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In  string matching problems, it is required to find the 
occurrences of a pattern in a text. 

These problems find applications in text processing, 
text-editing, computer security,  and DNA sequence 
analysis.

Find and Change in word processing

Sequence of the human cyclophilin 40 gene
CCCAGTCTGG AATACAGTGG CGCGATCTCG GTTCACTGCA 

ACCGCCGCCT CCCGGGTTCA AACGATTCTC CTGCCTCAGC

CGCGATCTCG : DNA binding protein GATA-1

CCCGGG : DNA binding protein Sma 1

C: Cytosine, G : Guanine, A : Adenosine, T : Thymine
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Text :   T[1..n]  of length n and Pattern P[1..m] of length m.
The elements of P and T are characters drawn from a finite 
alphabet set Σ. 
For example Σ= {0,1} or Σ = {a,b, . . . , z}, or Σ = {c, g, a, t}.
The character arrays of P and T are also referred to as 
strings of characters.
Pattern P is said to occur with  shift s in text T 

if  0 ≤ s ≤ n-m and 
T[s+1..s+m] = P[1..m] or 
T[s+j] = P[j] for 1 ≤ j ≤m,

such a shift is called a valid shift.  
The string-matching problem is the problem of finding all 
valid shifts with which a given pattern P occurs in a given 
text T.
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Brute force string-matching algorithm

To find all valid shifts or possible values of s so that
P[1..m] = T[s+1..s+m] ; 
There are n-m+1 possible values of s.

Procedure BF_String_Matcher(T,P)

1. n ← length [T];
2. m ← length[P];
3. for s ← 0 to n-m
4. do if P[1..m] = T[s+1..s+m]
5. then shift s is valid

This algorithm takes Θ((n-m+1)m) in the worst case.
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a c a   a b   c a   c a   a b   c

a   a b a a   b

a c a a b c

a a b

a c a a b c matches

a a b
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Rabin-Karp Algorithm

Let Σ = {0,1,2, . . .,9}.
We can view a string of k consecutive characters as 
representing a length-k decimal number. 
Let p denote the decimal number for P[1..m]
Let ts denote the decimal value of the length-m 
substring T[s+1..s+m] of T[1..n] for s = 0, 1, . . ., n-m.

ts = p if and only if 
T[s+1..s+m] = P[1..m], and s is a valid shift.

p = P[m] + 10(P[m-1] +10(P[m-2]+ . . . +10(P[2]+10(P[1]))
We can compute p in O(m) time.

Similarly we can compute t0 from T[1..m] in O(m) time.
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p = P[m] + 10(P[m-1] +10(P[m-2]+ . . . +10(P[2]+10(P[1]))

6378 = 8 + 7 × 10 + 3 × 102 + 6 × 103

= 8 + 10 (7 + 10 (3 +  10(6)))

= 8 + 70 + 300 + 6000

m =4
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ts+1 can be computed from ts in constant time.

ts+1 = 10(ts –10m-1 T[s+1])+ T[s+m+1]

Example : T = 314152
ts = 31415, s = 0, m= 5 and T[s+m+1] = 2

ts+1= 10(31415 –10000*3) +2 = 14152

Thus p and t0, t1,  . . ., tn-m can all be computed in O(n+m) 
time.  
And all occurences of the pattern P[1..m] in the text 
T[1..n] can be found in time O(n+m). 

However, p and ts may be too large to work with 
conveniently. 
Do we  have a simple solution!!
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Computation of p and t0 and the recurrence is done modulus q. 

In general,  with a d-ary alphabet {0,1,…,d-1}, q is chosen such that 
d×q fits within a computer word. 

The recurrence equation can be rewritten as 
ts+1 = (d(ts –T[s+1]h)+ T[s+m+1]) mod q, 

where h = dm-1(mod q) is the value of the digit “1” in the high 
order position  of an m-digit text window. 

Note that ts ≡ p mod q does not imply that ts = p.
However, if ts is not equivalent to  p mod q , 
then ts≠ p, and the shift s is invalid. 

We use ts ≡ p mod q as a fast heuristic test to rule out the 
invalid shifts. 
Further testing is done to eliminate spurious hits. 

- an explicit test to check whether 
P[1..m] = T[s+1..s+m]
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ts+1 = (d(ts –T[s+1]h)+ T[s+m+1]) mod q

h = dm-1(mod q)

Example :

T = 31415;   P = 26, n = 5, m = 2, q = 11

p = 26 mod 11 = 4

t0 = 31 mod 11 = 9

t1 = (10(9 - 3(10) mod 11 ) + 4) mod 11

= (10 (9- 8) + 4) mod 14 = 14 mod 11 =  3
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Procedure RABIN-KARP-MATCHER(T,P,d,q)
Input : Text T, pattern P, radix d ( which is typically =Σ), 
and the prime q.
Output : valid shifts s where P matches

1. n ← length[T];
2. m ← length[P];
3. h ← dm-1 mod q;
4. p ← 0;
5. t0 ← 0;
6. for i ← 1 to m
7. do p ← (d×p + P[i] mod q;
8. t0 ← (d×t0 +T[i] mod q;
9. for s ← 0 to n-m
10. do if p = ts
11. then if P[1..m] = T[s+1..s+m]
12. then “pattern occurs with shift “ s
13. if s < n-m
14. then ts+1 ← (d(ts –T[s+1]h)+ T[s+m+1]) mod q;
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Comments on Rabin-Karp Algorithm

All characters are interpreted as radix-d digits
h is initiated to the value of high order digit position of an 

m-digit window
p and t0 are computed in O(m+m) time
The loop of line 9 takes Θ((n-m+1)m) time

The loop 6-8 takes O(m) time
The overall running time is O((n-m)+m)
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Knuth Morris Pratt(KMP) Algorithm

Pseudocode :

KMP-Matcher (T, P) 
n ← length (T) 
m ← length (P) 
π ← Compute-Prefix-Function (P)    
q ← 0 
for i = 1 to n   
while q > 0 and P[q+1]  ≠ T [i] ; 

do q ← π [q] 
if P[q+1] = T [i] 

then q ← q + 1 
if q = m 

then print ``Pattern occurs 
with shift'' (i - m) 

q ← π [q] 
Compute-Prefix-Function (P)

Compute Prefix Function (P)
m  ← length [P]
π[1] ← 0
k ← 0
for q ← 2 to m

do while k > 0 and P[k+1]≠ P[q]
do k ← π[k]

if P[k+1] = P[q]
then k ← k+1

π [q] ← k
return π
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• Given the pattern P [1..q] matches text chs
T[s+1.. S+q] 

What is the least shift s’ > s such that
P[1..k] = T[s’+1, .. s’+k], s’+k = s+q
Given pattern P[1..m], the prefix function for 

the pattern P is the function 
π : {1,2, … m } → {0,1, …m-1} such that
π [q] = max { k: k < q and Pk is a suffix of Pq
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babcbaabababcab

acababa

babcbaabababcab

acababa

ababa

aba

q

k

s

s’ = s+2
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1065432100π[i]

acbabababaP[i]

10987654321i
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KMP algorithm (contd..)

Running time analysis of KMP yields 
O(m+n), because the call of the function takes 
O(m) time and the remainder KMP matcher 
algorithm takes O(n) time.

KMP is among the fastest algorithms for large 
sizes of P and T
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Boyer Moore Algorithm
Pseudocode

n <-- length [T]
m <-- length [P]
∂ <-- COMPUTE-LAST-OCCURRENCE-FUNCTION(P,m,ξ)
Φ <-- COMPUTE-GOOD-SUFFIX-FUNCTION(P,m)
S <-- 0
While s ≤ n –m

do j <-- m
while j >0 and P[j] = T[s+j]

do j <-- j -1
if j =0

then print “Pattern Occurs at shift “ s
s <-- s+ Φ[0]

else s <-- s + max(Φ[j],j - ∂[T[s +j]])
s <-- s + 1

else s <-- s + 1
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Boyer Moore Algorithm(contd.)
This algorithm is considered as the most efficient algorithm 
for most of the general applications of string matching.

♦ This algorithm scans the pattern from right to left
♦ In case of a mismatch it uses 2 pre computed functions

(a) Good-Suffix Shift (b) Bad Character shift(occurrence shift)

Assume that a mismatch occurs between the character  x[i]=a of the pattern and the 
character y[i+j]=b of the text during an attempt at position j. Then, x[i+1 .. m-1]=
y[i+j+1 .. j+m-1]=u and x[i] y[i+j]. The good-suffix shift consists in aligning the
segment y[i+j+1 .. j+m-1]=x[i+1 .. m-1] with its rightmost occurrence in x that is 

preceded by a character different from x[i] 

Harish
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Boyer Moore Algorithm(contd.)

If there exists no such segment, the shift consists in 
aligning the longest suffix v of y[i+j+1 .. j+m-1] with
a matching prefix of x.

The bad-character shift consists in aligning the text
character y[i+j]  with its rightmost occurrence in x[0 .. m-2]. 

Harish
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Boyer Moore Algorithm(contd.)
First attempt

GAGAGACG
1

GCATGACATATGAGAGACGCTACG

Second attempt

GAGAGACG
123

GCATGACATATGAGAGACGCTACG

Third attempt

GAGAGACG

12345678
GCATGACATATGAGAGACGCTACG

Harish
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Boyer Moore Algorithm(contd.)
Fourth attempt

GAGAGACG

123
GCATGACATATGAGAGACGCTACG

Fifth attempt

GAGAGACG
12
GCATGACATATGAGAGACGCTACG

Total number of character comparisons 17

Harish


