
 CSE6306 – Advanced Operating Systems

CONSISTENCY MODELS IN DISTRIBUTED SHARED MEMORY SYSTEMS
By

Savitha Ramesh
Department of Computer Science

University of Texas, Arlington

Abstract

The main motivation behind designing a Distributed shared memory System is to achieve
good performance, which will in no way be affected when the size of the system grows. While
looking into achieving such a goal in a network of systems, there are a few issues that arise, most
important of those in DSM being Communication overheads and Reliability

By reliability we mean, correctness of data, that is accessed and used in a Distributed

shared memory System. Hence among many of the design issues in the Shared Memory
Architecture of Distributed Systems, maintaining consistency proves to invite more attention.
This paper discusses on the research done so far on the Consistency Aspect of DSM.

The introduction gives a good idea of the DSM and also the Consistency Issues. Then

after giving a brief overview on the different types of consistency models in DSM, the paper will
describe Release Consistency in detail. A comparison will be done on the various important
Consistency models. We then discuss how protocols can be made adaptive depending on the
application scenario. Finally in the conclusion we introduce the mixed consistency that talks
about how few of these consistency models could be combined to achieve efficiency.

1 Introduction
 A Distributed Shared Memory is a system in which the shared memory is actually physically
distributed in different nodes in the network but appears to the user as a single address space. (Fig1)

 Distributed Shared Memory

Memory CPU

Memory CPUCPU Memory

Figure 1

 2

1.1 Why Distributed Shared Memory?

 In a traditional distributed system, data sharing has been done using a message-passing
model. The client-server model and Remote Procedure calls are a few examples. In DSM,
sharing is made possible by making the applications access data from the shared memory just as
they access the virtual memory. The DSM software introduces a layer of software called the
Memory mapping managers that maps the shared memory to the physical memory. Table 1
shows the reasons to go for DSM compared to message passing.

 Table 1- A Comparative Account

Issues Message-passing DSM

Programming
Complexity

Programmers need to use explicit
message-passing mechanisms to
access shared data.

Easier to design and write
parallel algorithms using DSM
as compared to explicit
message-passing mechanisms

Data Movement

Difficult to pass complex data
structures between two processes

Complex Structures can be
passed by reference.

Communication
Overhead

Entire page or block containing the
data referenced may have to be moved
to the site of reference thus causing a
communication overhead

Only the specific piece of data
referenced needs to be moved,
by taking advantage of the
locality of reference. This
reduces communication over
head.

Cost

Not very cheap to build tightly-
coupled multi-processor systems

Off-the-shelf hardware can be
used to build DSM systems
and does not require complex
interfaces. Hence cheap

Memory Utilization

 Not effectively utilized

Memory distributed in the
network is effectively utilized
to run programs that require
large memory.

Scalability

The serialization point namely the
common bus limits the number of
processors in a tightly-coupled
message passing system to a few tens
of processors

A DSM system is highly
scalable

 3

1.2 DESIGN ISSUES IN A DSM

The three main issues in designing a DSM system are

1. Keeping track of the location of remote data – by using a Memory mapping manager
2. Overcoming the communication overheads – by defining Granularity of data
3. Make shared data concurrently accessible and yet maintain consistency

 The last issue can be termed as the consistency issue in the DSM systems. All these

issues are inter-related in the sense that solution to one largely depends on the other. Hence while
designing the models to achieve consistency we see that even the communication overheads and
memory-mapping issues are taken care of.

1.2.1 CONSISTENCY ISSUES

 The main idea of using a Distributed Shared Memory System is to achieve good
performance by allowing concurrent access to shared data from many nodes in the network. But
more than this basic requirement, the user should always be able to get the value he expects to
get for a shared variable. Even among accesses made by the user there are different types such as
ordinary accesses and special assesses that is access on shared data.

Moreover for performance reasons, shared data items are replicated on DSM systems for

special accesses too. This might lead to potentially inconsistent data at different nodes when
concurrent write access occurs on the same shared variable. In such a case, coherence is
inevitable. Hence arises the issue of consistency.

There are two main options, to maintain consistency across a sequence of writes on shared data,
• Write-Invalidate – Implemented as Multiple-reader/Multiple-writer Sharing
• Write-Update – Implemented as Multiple-reader/ Single-writer Sharing

In such an attempt to maintain consistent data, there are also other issues that arise such as

false sharing where two or more processes share parts of a page, but only one infact accesses
each part. This leads to unnecessary invalidations in write-invalidate protocols and over-write of
correct data by older versions in case of write-update protocols

 Another consequent problem is thrashing especially in the case of write-invalidate where
more time is spent on invalidating shared data and transferring them across the network than
doing any actual work.

 The consistency semantics vary from Sequential Consistency that is strict to a relaxed
coherence semantics in Release Consistency. The following topics describe how different types
of coherence protocol attempt to provide a solution to the identified problems in DSM.

 4

2 Brief Overview on the Different Coherence Semantics in DSM

Sequential Consistency

Following a serializable execution in concurrency control theory we say that an execution
on a DSM is serializable if its result is the same as if the operations of all the processors had been
executed in some sequential order, which satisfies processor, orders and is legal. A DSM system
is sequentially consistent if all the executions on the DSM system are serializable. Ex: Ivy

Processor Consistency

Writes issued by each individual node are never seen out of order but the order of writes
from two different nodes can be observed differently. [5]

Weak Consistency
 The programmer enforces consistency using synchronization operators guaranteed to be
sequentially consistent. [5] Ex: Agora

Entry Consistency
 In EC, processes must synchronize via system-supplied primitives. [7]. The
synchronizations are acquires and releases. In EC, once an acquire is complete, it is ensured that
the process sees the most recent version of data for the acquired synchronization variable.
Exclusive locks, read-only locks and barriers are some of the synchronization primitives that
should be associated with shared data. This leads to additional programming effort. Ex: Midway

Release Consistency
 Weak Consistency with two types of synchronization operators such as acquire and
release. Each type of operator is guaranteed to be processor consistent. [5] Ex: Dash

 In this paper the main emphasis is on comparing the different Release consistency
Models. Though Sequential Consistency models have an advantage that DSM behaves in a way
expected by the programmers, the cost involved in implementing it is high. The central manager
that has to keep track of the location of each page’s owner is a bottleneck and invalidation-based
algorithms may give rise to thrashing. Release Consistency was implemented as an effort to
reduce such DSM overheads.

3 RELEASE CONSISTENCY MODELS

 The main idea of implementing Release Consistency Semantics is the reduced cost and also that
it is tractable to programmers. In release consistency, the programmers are aware of the
synchronization objects such as semaphores, locks and barriers. This strategy is a weak
consistency model in the sense that memory is allowed to be inconsistent at certain points, while
the use of synchronization objects help to preserve application-level consistency.

A Release - consistent memory was designed to fulfill the following requirements.

1. All acquire accesses must be performed before an ordinary read or write operation is
allowed to perform

 5

2. All previous read and write operations must be performed before a release operation is
allowed to perform.

3. Acquire and Release operations should be sequentially consistent with respect to each
other.

An example of how release-consistent can be made to appear as Sequentially consistent DSM is
shown in figure 2.
 Figure 2

Process 1:
 acquireLock(); //enter critical section
 X: = X + 1;
 Y: = Y+1;
 releaseLock(); //leave critical section

Process 2:
 acquireLock(); //enter critical section
 print X,Y;
 releaseLock(); //release critical section

In this example, the critical sections enforce consistency at the application level. If
process1 acquires the lock first, process 2 will not cause any activity until it gets the lock. But in
sequentially consistent memory, process 1 would block when it updated X and Y. Whereas in
Release-consistent memory it will not block while operating on the shared variables. Here
communication is required only when locks are releases. But for a release consistent memory it
is the programmer’s responsibility to indicate the read and write operations as release, acquire or
non-synchronization accesses. Once the program is written with such information, it cannot
differentiate between a sequential DSM and Release Consistent DSM.

Following are few of the Software-based release Consistent Protocols

• Eager Invalidate Protocols
• Lazy Invalidate protocols
• Lazy Hybrid protocols

 Before studying in detail about each of these, it is important to know how multiple-writer
protocols work under release consistency.

Modifications of the local copies of a shared page are summarized as diffs. Initially any
shared page is write-protected. When the first write access occurs, there is a protection violation.
The DSM software makes a copy of the page (a twin) and removes the write-protection so that
further writes to the page can occur without DSM intervention. [10] A diff is then created
between the twin and the modified page, by making a run length encoded record of the
modifications of the page. Diff creation is shown in figure 3.

 6

Figure3- Diff Creation [10]

3.1 Eager-Invalidate Protocol (EI)

 In an Eager Protocol, modifications to shared data are made visible globally at the time of
a release [10]. An Eager Invalidate protocol as the name implies attempts to invalidate remote
copies of a shared page if the page has been modified locally. If the page was open in a Read-
only mode, then just invalidation will do. But if it was in a read-write mode, a diff, which has
the modifications, is received as part of the reply from the remote node and then the local
copy is invalidated. Thus diffs from different remote sites a re collected and sent to all other
processors in the system which have the remote copies of the page.
 To determine the remote copies that need to be invalidated, the EI protocol uses an
approximate copy set. A copy set is a bit mask indicating which processors have a copy of the
page. [10] When the remote processors communicate for invalidations, even the copy set is
attached as part of the acknowledgements to the invalidate messages. This keeps the local
copy sets also up-to-date. This will help in continuous learning about the remote copies of the
shared page so that additional protocol rounds are done to ensure that all remote copies are
invalidated.

3.2 The Lazy Invalidate Protocol (LI)

 With a lazy protocol, the propagation of modifications is postponed until the time of the
acquire. [10] The execution of each process is said to take place in intervals each represented by
an interval index. Among different processors these intervals are partially ordered while on the
same processor they are totally ordered. To represent the partial order, a vector timestamp is
assigned to each interval. A processor computes a new vector timestamp at an acquire according
to the pair-wise maximum of its previous vector timestamp and the release’s vector timestamp
[10].

 7

Consider two processes p and q on different processors modifying some shared page.
 The requirements of RC would be to follow the below steps.

• The updates of all intervals with a vector timestamp than q’s current vector timestamp
must be visible at p before p may continue past an acquire from q

• At an acquire, p sends its current vector timestamp to the previous releaser, q.
• Processor q piggybacks on the release-acquire message to p and write notices for all

intervals named in q’s vector timestamp except the one it received from p.
• The page is invalidated when a write notice arrives.

Write notice only indicates that a page has been modified but does not contain the

modifications. To obtain the modifications made to the page, diffs need to be created. (As
explained previously) Diffs are created when modifications are requested by a processor or a
write notice arrives for a dirty page [10]. Only when an acces miss occurs due to an attempt to
access an invalidated page, the diffs created from all intervals before the faulting interval are
retrieved and applied to the page. This line of operation largely reduces the number of messages.

3.3 The Lazy Hybrid Protocol (LH)

The basic difference between Lazy Invalidate and Lazy Hybrid protocols are that in Lazy
Hybrid protocols, few pages are even updated at the time of an acquire. LH attempts to exploit
temporal locality by assuming that any page accessed by a processor in the past will probably be
accessed by that processor again in the future. [10] Hence if sharing patterns are known a priori ,
this protocol may be used to optimize the communication required.

Here a copy set is used by each processor to keep track of the pages accessed by other

processors. The copy set also helps the in deciding whether a diff must be sent to a remote
location. There were different possibilities to determine the set but from heuristics it was
observed that it is the best to look at every diff pertaining to a write notice that is sent. For each
such write notice, if the releasing processor has the diff and the acquiring processor is in the local
copy set for that page, the diff is appended to the lock grant message.

3.4 Protocol Trade-Offs [10]

To choose between these Release Consistent protocols, a complex trade-off has to made between

• Number of Access misses
• Number of messages
• The Amount of Data
• Lock acquisition time
• Protocol overhead

 Number of Access misses
Number of access misses is more in the case of EI, which may result due to false sharing

Then next comes LI, which may experience more access misses than LH.

 8

Number of Messages

EI requires more messages then LI and LH. Because in a lazy model that involve locks
communication is between two synchronizing processes whereas release in an eager system
requires invalidations to be sent even to processes that are not involved in the synchronization.

Amount of Data

LI and LH usually exchange data in the form of diffs, while EI moves entire page. Hence
amount of data is more in the case of EI.

Lock Acquisition time

In EI, to release a lock the processor all the invalidations are sent and acknowledged.
This results in lock acquisition latency. In LI and LH, lock transfer involves communication
between two processes at a time. In LH, updates are appended to the lock grant message. The
time taken to generate and process this data might cause some latency in acquiring the locks.

Protocol Overhead

EI is less complex than LI and LH because unlike the other two protocols all state
concerning the modified page can be discarded once a release is made in EI. LH and LI
create more diffs than in EI.

4 COMPARISON OF CONSISTENCY MODELS

 A comparison has been made on three main Consistency Protocols based on the
experiments conducted by researchers in Princeton University and University of Wisconsin,
Madison. The protocols compared are:

• Sequential Consistency model (SC)
• Single Writer LRC protocol (SW-LRC)
• Home-based LRC protocol (HLRC)

4.1 Description of the system considered for comparison [13]

• Coherence granularity at block level (64, 256, 1024, 4096 bytes)
• Each block has a home which will be the first node that “touches” the block
• A page’s home node ID is kept in a distributed table and cached in a local table
• Applications considered

 LU - Performs blocked LU factorization of a dense matrix
FFT - High-performance kernel to handle a matrix of processors
Ocean - Simulates eddy current in ocean basin-challenge is memory
allocation for data in each sub-grid
Water-Nsquared - Simulation of a system of water molecules that are
allocated to an array of processors and challenge is to handle updates at
each processor.
Volrend – Application to render 3-D volume data into an image, challenge
is the partition of tasks

 9

Water-Spatial – Same as Water-Nsquared but with different data
structures and different algorithms
Raytrace - To handle complex scenes in computer graphics, challenge is

 When distributed task queues are used for task stealing
 Barnes – Simulation of interaction among a system of particles over a
 number of time steps

 Table2 – Comparison of Different Consistency Models [13]

Parameters

 SC

 SW-LRC

 MW-HLRC

Co-existence of
Readers and Writers

Permitted to have
either a single-writer
or one or more
readers; readers and
writers never co-exist
a the same time [13]

Can have multiple
readers but only a
single writer can co-
exist with them

Multiple writers and
Multiple readers
allowed

Consistency
Guarantees

Delay until Write is
globally performed

Writes propagated at
next acquire

Writes propagated at
next acquire

On a Write-Fault

Read-only copies
invalidated.

Only ownership of the
page is migrated on a
write-fault

As multiple writes are
allowed, twins and
diffs are created for
keeping consistency

Protocol Overhead

 High

 Less

Higher than SW-LRC

Speedup based
on Granularity

At 64-byte granularity
SC outperforms LRC,
Suffers performance
losses at coarse
granularity

At large granularities,
read-write false-
sharing more
probable, but
SW-LRC performs
better than SC because
invalidations are
delayed until next
acquire.

Here at large
granularities, even
write-write false
sharing is taken care
of. Also number of
write misses are
minimized compared
to other protocols.

 10

5 ADAPTIVE DSM PROTOCOLS

 In 1997, Cristiana Amza et al., published a paper titled “ Software DSM protocols that
Adapt between Single writer (SW) and Multiple writer (MW)”. The adaptivity of the system is
based on the nature of the scenario. The decision to choose between Single writer and Multiple
writer protocol is done by analyzing if a particular page exhibits Write-Write False Sharing
(WFS) or Write Granularity (WG).

5.1 Background
 As the name implies, a Single Write protocol allows only a single writable copy of a page
at any given time. [11] whereas in Multiple Write Protocols many writable copies of a page can
co-exist. In SW protocol, the processor currently holding write privileges to the page is called the
owner. Each page has a version number, which is incremented every time ownership is acquired.
Experiments were conducted on an 8-node SPARC cluster connected by 155 Mbps ATM
network. The adaptive protocols were compared with MW only or SW only implementations.

5.2 The Adaptive Protocols
 Even within a single application, there may be pages, which behave differently when it
comes to sharing. The nature of sharing of a page can be dynamically analyzed and the page can
adapt to a suitable protocol between SW and MW protocol to achieve good performance.

When to go for MW protocols?
 When a page is detected to exhibit Write-Write False sharing (WFS) problem, it will be
best to perform with MW protocol. In MW protocol, more than one processor can
simultaneously modify a page and the modifications can be lazily merged in the sense, until the
next synchronization operation and this reduces the effect of false sharing.

Detecting Write-Write False sharing in Single Write mode
 It is not efficient to use SW protocol when Write-Write false sharing is observed. In such
a scenario, the page can switch to MW protocol. The principle behind the detection of WFS is:

 There is no Write-Write False Sharing if and only if the processor taking a write fault and
 trying to get ownership knows the correct location of the owner and the correct version
 number for the page. [11]

When to go for SW protocols?
 A page switches to SW mode from MW mode when the Write Granularity is above a
threshold value. The researchers say that they use a threshold value to decide whether or not to
use diffs [11].

Detecting Absence of Write-Write False Sharing in MW mode

Again to go for SW mode, absence of Write-Write False sharing has to be detected.
The principle is:
 There is no write-write false sharing if there is a write notice for the page that dominates all
other write notices. [11]

 11

 The steps to ensure such detection are as follows:
• Each processor piggybacks information indicating whether the page is perceived as write-

write falsely shared or not according to the write notices they receive.
• The writer updates its local information whenever a diff request comes in
• By collecting such information, an approximate copy set is maintained.
• A processor can detect that WFS has stopped when a processor sees a new owner notice

and no concurrent secondary write notices.
• Also at a barrier, when a processor detects a write notice for a page that dominates all

other write notices, it can infer that WFS has stopped.

6 Discussions and Conclusion

After studying the different Release Consistency models and also the Adaptive protocols,
it is observed that many issues can be over come by going in for an adaptive model. It is
observed that performance of any consistency model largely depends on the data access pattern
and synchronization behavior of an application. But the important inference is that, for smaller
page sizes SC outperforms any LRC. But for coarse granularities, LRC seems to perform better
than SC. The research conducted by Cristiana Amza showed promising results for Adaptive
protocols. A state variable was associated with each processor to indicate which protocol best
suited a page in SW or MW mode. With the experiments the following observation (Table 3)
were made on a few parameters.

Table3 – A Comparative Account

Observed parameters Non-Adaptive Protocols Adaptive Protocols

Execution Times

Speed up is low

Speedup is
comparatively high

Memory Overhead

Except in SW mode, where
diffs and twins are not
created, memory over head
is significant

In MW mode, when
WFS is more,
memory over head is
more.

Communication

For SW, ownership
requests may involve
forwards that contributes to
the contribution overhead

For WFS + WG
protocols, ownership
related messages are
double the number of
ownership requests

 In 1994, a paper was published by researchers at University of California at Santa

Barbara. This paper talks about Mixed Consistency. In this model, two kinds of weak memory
consistency conditions are combined. They are causal memory and pipelined random access
memory. Also conditions under which mixed consistency leads to the same results as
sequentially consistent memory were investigated. A new platform called Maya was developed
to evaluate different memory consistencies by running different applications on it. Currently
research is going on in investigating other applications to evaluate the performance in a mixed
consistent DSM environment.

 12

References

[1] Mixed consistency Divyakant Agrawal , Manhoi Choy , Hong Va Leong , Ambuj K. Singh
Proceedings of the thirteenth annual ACM symposium on Principles of distributed computing August 1994

 [2] Kai Li and Paul Hudak, Memory Coherence in Shared Virtual Memory Systems, ACM Transactions on
Computer Systems, Vol. 7, No. 4, November 1989

[3] Ajay Mohindra and Umakishore Ramachandran, A Comparative Study of Distributed Shared Memory Design
Issues, GIT-CC-94/95, August 1994.

[4] Sarita V. Adve, Kourosh Gharachorloo, WRL Research Report 95/7: Shared Memory Consistency Models: A
Tutorial, September 1995.

[5] B Nitzberg and V Lo, Distributed Shared Memory: A Survey of Issues and Algorithms, IEEE Computer August
1991, pp. 52-60.

[6] Pete Keleher, Lazy Release Consistency for Distributed Shared Memory, PhD thesis of Rice University, Huston,
Texas, January, 1995.

[7] S. Adve et al. A Comparison of Entry Consistency and Lazy Release Consistency Implementations. In IEEE
HPCA, February 1996.

[8] John Hennessy, Mark Heinrich and Anoop Gupta, Cache-Coherent Distributed Shared Memory: Perspectives on
Its Development and Future Challenges, Proceedings of the IEEE, VOL. 87, No. 3, March 1999.

[9] Masaaki Mizuno, Michel Raynal, James Z. Zhou, Sequential Consistency in Distributed Systems, Proc. of the
Int'l Workshop on Theory and Practice in Distributed Systems, October 1994.

[10] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. An evaluation of software-based
release consistent protocols. Journal of Parallel and Distributed Computing, 29(2):126--141, September 1995.

[11] Cristiana Amza, Alan L.Cox, Sandhya Dwarakdas and Willy Zwaenepoel Software DSM protocols that Adapt
between Single Writer and Multiple Writer 1997

[12] Pete Keleher, Sandhya Dwarkadas, Alan Cox, and Willy Zwaenepoel. Treadmarks: Distributed shared memory
on standard workstations and operating systems. In Proceedings of the 1994 Winter Usenix Conference, pages 115--
131, January 1994.

[13] Yuanyuan Zhou, Liviu Iftode, Jaswinder Pal Singh, Kai Li : Relaxed Consistency and Coherence Granularity in
DSM Systems: A Performance Evaluation : Published in the proceedings of the 6th ACM symposium on Principles
and Practice of Parallel Programming, 1997

[14] Cristian Amza, Alan Cox, Karthick Rajamani, and Willy Zwaenepoel, Tradeoffs between False Sharing and
Aggregation in Software Distributed Shared Memory, Proceedings of ACM SIGPLAN Conference on Principles
and Practices of Computer Programming, 1997

[15] J. Carter, J. Bennet and W. Zwaenepoel, Techniques for reducing Consistency-Related Communication in
Distributed Shared Memory Systems, ACM Transactions on Computer Systems, Vol. 13, No. 3, , August 1995.

