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Abstract 
Deadlock detection and resolution is one among the major challenges 
faced by a Distributed System.  In this paper, we discuss deadlock 
detection techniques and present two approaches for detecting deadlocks 
in Distributed Systems. Our first approach uses a Hybrid combination of a 
transaction wait-for graph construction and a probe generation 
mechanism. Wherein a local transaction wait-for graph is maintained at 
each site to detect local deadlocks without transmitting any intra-site 
deadlock detection messages, in addition of using Probes. The second 
approach for deadlock detection uses the concept of a Lock History which 
is carried by each transaction, the notion of intention locks, and three-
staged hierarchical approach to deadlock detection, with each stage, or 
level of detection activity being more complex than the preceding one. 

 
 
Overview 
We begin our discussion with an introduction to the topic on hand in section1. In section2 we 
present several approaches used for the deadlock detection in distributed systems. Approaches for 
deadlock detection in distributed systems are explained, the first using the ‘hybrid’ scheme is 
described in section3 followed by another approach in section4 that uses the ‘Lock History’ and 
section5 finally presents the conclusion and discussion in the end. 

 
1. Introduction 
A Distributed system consists of a collection of sites that are interconnected through a 
communication network each maintaining a local database system. Transactions are the units of 
interaction with the system that is a set of atomic operations and transforms the database from one 
consistent state to another.  Each process requests at most one lock at a time, and the process is 
blocked if in case the requested resource is not available immediately until the resource is granted 
or the transaction itself is aborted. A Deadlock results when a set of transactions are waiting 
circularly for each other to release resources. Deadlocks are usually characterized in terms of a 
transaction wait for graph (TWFG) that is a directed graph wherein each vertex represents a 
transaction. E.g. Ti         Tj means that Ti is waiting for the completion of T j. It is a proved fact 
that a deadlock exists if and only if there is a cycle in TWFG [10].  

Transactions (atomic units of operation) may be either local/global wherein the global 
transactions require the communication among participating sites. Deadlock occurring at a single 
site is called as local deadlock whereas those involving transactions executing at multiple sites is 
called a global deadlock. In distributed deadlock detection, global deadlocks are detected by 
sending inter-site deadlock detection messages. Detection schemes for global deadlocks are 
classified into two categories depending upon the type of graph they construct, which is either an 
actual graph or a condensed graph [10].   

Actual graph detection schemes are based upon transmission of detection messages 
conveying strings of transactions of an arbitrary length in which each transaction (global/local) 
waits for the completion of the immediately following transaction in the string, the first 
transaction being the global one being waited by some other site and the last transaction being the 



global transaction that is waiting for either a response or a new request from another site.  The 
deadlock detection message (=> string of transactions) is sent to the site for which the last 
transaction in the string is waiting and is used to construct an actual deadlock detection graph at 
the receiving site of the message. The messages thus transmitted can be reduced into half by 
assigning priorities to transactions and transmitting only those messages where the priority of the 
first transaction in the string is higher than the priority of the last transaction in the string [10][1]. 

In the condensed graph detection scheme the deadlock messages contain only two 
transactions say (Ti ,Tj) where transaction Ti  transitively waits for the completion of transaction 
Tj. The message is sent either to the originating site of transaction Ti  (backward transmission) or 
to the originating site of transaction Tj (forward transmission) , in order to prevent the large 
number of message transfers probe is sent when a transaction with a higher priority transitively 
waits for another transaction with a lower priority which avoid the transmission of backward 
messages [10]. An interesting feature in the modified probe scheme is that once a probe is 
received it is stored and forwarded until no more paths are found for delivering the probe or a 
compensating message for the probe, called antiprobe is received. However it is not free from 
drawbacks in the sense that they send messages to transaction managers and also to resource 
managers (resulting in the transmission of a lot of deadlock detection and resolution messages 
even when only local transactions are concerned in a site) and they treat local and global 
transactions equally[10][1]. 
 
2. Various approaches for deadlock detection in distributed systems [11] [1] 
2.1 Path-pushing algorithms 
The basic idea underlying this class of algorithms is to build some simplified form of global WFG 
at each site.  For this purpose each site sends its local WFG to a number of neighboring sites 
every time a deadlock computation is performed. After the local data structure of each site is 
updated, this updated WFG is then passed along, and the procedure is repeated until some site has 
sufficiently complete picture of the global situation to announce deadlock or to establish that no 
deadlocks are present. The main features of this scheme, namely, to send around paths of the 
global WFG, has led to the term path-pushing algorithms [11][1]. 
 
2.2 Edge-chasing algorithms 
The presence of a cycle in a distributed graph structure can be verified by propagating 
special messages called probes along the edges of the graph. Probes are assumed to be 
distinct from resource request and grant messages.  When the initiator of such a probe 
computation receives a matching probe, it knows that it is in cycle in the graph. A nice 
feature of this approach is that executing processes can simply discard any probes they 
receive. Blocked processes propagate the probe along their outgoing edges [11][1]. 
 
3. Deadlock detection in distributed systems using a ‘hybrid technique’ of a 
‘Transaction wait-for graph construction’ and a ‘probe generation mechanism’. [10] 
A local transaction wait-for graph is maintained at each site to detect local deadlocks without 
transmitting any intra-site deadlock detection messages.  Probes, each of which represents the fact 
that a global transaction with a higher priority transitively waits for another global transaction 
with a lower priority are sent to remote sites to construct condensed graphs. Global deadlocks are 
detected by using both the transaction wait-for graph and the probes received.  In order to 
compensate for the probes that have been sent already, antiprobes are sent. 
 
3.1 Description of the Basic idea [10] [1] 
Transaction operations are carried out by processes. When a transaction is initiated, it is executed 
by a process. When the process needs resources at other sites, one process, which is call as a child 



process is created at each corresponding remote site to represent the parent process at that site 
which carries the transaction identifier of its parent process and it can also be a parent by 
creating its own child processes.  Processes of a transaction are called agents or cohorts of the 
transaction and they constitute a tree structure represented as a process tree. Since multiple agents 
of the same transaction may exist on one site, we define a process Px of transaction at site Sr to be 
TiPxSr. All the agents of a transaction can run in parallel. However when a transaction Ti has 
multiple agents running at the same site, we assume that only one of them executable by blocking 
the others.  Thus the transaction identifier of an agent W can be represented as TID(W), e.g. 
TID(TiPxSr) is Ti. Each transaction has a globally unique identifier that consists of two fields i.e. 
the site identifier at which the transaction is originated and the other containing the value of the 
local clock at that site when the transaction was generated. Based on this, a unique priority can be 
assigned to each transaction as follows. If Ti and Tj are two transactions, Ti has a higher priority 
than Tj denoted as Ti >Tj, if either the local clock of  Ti is greater than that of Tj or local clock of 
Ti is equal to the local clock of Tj but the site identifier of Ti is greater than the site identifier of 
Tj. Hence we assume that Ti >Tj if i>j, for instance T4>T2.  

A process called waiter, lock-waits for another process, called waitee denoted as 
LW(waiter, waitee), if waiter is waiting for waitee to release a resource needed by waiter. 

A process called sender of a transaction message-waits for another process, called 
receiver of the same transaction, denoted as MW(sender, receiver), if sender is waiting to receive 
a message(either an answer for a previous/new request) from the receiver. 
 
    
    
 
               
 
             
 
 
 
     

Fig1. Detection of a global deadlock[10] 
 
The basic idea can be conveyed as follows. Assuming there is an existence of a global deadlock 
as indicated in Fig1 and assuming that T7, T6 and T5 are global transactions, where T7>T6>T5; T9, 
T8, and T4 are local transactions, and solid arrows represent lock-waits and dotted arrows 
represent message-waits. Suppose that site Sm sends a message “T7 transitively waits for T5” to 
site Sn, due to the reasons cited  (1) due to the presence of the  local path indicated by  
T7P4Sm          T9P5Sm T5P6Sm in site Sm, (2) T7>T5 and (3) MW(T5P6Sm, T5P7Sn). Upon 
receipt of this message at site Sn, if site Sn sends a message “T7 transitively waits for T6” to site 
Sh, since (1) that message condenses the received message and the local path T5P8Sn 

T4P8Sn T6P9Sn in site Sn, (2) T7>T6>T5 and (3) MW(T6P9Sn, T6P1Sh). Note that  “T7 
transitively waits for T6” is a condensed message for the global path (T7P4Sm    
       T4P8 Sn T6P9Sn). Once the message “T7 transitively waits for T6” is received at                                                 
site Sh, since there is a local path  T6P1Sh          T8P2 Sh  T7P3Sh in site Sh, a cycle can be 
formulated and thus a deadlock is declared. 
 
3.2 Description of the algorithm [10] 
 Each site maintains a local TWFG, which is a directed graph whose nodes are transaction 
processes running at that site.  Let us assume that N is the maximum number of transactions that 
are executable at site Sr. The local TWFG at site Sr, denoted as TWFGr, is represented as a n array 
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[0…N-1] of records and each entry of the array has the following fields: TID(the transaction 
identifier of the transaction for this entry), global(boolean variable denoting whether the 
transaction is either global/local), LWS(a pointer to a set of lock-wait edges), MWS(a pointer to a 
set of message-waits), TAWS(a pointer to a set of transitive-antagonistic waits), and PBS(a 
pointer to a set of probes received). We assume that the underlying network guarantees the error-
free and finite time arrival of the messages to their destination maintaining the same order in 
which they were sent.  

A transaction Ti is antagonistic with another transaction Tj, if Ti is a global transaction 
and either Ti >Tj or Tj is a local transaction. For example, at site Sm in Fig1, T7 is antagonistic 
with T9 and T5. However, T9 is not antagonistic with T5.  

A path from a transaction process (TiPxSs) to another transaction process (TjPySr) in the 
global TWFG is an antagonistic path if Ti is antagonistic with ever transaction on the path except 
for Ti itself. 
 If there is an existence of an antagonistic path in the global TWFG from an agent of Ti to 
an agent of Tj, we say that Ti waits for the agent of Tj transitively and antagonistically. For 
example in Fig1, there exists an antagonistic path T7P4Sm          T9P5Sm T5P6Sm in site Sm; 
where in T7 waits for T9P5Sm and T5P6Sm transitively and antagonistically. A transitive-
antagonistic wait, denoted as TAW(initiator, terminus, count), means that some processes of 
transaction initiator wait for a transaction process terminus transitively and antagonistically and 
count different incoming edges(lock-wait edges and /or message-wait edges) to terminus are 
related to antagonistic paths connecting some processes of initiator to terminus. 
 Consider a partial TWFG presented in Fig2. In Fig2 a through h represent transaction 
processes and directed edges represent either lock-wait edges or message-wait edges. Assume that 
transaction TID(a) is antagonistic with other transactions except for transaction TIE(e). Hence e 
cannot be a terminus of any TAW having TID(a) as its initiator because TID(a) is not antagonistic 
with TID(e). The count field of TAW(TID(a),f,2), for instance, is two since f has two incoming 
edges that are related to the antagonistic paths from a. 
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   Fig2. Propagation of Transitive-antagonistic waits.[10] 
 
We declare that there is a deadlock in the system hen transaction Ti transitively waits for a 
process of transaction Tj and there are some paths from Tj to Ti.  Suppose if an edge is added from 
g to h then we declare there is a deadlock in the system since TAW(TID(a), g,1) holds and there is 
a path from g to a.  To facilitate the construction of TAWs, inter-site messages called probes are 
sent. A probe is denoted as PB (initiator, sender, receiver),  
is a  message from the site of agent sender to the site of agent receiver to inform the receiver that 
the transaction initiator has been transitively and antagonistically waiting for he sender at the site 
of sender. A probe PB(initiator, sender, receiver) is sent when one of the following holds: (1) 
TAW(initiator, sender, count) exists and MW(sender, receiver) is newly added or (2)MW(sender, 
receiver) exists and TAW(initiator, sender,1) is newly added.  In fact a probe is a condensed 

TAW(TID(a), b,1) TAW(TID(a) ,d ,1) 

TAW(TID(a) ,c,1) 

TAW(TID(a), g,1) 

TAW(TID(a) ,f ,2) 



message, which signifies that at the interface of a site or a set of sites, a global transaction 
initiator waits for another global transaction TID(sender) transitively and antagonistically.  For 
example in Fig1, the probe sent from site Sm to site Sn is PB(T7,T5p6Sm,T5,P7Sn), the probe sent 
from site Sn to site Sh is PB(T7,T6P9Sn,T6,P1,Sh). 
 When a probe is received or a lock-wait occurs, the function  
TAW-propagation(initiator, terminus) is invoked to construct a condensed TWFG at the site. The 
function represents that a transaction initiator waits for a transaction process terminus transitively 
and antagonistically through an incoming edge to terminus and also propagates that effect down 
to lock-wait edges and message-wait edges that are outgoing from terminus.  TAW-propagation( ) 
is defined as follows. 
 
 
TAW_propagation(initiator, terminus) 
{ 
   if(initiator < TID (terminus) 
     and TWFG[TID(terminus)].global==True 
     return; 
   if  (TAW(initiator, terminus, count) is 
     in TWFG[TID(terminus)].TAWS) { 
      increase count field of TAW by 1; 
       return; 
    } 
   add TAW(initiator, terminus, 1) into 
   into TWFG[TID(terminus)].TAWS; 
    for each message-wait MW(V,W) 
       in TWFG[TID(terminus)].MWS do { 
          if (V==terminus) 
             send probe PB(initiator, V,W) 
             to the site of  agent W; 
    } 
  for each lock-wait LW(V,W) 
      in TWFG[TID(terminus)].LWS do { 
         if(V==terminus) 
                TAW_propagation(initiator,W) 
     } 
} 
 

 
TAW_contraction(initiator, terminus) 
{ 
   if(initiator < TID (terminus) 
     and TWFG[TID(terminus)].global==True 
     return; 
   if  (TAW(initiator, terminus, count) is 
     in TWFG[TID(terminus)].TAWS) { 
        if(count>1){ 
           increase count field of TAW by 1; 
           return; 
         } 
   delete TAW(initiator, terminus, count) 
   from TWFG[TID(terminus)].TAWS; 
    for each message-wait MW(V,W) 
       in TWFG[TID(terminus)].MWS do { 
          if (V==terminus) 
             send antiprobe AP(initiator, V,W) 
             to the site of  agent W; 
    } 
  for each lock-wait LW(V,W) 
      in TWFG[TID(terminus)].LWS do { 
         if(V==terminus) 
                TAW_contraction (initiator, W) 
     } 
} 
 

 
Deadlock_detection(s, t, victim_set) 
{ 
   victim_set={}; 
   if (t does not have an entry in  TWFG) 
       return; 
 
   for each path from s to t in  TWFG do { 
     select the youngest transaction on the   path; 
      add that transaction into victim_set; 
     } 
  if (either s or t is in victim_set) 
      set victim_set as that transaction; 
  for each victim in the victim_set do { 
     if(TWFG[victim].global==TRUE) { 
       for i=0 to N-1 do { 
          for each probe PB(initiator, V, W) in 
            TWFG[I].PBS do{ 
               If (initiator==victim) 
                 Delete PB(initiator, V,W) 
                  From TWFG[I].PBS; 
               } 
          for each TAW(initiator, W, count)  
           in  TWFG[I].TAWS do { 
            if(initiator==victim) { 
               delete TAW(initiator, W, count)  
                from  TWFG[I].TAWS; 
                for each message-wait MW(X,Y) 
                 in TWFG[I].MWS  do { 
                    if(X==W) 
                    send antiprobe AP(initiator, X,Y) 
                    to the site of agent Y; 
             }}}}} abort victim.  
       }}                     
 

 
To compensate for probes sent, inter-site messages called antiprobes are introduced. An 

antiprobe denoted as AP(initiator, sender, receiver) is a message from the site of agent sender to 
the site of agent receiver to inform receiver that sender is no longer waited by transaction 
initiator.  An antiprobe AP(initiator, sender, count) is sent only when TAW(initiator, sender, 
count) is deleted from a local TWFG in the presence of MW(sender, receiver) at that site.  

The function TAW-contraction(initiator, terminus) is used to compensate for TAW-
propagation(initiator, terminus) and it indicates that the former TAW relationship fro initiator to 
terminus through an incoming edge to terminus does not hold anymore and also to propagate that 
effect down to lock-wait edges and message-wait edges that are outgoing from terminus.  That 
function is invoked when one of the following occurs: an antiprobe is received a lock-wait does 
not hold anymore, or a message-wait occurs. TAW-contraction( ) is defined as shown above. 

A deadlock is declared at a site if and only if it is found that a transaction Ti transitively 
waits for transaction Tj and if there exists paths from an agent of Tj to an agent of Ti in the local 



TWFG of the site. Once it is declared for each local path from Tj to Ti , the youngest transaction 
on the path is selected as a victim and it is added into victim set.  For each victim in the 
victim_set, before the victim is aborted, If the victim is a global transaction, all stored PBs and 
TAWs having the victim as their initiator are deleted from the local TWFG of the site.  The 
Deadlock detection function is defined as shown above. 

On receiving the probe PB(initiator, sender, receiver) at the site of agent receiver, 
function PB_propagation(initiator, sender, receiver) is invoked.  In the function, if 
TID(receiver) does not have an entry in the local TWFG or MW(receiver, sender) exists in the 
local TWFG of the site, the message is neglected. Otherwise we detect and resolve the global 
deadlock by checking paths from TID(receiver) to initiator in the local TWFG.      
PB_propagation( ) is defined as follows: 
 
 
PB_propagation(initittor, sender, receiver) 
{ 
  if (TID (receiver) does not have an entry 
     in  TWFG or MW(receiver,sender) is 
     in TWFG[TID(receiver)].MWS) 
          return; 
 
 Deadlock_detection(TID(receiver), 
 initiator, victim_set); 
 if(initiator is in victim_set) 
      return; 
  insert PB(initiator, sender, receiver) into  
  into TWFG[TID(receiver)].PBS; 
  TAW_propagation(initiator, receiver); 
} 
 

 
 
 
AP_propagation(initittor, sender, receiver) 
{ 
  if (TID (receiver) does not have an entry 
     in TWFG or   
     PB(initiator, sender, receiver) is not in  
    TWFG[TID(receiver)].PBS)  
        Return; 
  Delete PB(initiator, sender, receiver)  
  from TWFG[TID(receiver)].PBS; 
  TAW_contraction(initiator, receiver); 
} 
 

MW_addition(sender, receiver) 
{ 
  TWFG[TID(sender)].global=TRUE; 
  For each PB(initiator, V, W) in  
   TWFG [TID(sender)].PBS do { 
   If(V==receiver and W==sender) { 
     delete PB(initiator, V, W) from  
    TWFG [TID(sender)].PBS; 
    TAW_contraction(initiator, sender);  
  } 
} 
add message-wait MW(sendr, receiver)  
 into TWFG[TID(sender)].MWS; 
 for each TAW(initiator, V, count) in 
 TWFG [TID(sender)].TAWS do { 
   If(V==sender) send probe 
  PB(initiator, sender, receiver) to the 
 to the site of agent receiver; } 
}  
 

 
LW_deletion (waiter, waitee) 
{ 
 delete LW(waiter, waitee) from  
TWFG [TID(waiter)].LWS; 
for each TAW(initiator, V,count) in 
TWFG[TID(waiter)].TAWS do { 
    If(V==waiter) 
      TAW_contraction(initiator, waitee); 
} 
if(TWFG[TID(waiter)].global==TRUE) 
  TAW_contraction(TID(waiter), waitee); 
} 
 

 
LW_addition(waiter, waitee) 
{ 
  Deadlock_detection(TID(waitee),  
     TID(waiter), victim_set); 
  If(TID(waitee) is in victim_set or  
  TID(waiter) is in victim_set)  
        return;    
  for each TAW(initiator, V, count) 
  in TWFG[TID(waiter)].TAWS do { 
     Deadlock_detection(TID(waitee), 
           Initiator, victim_set); 
      If(TID(waitee) is in victim_set) 
             return; 
  } 
add LW(waiter, waitee) into  
TWFG[TID(waiter)].LWS; 
For each TAW(initiator, V,count) in 
TWFG[TID(waiter)].TAWS do { 
    If(V==waiter) 
      TAW_propagation(initiator, waitee); 
} 
if(TWFG[TID(waiter)].global==TRUE) 
  TAW_propagation(TID(waiter), waitee); 
} 
 

 
For example in Fig1 at site Sn upon receiving PB(T7,T5p6Sm,T5,P7Sn) from Sm, this probe 

is stored in TWFG[t5].PBS and a new probe PB(T7,T6P9Sn,T6,P1Sh) is generated by invoking 
TAW_propagation(T7,T5P7Sn). Upon receiving the antiprobe AP(initiator, sender, receiver), 
function AP_propagation(initiator, sender, receiver ) is invoked. In the function, if TID(receiver) 
does not have an entry in TWFG or PB(initiator, sender, receiver) is not in TWFG, the antiprobe 
message is neglected.  Otherwise, we delete the corresponding probe PB(initiator, sender, 
receiver) and TAW_contraction( ) is invoked.  AP_propagation( )  is defined  as shown 
above[10]. 
 When a lock-wait LW(waiter, waitee) occurs, the function LW_addition(waiter, waitee) is 
invoked which first detects the local deadlocks and then detects global deadlocks for each TAW 
record having an agent of transaction TID(waiter) as its terminus.  If either TID(waiter) or 



TID(waitee) is aborted nothing is done for that lock-wait, else, after adding LW(waiter, waitee) 
into the local TWFG, for every possible antagonistic path extension and also for a new 
antagonistic path made by the addition of the lock-wait edge, TAW_propagation( ) is invoked.  
LW_addition( ) is defined above. 
 When a lock-wait LW(waiter, waitee) does not hold anymore the function 
LW_deletion(waiter, waitee) is invoked to delete LW(waiter, waitee) and also to propagate the 
effect of the destruction of some antagonistic paths caused by the deletion of the lock-wait edge. 
The function LW_deletion( ) is defined as indicated above[10]. 
 When a message-wait MW(sender, receiver) occurs the function MW_addition(sender, 
receiver) is invoked.  In the function TWFG[TID(sender)].global is set to TRUE and if 
PB(initiator, receiver, sender) exists in TSFG[TID(sender)].PBS, the stored PB record is deleted 
and TAW_contraction(initiator, sender) is invoked.  Add MW(sender, receiver) and then for each 
TAW(initiator, sender, count), probe PB(initiator, sender, receiver) is sent to the site of agent 
receiver. The function MW_addition ( ) is defined as shown above[10]. 
 When a transaction process sender receives a new request or an answer for the previous 
request from its cohort receiver, a message-wait MW(sender, receiver) does not hold anymore.  In 
this case, we simply delete MW(sender, receiver) from TWFG[TID(sender)].MWS . 
 
4. Distributed deadlock detection algorithm based on ‘lock history’ [14] 
This algorithm differs from the existing algorithms in that is uses the concept of a Lock History 
which each transaction carries with it, the notion of intention locks, and three-staged hierarchical 
approach to deadlock detection, with each stage, or level of detection activity being more 
complex than the preceding one.   

This assumes a distributed model of transaction execution where each transaction has a 
site of origin (Sorig) which is the site at which it entered the system.  Whenever a transaction 
requires a remote resource it migrates to the site where that resource is located which involves the 
creation of an agent at the new site and this agent may in turn create additional agents start, 
commit or abort actions or return execution to the site from which it migrated. 

The transaction may have several active agents to allow concurrent execution. 
Agents can in any of the three states: Active, blocked (waiting) or Inactive. An inactive agent is 
one that had done its work at a site and has created an agent at another site, or the one that has 
returned execution to its creating site and is now awaiting further instructions such as commit, 
abort or become active again. A blocked transaction is one that has requested a resource that is 
locked by another transaction.  An active agent is one that is not blocked or inactive.  We assume 
that all transactions are well formed and 2phase meaning that any active agent can release a lock 
only after the transaction has locked all the resources it needs for its execution and only after it 
has terminated its execution and the active agent is notified to release the lock during the 2phase 
commit. 

The lock table information for a resource consists of: Transaction/Agent ID of the 
transactions site of origin , the type of lock, (if possible) the resource that the transaction holding 
a lock intends to lock next. The current lock field is referred to as the current field of the lock 
table, and the field containing the future intentions of the transaction holding the current lock is 
called the next field, which identifies the site(s) to which the transaction migrated.  The algorithm 
assumes two types of locks Exclusive write (W) and Shared read (R).  In addition it also uses an 
intention lock (I) indicating that the transaction wishes to acquire a lock on a resource, either to 
modify it (IW) or to read it (IR). The Intention locks are placed in a resource lock table when an 
agent is created at a site of a locked resource that it requires or when a resource at the same site is 
requested which is already locked by another transaction. The intention locks are also placed in 
the lock table of the last locked resource(s) if the transaction can determine which resources(s) it 
intends to lock at a remote site in its next execution step[14]. 

An example of a lock table is LT (R2B): T{W(R2B), IW(R3C)}; T2{IW(R2B)}. 



The lock table for resource R2 at site B shows that T1 holds a write lock on R2, and that T2 
has placed an intention write lock on R2.  T1 has also indicated that it intends to place a write lock 
on resource R3 at site C. Only a single transaction or agent may hold an exclusive write lock on a 
resource. Any number of intention locks (IW/IR) may be placed on a resource, which means that 
any number of transactions may wait for a resource.  Each site must therefore have some method 
for determining which transaction will be given the resource when it becomes free. This 
algorithm uses the lock history (LH) of a transaction, which is a record of all types of locks on 
any resources that have been requested or are being held by that transaction. Each transaction 
carries its lock history during is execution. An example for a lock history (LH) of a transaction T1 
is LH(T1): {W(R3C), W(R2B), R(R1A)}.  This LH shows that T1 holds a write lock on resource R3 
at site C, a write lock on resource R2 at site B, and the read lock on resource R1 at site A. Lock 
history is used for the following reasons: to avoid global deadlocks in some cases, to support the 
selection of victim transactions for rollback and to avoid detection of false deadlocks.   

This algorithm detects deadlock either by construction a wait-for-graph (WFG) or 
directly from wait-for-strings (WFSs). A WFG can be constructed b the deadlock detection 
algorithm using the lock histories of transactions that are possible involved in deadlock cycle.  
WFG consists of two types of nodes: transactions (agents) and resources. A directed arc from a 
resource to a transaction node indicates that the transaction has a lock on the resource, while a 
directed arc from a transaction node to a resource indicates that the transaction has place and 
intention lock on that resource. A cycle in the WFG indicates the existence of a deadlock. The 
WFS is both a lost of transaction-waits-for-transaction strings (in which each transaction is 
waiting for the next transaction in the string), and a lock history for each transaction in the string.  
E.g. WFS[T2{W(R2A), IW(R3B)}; T4{W(R3B)}] indicates that T1 is waiting for T4.  Here we 
assume that each transaction or agent will have a globally unique identifier that indicates it s site 
of origin.  The deadlock can be detected directly from WFSs without constructing the WFG by 
simply detecting whether any transaction recurs more than once in the WFS, which is equivalent 
of having a cycle in the WFG. Each site in the system has a distributed deadlock detector (copy of 
the same algorithm) that performs deadlock detection for transactions or agents at that site. 
Several sites can simultaneously be working on detection of any potential deadlock cycle. The 
proposed algorithm uses staged approach for deadlock detection since it has been found that 
cycles of length 2 occur more frequently than cycles of length 3 which occur more than cycles of 
length 4 and so on. We distinguish two types of deadlock cycles: the ones that can be detected 
using only the information available at one site and those that require inter-site messages to 
detect. 

In the proposed algorithm, the first type has been divided into two levels of detection 
activity. Level one checks for possible deadlock cycles every time a remote resource is requested 
and another transaction is waiting for a resource held by the transaction making the remote 
resource request.  Since level one involves data from the lock table of one resource, it should be 
fast and in expensive, if the requested resource is not available after X units of time then the 
probability of a deadlock has increased sufficiently to justify a ore complex and time consuming 
check in level two.  Level two requires more time since it attempts to detect the deadlock by 
using the lock tables of all resources at the site.  Level three is intended to detect all remaining 
deadlocks, that is , deadlocks that require inter-site communication. 

Level one of detection activity an efficiently detect direct global deadlocks of cycle 
length 2.  The global deadlock of 2 transactions T1 and T2 is direct when T1 and T2 deadlock at 
two sites that are also the last sites at which T1 and T2 are executed i.e. were not blocked. Indirect 
global deadlocks are those that are not direct!  Thus, if T1 and T2 execute only at two sites, they 
can generate only direct global deadlocks.  If they execute at more than two sites, they can also 
result in indirect global deadlocks. 

Resources can be considered of two types: Type I includes resources whose intention 
lock can be determined from a remote site, that is, the transaction can determine the remote 



resource lock granularity and its mode before migrating to the site of the remote site. Type I 
resources are usually those that have just one level of granularity, namely the whole resource. 
 Type II consists of resources whose intention lock granularity and mode can be 
determined only after the transaction has migrated to the remote site. Type II can have locking on 
varying levels of granularity such as for e.g. Pages of a file in a distributed database system. 

When a site deadlock detector receives WFS, it substitutes the latest lock histories for any 
transaction for which it has a later version (the longest lock history is the latest).  It then 
constructs a new WFG or WFS and checks for cycles.  If a cycle is found, then the deadlock 
exists.  If any transactions are waiting for other transactions that have migrated to other sites, the 
current site must repeat the process of constructing and sending WFGs /WFSs to the sites to those 
sites.  If these transactions are at this site and active, deadlock detection activity can cease else it 
will continue till a deadlock is found or it is discovered that there is no deadlock[14].   
 
4.2 The algorithm [14] 
Step1: {Remote resource R requested/anticipated by transaction or agent T} 

A. If a type I remote resource is requested, place appropriate IL entry in next field of the lock table of the current resource (the 
last resource locked by T, if any) and in LH(T). 

B. {Start level one detection activity at current site}. Construct a WFG/WFS from lock histories of all transactions holding 
and requesting R, and , if a type I remote resource is requested, check for deadlock. 

C. If no deadlock is detected: 
• Have an agent created at the site of the requested resource and ship the WFS (generated at step 1B or step4A) 

there 
• stop.  

 
Step2: {Local resource R requested}. 

A. If resource R is available : {lock it}. 
(1) Place an appropriate lockin lock table of resource R and in LH(T). 
(2) Stop. 

B. If the resource is not available:{Start level two detection activity}. 
(1) Place appropriate IL in lock table of resource R and in LH(T), and delay X       time units 
(2) If the resource is now available: 

(a) Remove IL from lock able and LH(T). 
(b) Go to step 2A. 
 

(3) If the resource is not available: {continue level two activity}. 
(a) Construct a WFG /WFS using the lock histories of the transactions in the WFSs that have been 

sent from other sites and the lock histories of all blocked or inactive transactions at this site, and 
check for deadlock. 

(b) If any deadlock is found, resolve the deadlock. 
(c) If no deadlock is found, delay Y units. 
(d) If the requested resource is now available, go to step 2A. 
(e) If the transaction being awaited is at this site and active, stop. 
(f) If the resource is still not available, go to step 3{start level 3 detection activity}. 
 

Step 3: {Wait for message generation}. 
A. {Start level three detection activity}. Construct a new WFS either by condensing the latest WFG or by combining all 

WFSs. 
B. Send the WFS to the site to which the transaction being awaited has gone if the awaited transaction in each substring has a 

smaller identifier than the first transaction in that sub-string and stop. 
 
Step 4: {Wait-for message received}. 
If wait-for message received DO: 

A. {Start level 3 detection activity}. Construct a WFG/a new WFS from the lock histories of the transactions in he WFSs form 
other sites and from the lock histories of all blocked or inactive transactions at this site. (Use the latest WFS from each site) 
Check for a deadlock.  If deadlock is found, resolve it. 

B. If an awaited transaction has migrated to another site that is different from the one that sent the WFS message, go to step 3 
{Repeat WFS generation}. 

C. If the awaited transaction is active, stop. 
 
 



4.1 Explanation of the algorithm [14] 
Step1:  This step is executed any time a transaction (or agent) T requests a remote resource, or 
when it determines that it will require a remote resource. The lock table of the resource that the 
transaction is currently using is checked to see whether any other transactions are waiting (to 
check whether other transactions have placed intention locks) for that resource.  If so, the WFG is 
constructed by using the lock histories of all the transactions requesting and holding the resource 
and a check for cycles is made. If no cycles are found then a new WFS and causes an agent to be 
created at the site of the requested resource. 
 
Step2: It is executed each time a local resource is requested.  If the resource is available, 
appropriate locks are placed and the resource is granted.  Intention locks are placed in the lock 
table of the requested resource and in the lock history of the requesting transaction in case if the 
resource is not available. If the resource is not available even after the delay period the chances of 
deadlock are higher so the algorithm shifts to another level of detection.  It now uses the lock 
histories from each blocked or inactive transaction at that site, as well as from any WFSs from 
other sites that have been brought my migrating transactions.  If there are no cycles in the new 
WFG or WFS, and the resource is still not available after a second delay(also tunable by the 
system users), the possibility of deadlock is again much higher, since the current site has 
insufficient information to detect the deadlock, hence the proposed algorithm progresses to the 
third level of detection(step 3)[14]. 

 
Step3: The wait-for message generated by this step consists of a collection of substrings each is a 
lost of transactions waiting for the next transaction in the substring which also lists the resources 
locked or intention locked by each transaction in the substring.  This step includes the 
optimization that a WFS lexical ordering that the first transaction that has migrated has a lower 
lexical ordering than the first transaction in the substring.  For example, for the WFG shown in 
Fig2, the WFS would be [T2{W(R2B), IW(R3C)}; T3{W(R3C), IW(R4D)}; T4{W(R4D), 
IW(R1A)}]. T4 has migrated to site A. The WFS would be sent to site A only if T4’s identifier is 
less than T2’s identifier[14]. 
 
Step4: This step is executed only after a wait-for message has been received.  WFS/WFGs are 
generated using the lock histories of the transactions in the WFSs received previously from other 
sites and the lock histories of any blocked or inactive transactions(at the present site). If a 
deadlock is detected then it is resolved, else there is still insufficient information to detect a cycle 
and another iteration is performed by transferring control to step 3. The algorithm stops if the 
transaction being waited for is still active[14].              
 
5. Discussion and conclusion  [10] [1] [14] 
The most important performance measures for distributed deadlock detection and resolution 
algorithms is the number of messages transmitted for detection and resolution of global 
deadlocks. The number of probes and antiprobes sent for the detection and resolution of global 
deadlocks depends on the number of global transactions, distribution of global transactions and 
the number of message-wait edges. Considering the approach of the ‘hybrid’ algorithm, which 
allows for parallel execution of transactions at multiple sites and for multiple modes of locks.  
Here, the Local deadlocks are detected by a regular cycle detection mechanism in the augmented 
local TWFGs without transmitting any intra-site deadlock detection messages, while that 
involving global deadlocks are detected by sending probes and antiprobes which enable us to 
construct a condensed global TWFG at each site.  Probes are sent only when a global transaction 
with a higher priority transitively waits for another global transaction with a lower priority[10]. 



Assume that n transactions constitute a global deadlock and n’ transactions are global. 
Let e be the number of edges (lock-wait edges and message-wait edges) and e’ be the number of 
outgoing message-wait edges in the cycle.  

The best case results when only one global transaction can initiate probes causing at most 
e’-1 probes. To resolve the global deadlock no antiprobes are sent if the selected victim is a local 
transaction.  Hence, the number of inter-site messages to detect and resolve a global deadlock 
becomes at most e’-1[10]. 

The Worst case results when n’-1 global transaction initiate probes which can cause the 
outgoing message-wait edge to convey at most n’-1 probes and at most e’-1 outgoing 
message_wait edges can be involved in a global deadlock detection and resolution such that the 
number of probes transmitted becomes at most (n’-1)*(e’-1). After detecting global deadlock and 
aborting the victim, at most e’-1 antiprobes will be transmitted. Hence the total number of 
messages to detect and resolve a global deadlock in the worst case results in the transmission of at 
most n’*(e’-1) inter-site messages[10]. 

In our second approach for deadlock detection based on the concept of Lock History the 
algorithm phases out in 3phases and the costly procedure of invoking deadlock detection is 
minimized in the sense that it processes deadlock detection in 3phases as explained. It also has an 
added advantage. It overcomes the problem that most of the algorithms that use Probes in which 
only those deadlocks in which the initiator is involved can be detected.  If the initiator is waiting 
outside a deadlock, its probes are of no use in detecting the deadlock, it only adds up to the 
message traffic in the system[1] [14]. 
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