorithm (contd..)

Running time analysis of KMP yields
O(m+n), because the call of the function takes
O(m) time and the remainder KMP matcher
algorithm takes O(n) time.

KMP is among the fastest algorithms for large
sizes of P and T

Kumar String matching 18

Boyer Moore Algorithm
Pseudocode

n <-- length [T]
m <-- length [P]
∂ <-- COMPUTE-LAST-OCCURRENCE-FUNCTION(P,m,ξ)
Φ <-- COMPUTE-GOOD-SUFFIX-FUNCTION(P,m)
S <-- 0
While s ≤ n –m

do j <-- m
while j >0 and P[j] = T[s+j]

do j <-- j -1
if j =0

then print “Pattern Occurs at shift “ s
s <-- s+ Φ[0]

else s <-- s + max(Φ[j],j - ∂[T[s +j]])
s <-- s + 1

else s <-- s + 1

10

Kumar String matching 19

Boyer Moore Algorithm(contd.)
This algorithm is considered as the most efficient algorithm
for most of the general applications of string matching.

♦ This algorithm scans the pattern from right to left
♦ In case of a mismatch it uses 2 pre computed functions

(a) Good-Suffix Shift (b) Bad Character shift(occurrence shift)

Assume that a mismatch occurs between the character x[i]=a of the pattern and the
character y[i+j]=b of the text during an attempt at position j. Then, x[i+1 .. m-1]=
y[i+j+1 .. j+m-1]=u and x[i] y[i+j]. The good-suffix shift consists in aligning the
segment y[i+j+1 .. j+m-1]=x[i+1 .. m-1] with its rightmost occurrence in x that is

preceded by a character different from x[i]

Harish

Kumar String matching 20

Boyer Moore Algorithm(contd.)

If there exists no such segment, the shift consists in
aligning the longest suffix v of y[i+j+1 .. j+m-1] with
a matching prefix of x.

The bad-character shift consists in aligning the text
character y[i+j] with its rightmost occurrence in x[0 .. m-2].

Harish

11

Kumar String matching 21

Boyer Moore Algorithm(contd.)
First attempt

GAGAGACG
1

GCATGACATATGAGAGACGCTACG

Second attempt

GAGAGACG
123

GCATGACATATGAGAGACGCTACG

Third attempt

GAGAGACG

12345678
GCATGACATATGAGAGACGCTACG

Harish

Kumar String matching 22

Boyer Moore Algorithm(contd.)
Fourth attempt

GAGAGACG

123
GCATGACATATGAGAGACGCTACG

Fifth attempt

GAGAGACG
12
GCATGACATATGAGAGACGCTACG

Total number of character comparisons 17

Harish

