String Matching Algorithms

Topics
UBasics of Strings
UBrute-force String Matcher

URabin-Karp String Matching
Algorithm

UKMP Algorithm

Kumar String matching

In string matching problems, it is required to find the
occurrences of a pattern in a text.

These problems find applications in text processing,
text-editing, computer security, and DNA sequence
analysis.

Find and Change in word processing

Sequence of the human cyclophilin 40 gene

CCCAGTCTGG AATACAGTGG CGCGATCTCG GTTCACTGCA
ACCGCCGCCT CCCGGGTTCA AACGATTCTC CTGCCTCAGC
CGCGATCTCG : DNA binding protein GATA-1

CCCGGG : DNA binding protein Sma 1

C: Cytosine, G : Guanine, A : Adenosine, T : Thymine

Kumar String matching 2

Text: T[1..n] of length n and Pattern P[1..m] of length m.
The elements of P and T are characters drawn from a finite
alphabet set .
For example 2= {0,1}orX={a,b,...,2z},orX ={c, g, a, t}.
The character arrays of P and T are also referred to as
strings of characters.
Pattern P is said to occur with shift sintextT

if 0<s<n-mand

T[s+1..s+m] = P[1..m] or

T[s+j] = P[j] for 1 <j<m,

such a shift is called a valid shift.

The string-matching problem is the problem of finding all
valid shifts with which a given pattern P occurs in a given
text T.

Kumar String matching 3

Brute force string-matching algorithm

To find all valid shifts or possible values of s so that
P[1..m] = T[s+1..s+m] ;
There are n-m+1 possible values of s.

Procedure BF_String_Matcher(T,P)

n « length [T];
m < length[P];
for s < 0 to n-m
do if P[1..m] = T[s+1..s+m]
then shift s is valid

ahwbd=

This algorithm takes ®((n-m+1)m) in the worst case.

Kumar String matching 4

c aa bc acaabec

VE—Q

a b a ab
a I: a a b c
a a b
a c ai a b c matches
a a b

Kumar String matching 5

Rabin-Karp Algorithm

LetX={0,1,2,...,9}.

We can view a string of k consecutive characters as
representing a length-k decimal number.

Let p denote the decimal number for P[1..m]

Let t, denote the decimal value of the length-m
substring T[s+1..s+m] of T[1..n] fors =0,1, ..., n-m.

t.= p if and only if
T[s+1..s+m] = P[1..m], and s is a valid shift.

p = P[m] + 10(P[m-1] +10(P[m-2]+ . . . +10(P[2]+10(P[1]))
We can compute p in O(m) time.

Similarly we can compute t, from T[1..m] in O(m) time.

Kumar String matching 6

6378 =8+7x 10+ 3 x 102+ 6 x 103 m =
=8+10(7+10 (3 + 10(6))
=8+ 70 + 300 + 6000

p = P[m] + 10(P[m-1] +10(P[m-2]+ . . . +10(P[2]+10(P[1]))

Kumar String matching 7

t.., can be computed from t, in constant time.
te.q = 10(t —10™1 T[s+1])+ T[s+m+1]

Example : T = 314152
t, =31415,s =0, m= 5 and T[s+m+1] = 2

t..,= 10(31415 —10000%3) +2 = 14152

Thus pand t, t,, ..., t , can all be computed in O(n+m)
time.

And all occurences of the pattern P[1..m] in the text
T[1..n] can be found in time O(n+m).

However, p and t, may be too large to work with
conveniently.
Do we have a simple soflitigtiimatching 8

Computation of p and t;and the recurrence is done modulus q.

In general, with a d-ary alphabet {0,1,...,d-1}, q is chosen such that
dxq fits within a computer word.

The recurrence equation can be rewritten as

to = (d(t, ~T[s+1]h)+ T[s+m+1]) mod q,
where h = d™'(mod q) is the value of the digit “1” in the high
order position of an m-digit text window.

Note that t, = p mod q does not imply that t, = p.
However, if t, is not equivalentto p mod q,
then t.# p, and the shift s is invalid.

We use t, = p mod q as a fast heuristic test to rule out the
invalid shifts.
Further testing is done to eliminate spurious hits.
- an explicit test to check whether
P[1..m] = ILL?+1..s+m1

ar String matching 9

t..1 = (d(t, —T[s+1]h)+ T[s+m+1]) mod q
h =d™1(mod q)

Example :

T=31415; P=26,n=5m=2,q=11
p=26 mod11=4

t0=31mod11=9

t1 = (10(9 - 3(10) mod 11) + 4) mod 11
= (10 (9- 8) + 4) mod 14 =14 mod 11 = 3

Kumar String matching 10

Procedure RABIN-KARP-MATCHER(T,P,d,q)

Input : Text T, pattern P, radix d (which is typically =|=|),
and the prime q.

Output : valid shifts - where P matches

-—

. N « length([T];

. m < length[P];
.h < d™" mod q;

.ty 0;
.fori<1tom

8.

2
3
4.p < 0;
5
6
7

do p « (dxp + P[i] mod q;
t, < (dxt, +T[i] mod q;

9.for s « 0 to n-m

10.
11.
12.
13.
14.

doifp=t,
then if P[1..m] = T[s+1..s+m]
then “pattern occurs with shift “ s
if s <n-m
then t,,, « (d(t, —T[s+1]h)+ T[s+m+1]) mod q;

Kumar String matching 11

Comments on Rabin-Karp Algorithm

UAIl characters are interpreted as radix-d digits
Ulh is initiated to the value of high order digit position of an
m-digit window
Up and t; are computed in O(m+m) time
UThe loop of line 9 takes ®((n-m+1)m) time
The loop 6-8 takes O(m) time
The overall running time is O((n-m)+m)

Kumar String matching 12

Knuth Morris Pratt(KMP) Algorithm

Pseudocode : Compute Prefix Function (P)
m <« length [P]
KMP-Matcher (T, P) 1]« 0
n « length (T) k<0

m « length (P)

1 < Compute-Prefix-Function (P) forg«<2tom

q«0 do while k > 0 and P[k+1] P[q]
fori=1ton . do k « n[k]
whilde q>0 an[d]P[q+1] #TI[il; if P[k+1] = P[q]
0q« T
i Pl < T then k < k+1
thenqg«q+1 n[q]l < k
ifg=m return n

then print “*Pattern occurs
with shift" (i - m)
q<«m[q]
Compute-Prefix-Function (P)

Kumar String matching 13

» Given the pattern P [1..q] matches text chs
T[s+1.. S+q]

What is the least shift s’ > s such that

P[1..K] = T[s’+1, .. s’+K], s'+k = s+(

Given pattern P[1..m], the prefix function for
the pattern P is the function

n:{1,2,...m}—{0,1, ...m-1} such that

m [q] = max { k: k < g and P, is a suffix of P,

Kumar String matching 14

b |[a |c al|b |a|a|b |c b
> a|b |a|c |a
q
b |[a |c al|b |a|a|b |c b
s =st2 alblal|blalc
—k—
b |a
b |a
Kumar String matching 15
i 1 4 |5 |6 |7 |8 10
P[i] |a a a
n[i] |0 2 4 6 1

Kumar String matching

KMP algorithm (contd..)

Running time analysis of KMP yields

O(m+n), because the call of the function takes
O(m) time and the remainder KMP matcher
algorithm takes O(n) time.

KMP is among the fastest algorithms for large
sizesof Pand T

Kumar String matching 17

Boyer Moore Algorithm

Pseudocode

n <-- length [T]
m <-- length [P]
8 <-- COMPUTE-LAST-OCCURRENCE-FUNCTION(P,m,&)
@ <-- COMPUTE-GOOD-SUFFIX-FUNCTION(P,m)
S<--0
While s = n—-m
doj<--m
while j >0 and P[j] = T[s+j]
doj<--j-1
ifj =0
then print "Pattern Occurs at shift "' s
s <--s+ @[0]
else s <--s + max(®{jl,j - d[T[s +j]])
s<--s+1
elses<--s+1

Kumar String matching 18

Boyer Moore Algorithm(contd.)

This algorithm is considered as the most efficient algorithm
for most of the general applications of string matching.

+ This algorithm scans the pattern from right to left
+ In case of a mismatch it uses 2 pre computed functions
(a) Good-Suffix Shift (b) Bad Character shift(occurrence shift)

v |] v] |
z | o . shift
e [Je] uw] |

Assume that a mismatch occurs between the character X /=a of the pattern and the
character y{Aj]=b of the text during an attempt at position j. Then, {41 .. m-1]=
NAAL .. Am-1]=uand /] y[A/]. The good-suffix shift consists in aligning the
segment A1 .. Am-1]=x A1 .. m1] with its rightmost occurrence in x that is
preceded by a character different from x{/]

Harish Kumar String matching 19

Boyer Moore Algorithm(contd.)

v | bl « | |
e[W v e
e[]

If there exists no such segment, the shift consists in
aligning the longest suffix vof {4 /A1 .. j+m-1] with
a matching prefix of x.

v o] w | |
‘ | |u| - shift
o [[b] contains nob |

The bad-character shift consists in aligning the text
character y{A4j] with its rightmost occurrence in X0 .. m-2].

Harish Kumar String matching 20

Boyer Moore Algorithm(contd.)

First attempt
GCATCGCMIGAGAGTATACAGTACG

1
GCAGAG AG

Second attempt
GCATCGBIAGAGAGTATACAGTACG
3 2 1
ccAGcAf@ac
Third attempt
GCATCGCAGAGAGTATACAGTACG
876543 21

GCAGAGAG

Harish Kumar String matching 21

Boyer Moore Algorithm(contd.)

Fourth attempt

GCATCGCAGAGAGTATA@lAGTACG
32 1

GCAGA.AG

GCATCGCAGAGAGTATACAGTAG
2 1
ccAcAGc

Fifth attempt

Total number of character comparisons 17

Harish Kumar String matching 22

