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Abstract—Distributed multimedia applications require a va- more, standard run-time environments for protocol processing
riety of communication services. These services and different gre not able to cope with high data rates.
application requirements have to be provided and supported  Thgrefore, emerging multimedia applications require vari-
within: 1) end-systems in an efficient and integrated manner, L .
combining the precise specification of quality-of-service (QoS) ou.slcommunlc_:atlon fgqtures to be integrated qnd supported
requirements, application interfaces, multicast support, and se- €fficiently, which traditionally have been considered sepa-
curity features and 2) the network. The Da CaPe-+ system rately. For example, a video conference on public networks
presented in this paper provides an efficient end-system middle- for confidential enterprise management meetings requires com-
ware for multimedia applications, capable of handling various munication protocols providing appropriate encryption and

gr?de Scé);q%ﬂﬂli'gsttig: sdénmgn?; (;Urlearsgaei?f'i%r;' Q/pﬁ)/lgsggnmn?:rﬁs authentication functionality in addition to multicast data trans-

of QoS attributes and functional properties, such as encryption Mission capabilities for audio and video. Many-to-many com-

requirements or multicast support. Da CaPer+ automatically munication links between participants have to be established
configures suitable communication protocols, provides for an ef- on demand. Moreover, scenarios involving financial transac-
ficient runtime support, and offers an easy-to-use, object-oriented o5 or confidential data require different degrees of security.

application programming interface. While its applicability to L . .
real-life applications was shown by prototype implementations, Therefore, for real-world applications, an integrated solution

performance evaluations have been carried out yielding practical for communication middleware has to provide security and
experiences and numerical results. multicasting functionality in addition to multimedia services.
Index Terms— Application programming interface, flexible The devel(_)p?d middleware Da CaP*B provides multlme_dla_
middleware, protocol processing support, quality-of-service Support within end systems that is adaptable to application
(QoS), security. needs. This concept is applicable to standard communication
processing environments. In addition, a number of reusable
middleware services for dealing with multimedia application
communication services are defined and implemented. Da
ITHIN an environment of highly distributed systemsCapPot-+ integrates many aspects of research results obtained
sophisticated communication facilities are significanso far, e.g., quality-of-service architectures, object-oriented
A great number of distributed applications, most of themystem development, efficient protocol run-time systems, pro-
handling multimedia data, can be supported by tailored cofgcol configuration, and advanced protocol function support.
munication protocols and efficient middleware transparentishe Da CaP¢+ middleware demonstrates within a powerful
hiding details of network technologies. However, in manynd efficient system that a general purpose end-system middle-
cases, communication middleware may create a performagggre for multimedia support is operational and interoperable
and functional bottleneck, since communication protocol infyith other end systems applying Da CaRp as their choice
plementations available today do not offer proper protocef middleware.
functions for handling continuous data adequately. Further-Extending a multimedia middleware far beyond traditionally
layered communication architectures has offered manifold
opportunities for the provision of tailored multimedia com-
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standard workstations and operating systems. In addition, it has Il. RELATED WORK

to support many _spe.cific protocol functiqnalities, e.g., multi- 5, one hand, related work on middleware covers ap-
casting and security, in an integrated fashion. The Da @aP0 ,,naches with a strong architecture-oriented focus. These
runtime system and its protocol processing algOmhm_calI%t‘i!)proaches define the access level and degree of transparency

Lift—represent a flexible processing scheme for controlling 4 yipted applications to communication functionality. In

modular protocol tasks based on a standard workstatioy§nera| they may cover transaction-based applications, direc-
operating system.

tory services, location-independent services, or dynamic object
- invocation. Examples of some general purpose middleware
B. Usability comprise DCE [1], CORBA [2], TINA-C [3], COM [4], or

A homogeneous quality-of-service (QoS)- based multimedfdNSA [5]. The views of these middleware approaches focus
communication interface, similar for all kinds of multimedianainly on the interoperability issue as well as the generic
applications, is essential. The interface should be easy to gsgvice provision, but they do not concentrate on efficient
for application programmers and independent of specific m@emmunication protocol processing or multimedia quality-of-
timedia applications. Therefore, a QoS-based application pservice (QoS) support in the first place. The latter aspects
gramming interface (API) achieves application transparenstarted to be dealt with in recent work; however, they have
by assisting the exchange of control and user data betwawt been finished yet. The approach TAO [6] deals with
applications and the middleware. Furthermore, it has to offevestigations of CORBA-based middleware for high-speed
the unchanged performance of the underlying communicatioatworks and applications. The AQUA approach [7] develops
subsystem to applications. This allows for the provision of thedaptable object-oriented distributed computing systems while
following features: applying quality objects to manage system characteristics. The

1) the specification of various functional requirements, sugupport of computational grids for applications is described
as degrees of privacy or reliability, multicast group marin Globus [8], which defines the design of a special purpose
agement, and addressing, in terms of QoS parametergliddleware.

2) the transfer of and agreement on application require-On the other hand, the support of diverse functionalities
ments in terms of traditional QoS attributes, includingnd the provision of adequate performance of the middleware
numerical values for, e.g., bandwidth, delay, or bit errdg crucial for multimedia-capable approaches. Due to the wide
rates; range of relevant topics that are integrated to provide a flexible

3) the enabling of application programmers to desigmultimedia middleware presented in this paper, a number of
reusable application components whenever possible different areas of related work is relevant. Four main groups

intended. of aspects are dealt by the Da CaPp middleware:
 provision of advanced communication functionality;
C. Modularity « flexible and multimedia middleware;

A variety of communication protocols and network tech- ° €fficient runtime system and protocol configuration;
nologies has to be supported in a modular fashion for a wide” 2PPlication support by QoS specification.
spectrum of traditional and multimedia applications. BasedAnother set of important related work has been selected and
on QoS specifications, modular communication functions agategorized according to these main aspects. Table | depicts
specific protocols are selected flexibly, e.g., for live audighese aspects in addition to further comparison criteria, where
stored video, or plain data transfer, where protocols consist@griterion not applicable is marked by N/A.
building blocks. A series of various protocols and functions, While multimedia middleware is intended to support a wide
particularly for security and multicast, has been implementéa@nge of multimedia applications, flexible middleware intro-
as prototypes and is integrated into Da C&Ro duces an orthogonal concept for communications to support

Da CaPa-+'s real-life applicability, including the list of adjustable protocol processing for high-performance applica-
previously mentioned features, has been experienced dieds and high-speed networks, as done within ADAPTIVE
tested within an application framework, offering by itself 49] or F-CSS [10]. Generally speaking, to facilitate a flexible
modular structure. This framework has been implemented f@pproach requires structuring protocols in a modular fashion,
real-life scenarios and applications, such as a teleseminar ovhere separate building blocks can interoperate efficiently. Da
picture phone. These applications and the middleware providePor+ offers a set of protocol functions implemented in
the basis specifically for performance evaluations under retg¥ms of software modules that run in an efficient runtime
life conditions. A picture phone is discussed with respect gystem, the Lift algorithm.
the previously stated claims. Efficient runtime support for general protocol processing

This paper is organized as follows. Section Il briefly contasks has been investigated, e.g., in the x-kernel for modular
pares related work on various aspects related to middleware poptocols [11], the Scout operating system for path-based
multimedia communications. Whereas Section Il discusse®dule interconnections [12], and the Crossbow project sup-
the design of Da CaPe+, Section IV points out imple- porting a high-performance toolkit for experimenting with 1P
mentation issues. While Section V shows its practical usmext-generation protocols [13]. In particular, for middleware-
Section VI evaluates obtained results. Finally, Section VHupporting tailored communication protocols accommodating
summarizes the work and draws conclusions. the needs of communications, a suitable run-time system
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TABLE |

COMPARISON OF SELECTED RELATED WORK
Criteria ADAPTIVE | F-CSS QualMan | Scout OSI'95 QoS-A MCF Da CaPo++
Multimedia Middleware | Medium Medium Yes N/A N/A Yes Yes Yes
Flexible Middleware High High Medium N/A N/A No High High
Protocol Configuration Flexible Flexible No Flexible | No No Flexible Flexible
Run-time System No No Yes Yes No No Yes Yes
Application Support API QoS-API | QoS-API | Path Protocol | Interface | QoS-API | QoS-API
QoS Specification Yes Detailed Yes No Yes Detailed Detailed Detailed
QoS Management No Limited Yes Yes No Yes Yes Yes
QoS Exploitation Yes Yes Yes Yes Yes Yes Yes Yes
Security Functionality No No No N/A No No No Yes
Application Framework | No No No No No No No Yes

for fine-grained and interoperating modules is essential. In
contrast to the integrated layer processing approach (ILP)
[14], Da CaPea-+ favors a modular protocol processing ap-
proach which is integrated with the application level framing
(ALF) approach [14] to achieve good protocol and application (b

Applications s

Multimedia
Devices

Applications

S

Multimedia
performance. Devices
Most existing approaches provide application knowledge

to the middleware environment by offering an interface for
the specification of QoS parameters. In OSI'95 [15], a QoS-
based transport service including QoS parameter definitions
was developed; the Lancaster QoS-architecture (QoS-A) [16]
defined a QoS concept for end systems, and the QoS broker
[17] investigated QoS management issues, which are continued
in the QualMan approach [18]. A comparison of QoS spec-
ification and management, as well as general QoS concepts, Networks
may be found in [19] and [20]. Many of these approaches
allow for the detailed characterization of applications and th€y 1. overall Da Care+ middleware architecture.
specification of their communication requirements on different

levels, such as the application-level, the transport-level, or the

end-system level. But they are lacking open, extensible, a% proach for handling security requirements as QoS attributes,

officient API's. e in suoport of multimedia a I'cat'onsm egrating multicasting independent of the underlying network
Thle:efore obj,ect.?).r’ielnte(ljJ IOir?terfaces ijo: starl1d aﬁ)pn:a s;/stefﬁghmlogy and providing synchronization mechanisms for

' - j ltimedia data streams. While this paper focuses on securit
have been studied, e.g., IPC-SAP [21] or Sockets [22] pap y

in additi dural h ' 2 2 ri]ssues, further details can be obtained from [29].
in addition to procedural ones, such as WinSock2 [23]. T ©To summarize, the Da CaRo- approach combines most

Da CaPe-+ middleware integrates an open QoS-based objegf yhe advantages mentioned earlier for related work and

oriented interface with the exploitation of many QoS attributgg, jjes multimedia applications and advanced functionality
for configuring a specifically tailored communication protocoj, 4 integrated and efficient manner as not performed before.
as well as the selection of an appropriate network technologyis includes the Da CaRet middleware provision on end

if at all applicable. _ _ ~ systems for standard workstations, showing a close cooper-

ties, e.g., encompassing security and multicasting capabilitiggpapilities, QoS concepts, and the communication middle-
Security issues are dealt by a number of approaches, eghre itself.

the Globus approach [8], the work for high-level network
protocols such as the secure socket layer [24], and a number of lll. Da CaPot-+ DESIGN

specific security algorithms and protocols. A good overview The Da CaPe+ middleware is end-system based and
of security relevant policies and solutions may be found iBcated between the network access and the API (see Fig. 1).
[25]. Many algorithms deal with multicast communicationsThe middleware, as well as the API, supports multimedia com-
such as for Audiocast [26] and multicast routing [27]. Anunications since multiple time-dependent media flows (in
feature-rich and efficient multicast framework for end-toaddition to native data flows being part of a single or multiple
end QoS guarantees for multipoint communications (MCHbw session) can be processed on standard workstations. This
is presented in [28]. However, it has not been well uris due to the middleware’s good performance and its provision
derstood how QoS requirements, security mechanisms, afdappropriate protocol functions.

multicast communication protocols interoperate within one Da CaPa-+ provides on end system’s communication
single middleware at the same time. Da Ca&Rooffers a new protocols in support of application flows. In addition, it covers

Standard
Workstation
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diverse networks, QoS specifications are used in the API and
in the core as powerful abstractions, enabling application pro-
grammers to ignore specific properties. Also, most applications
and protocol modules of the core do not have to care how end
system internal security services or unicast or multicast are
internally implemented.

All important details of Da CaPRp+ tasks and additional
internals of the middleware core are discussed to follow. The
following introduces how sessions are configured and set up.
Afterwards, the data transport mechanism is explained, includ-
ing the module concepts used the resource management. The
designed security features are discussed before an overview of
the API developed is presented.

Session

Protocol
Database

Ressource

Sessions

Protocols and
Modules

Buffer
Manager

—>» Owns
—C0O Uses

Security
Manager

Network

A. Da CaPo++ Tasks and Components

Fig. 2. Da CaP¢+ component relations. The Da CaPe+ core determines the heart of the middle-
ware, it performs all functions related to session management

the possibility of flexibly configuring these communicatior‘?‘”d data transfer, and it specifies an evolution of the original

protocols built out of protocol functions according to appliP2 CaPo system [30]. lts central goal is to take as much

cation requirements expressed in terms of QoS parametdy4den as possible off the application and the programmer,

[29]. A configuration process to perform this application‘-"’h"e still giving them a maximum of freedom. To show how

driven adaptation is directly supported by a number of intern&f”1 C.aPGFJF .achleve.s thgge properties, the following ISSUes
Da CaPe-+ components (see Fig. 2) and a component escrlb_e main fu_nctlonalltles and _tasl_<s from an _appllcatlon
configure the required protocol. In addition, this configuratio\ll'ewpOInt for .sett.mg Up & communication as§OC|at|on.

is based on application requirements, availability of local * The application names the source or sink for data and
resources, and network prerequisites, as well as protocol SPecifies communication requirements. It may choose
functions and mechanisms including their properties [30]. Rel- @mong predefined protocols offered by the protocol data-
evant protocol functions, e.g., checksumming or flow-control, Pase, instead of specifying a list of parameters itself.
are processed during run time by individual communication ® The application identifies the communication peer, re-
modules (later referred to as C-modules), and they are located dUests the establishment of an association, and starts the
in the heart of the protocol. Applications access any type data transfer for sessions consisting of a single or multiple
of communication service in a configured communication 1OWS: _ _

protocol via the API through application support modules (A- * Afterwards, data transport is performed independently of
modules), including a direct multimedia device support. This the application. Instead of caring about each individual
integration is achieved by combining the physical end-system packet that is transmitted, the application is free to return

architecture in terms of data-producing or consuming devices L© itS main task, e.g., perform user interaction.
into the Da CaPe+ design, e.q., for multimedia devices * \Whenever important communication events happen, e.g.

cameras, microphones, or speaker boxes. alarms or change requests of QoS specifications, the
On the network access side of Da CaPe available application is notified to take appropriate measures. The

networks in terms of asynchronous transfer mode (ATM) and appllcatlpn can also query and modify the state of flows
an Ethernet-based Internet are utilized, particularly offering at any time. . o .
different levels of guarantees for network performance, such’ Wh_en the transm|35|on_of user data is finished, the appli-
as bandwidth guarantees or no guarantees at all. Since an catlon' requests a S‘?SS'O” teardown.

application does not have to care about differences in network! N& main workhorse is the Da CaPe- core. As shown
mechanisms, used properties, and especially semantics,Mof 19 2, it consists of several main components, which
different networks are hidden. This level of abstraction {gteract closely. Applications send requests through the API
provided by transport modules (T-modules) being part of tfig the session manager, which _performs the necessary session
configured communication protocol. To summarize, every Bganagement functions. It receives help for setting up proto-

CaPot+ protocol consists of one A- and T-module each arfeP!s—configured out of modules—from information stored in
up to multiple C-modules. the protocol database. It also assigns resources and buffers

For design purposes, the Da CaPp middleware covers to the protocols themselves, which perform the actual data

end-system issues on standard workstations, common mdfgnSfer- The security manager tasks will be discussed in

media devices, and applications on top (see Fig. 1). The pgetion NI-E.

CaPot-+ core—determining an instance of the middleware ) o

on one end-system—and an AP reside once per workstation S€Ssion Specification

in end-systems, while multiple applications may utilize the Recall that Da CaRp+'s main design goals were to pro-
same middleware core at the same time [31]. To accommodaigde a modular and efficient middleware. It should offer
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by one of several

on the receiving side. These generic protocol functions can
each be implemented by any number of modules, tuned to a
specific environment and making use of the existing hardware.
Such modules could include a SunVideo frame grabber, DES
encryption, support for a specific ATM networking card,
among others.

This approach for abstraction allows for a high flexibility
in that the application does not need to know any details
of data transfer from the source to the sink, but still can
influence whatever is needed. For example, an application
might request compression and does not care about how the
video stream is compressed, as long as a specified compression
factor providing a specified minimum quality is met, but it
might request a specific encryption scheme with specified
parameters.

Besides the flows specified by the application, each session
requires a reliable flow, used internally by Da CaPRe for
session-wide management information. It is used at session
setup time to inform the joining participant of protocols and
parameters being used. Later on, it is used to send out-of-
band session control information between individual modules,
the middleware cor@er sg or between applications.

At configuration time, all modules performing necessary

services are selected and configured according to a set of
requirements specified by applications. These requirements
are grouped into several categories, e.g., peer to which to
connect to, throughput, security parameters, and levels, e.g.,
applications the flexibility of specifying their communicatiorhigh-level/abstract requirements and low-level requirements.
needs in detail where desired, but also remain oblivious aboutligh-level requirements specify parameters in an abstract
elements applications do not want to specify and still receiveanner and do not necessarily provide complete determinism
reasonable service. To achieve this, a two-layer model waih respect to modules selected and parameters tuned, as
chosen. The application can: a) specify the types of floeng as the result meets the requirements. In contrast, low-
needed, e.g., audio transmission, and b) mention any spedii¢el requirements select a specific module to use or a specific
QoS requirements it has for each of these flows. parameter of a given module. Requirements usually do not
To allow this, sessions have to be created in a modulgpecify fixed values, but a (possibly weighted) range, so the
fashion. They form bundles of unidirectional data flows whicPa CaPa-+ middleware has flexibility in fulfilling requests.
form the basic data transport entities; e.g., a picture phofighce the requirements specified may conflict with or have
session would consist of an audio flow in one direction, dnfluences on each other, a precedence hierarchy has been
audio flow in the reverse direction, and a corresponding pa®t up. Low-level requirements have precedence over abstract
of video flows. requirements, which in turn override system-specified default
To achieve this modularity, a single session needs to be splitrameters. After configuration, the application is informed of
into a hierarchy of elements, which are selected accordingtte configuration success and values selected.
application-specified parameters and then combined into theA single module is not of much use; it needs at least
final protocol. In the picture phone example (see Section V-G, corresponding peer at the other end of an association.
the application would specify its need for a session consistififten, the receiving module also needs to provide feedback
of the previously mentioned audio and video flows. The set the sending module to function properly. This shows that
sion hierarchy is depicted in Fig. 3. Since many protocols withany operations classically considered as one function indeed
require feedback mechanisms, e.g., retransmission requestsamsist of up to four parts (see Fig. 4). In Da CaRq
camera control, the data flows are split into two data pathsthese four parts are treated independently. A forward path
“forward” main path, consisting of the data and some protocobnsists of a “down” part in the sender transporting (usually
control information, and a “return” path, transmitting thisnuch) data toward the network and a matching “up” part in
feedback information. the receiver, in addition to a corresponding backward path
Every data path can be implemented by a protocol staskith comparatively little control information. The forward
which can be built according to the application’s requirementsnd backward data paths may have different module con-
Each flow definition can specify the set of functions the undefigurations, either because only some modules need to have
lying protocol may need to fulfill. For a video flow, this mightaccess to the backward path or because the modules in the
include frame grabbing, compression, encryption, transmissibackward path themselves need some protocol processing,
on the sending side, and the corresponding inverse functiang., authenticated acknowledgments. Each of the data paths

Modules

SRR

Fig. 3. Session hierarchy.
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Application Application

b Forward Path se—)
Network

Backward Path

Fig. 4. Module relations.

had to be completely separate. To provide efficient use of thacking architectures, after a module returns the control back
backward (feedback) channel, communication among the padshe Lift, only minimal module state is present, making this
of the module performing operations in either the “up” oan ideal point for efficient context switching. An additional

“down” path have to be simple and fast. advantage is that module implementation can be simplified.
They do not need to care for special cases, such as errors
C. Lift returned from called modules. Instead, the Lift determines the

decision-making mechanism. To relieve the programmer from

_ As descrit_)ed_earlier, protocols determine the middlewareasburden, generally a module’s handler function will be called.
view of application flows. Flows are split into two data pathgy,iq 5 achieved by requesting a module for its requirements
(see Fig. 3) for the forward (data and control) and backwaéq protocol setup time. Knowing all the requirements in

g_eedback)f dlrect(;on. l;ser gata transfer only occurs 'T) ONfvance enables further optimizations. This approach eases
Irection (o_rwar path), where resource reservation basg figuration changes since there is only one location that
on the requirements may be applied. The backward pathkﬁows about the protocol chaining

used for control information only, e.g., acknowledgments and
quality feedback, which encompasses usually small amounts o
data. Thus, flows are unidirectional from an application point
of view, but they are bidirectional for control.

Although Fig. 3 may suggest that there is a lot of hierarchi- X , X
cal overhead involved, this overhead is negligible for protocol dat@ packet. This schedules a Lift run in the other path.
processing (see Section VI). A limited amount of overhead ® ©Out-of-band information has to be transmitted to the
occurs at session setup, and almost no penalties are to be paid Module implemented in the communication peer.
at run time, where all protocols’ selected module instances aré 1h€ module has remaining data to be transmitted. Do
directly accessed, making the layering a conceptual tool only. N0t turn idle after finishing protocol processing for the

In each data path, data is transported by an algorithm called CUrTent packet. .

Lift, an active transport mechanism, originally developed in * The module is currently busy; wait for a mutex to be
a first version in the predecessor project Da CaPo [32]. cleared.

Once started, the Lift works autonomously, calling in turn Normally, the Lift passes a packet through all modules in
the modules’ processing functions, according to the sequeriddy one direction, according to the direction of the data path.
set out at protocol configuration time. The Lift goes on t8 starts with an empty packet, obtained from a buffer list
transfer data from the network to the user or vice versa, unfilaintained by the buffer manager, which is being filled with
it receives new instructions from the application or one dfata by the first module. The packet is possibly modified by
the modules it passes by. The Lift passes a packet aldntermediate modules and emptied by the last module in the
all modules within a protocol, and each module perfornghain. Under some circumstances, e.g., for segmentation and
appropriate changes and may request the Lift to pause, briegssembly or reliable data transmission, modules may not
another packet, or discard the packet. The independenceobly have data to fill in, but entire packets to send. In this case,
the Lift—every Lift responsible for a single protocol runghe module will signal the Lift that its next run should only
in a separate thread—frees other system parts from dutiesa partial run to pick up the remaining data. This partial run
(see Section IV-C for Lift/module interaction). It also makeserely covers the signaling module and the modules beyond it.
a protocol easy to trace and schedule. Concerning memory requirements of modules, buffers con-

Compared to most other flexible protocol architectures, thigining packets show a packet structure including a fixed
scheme does not cause each module to be stacked on header, where each module owns a prearranged number of
of each other on the function call stack, possibly requiringytes at a known offset. The packet also contains a variable-
a large stack for local variables. Compared to traditionalzed data block for use by A-modules to transport end-to-end

P’he actions a module can control include the following.

e Communication between forward and backward path:
the corresponding module in the other path received
information which it will need to send out with the next
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dgta. Since prot(_)col details are known at initializatiqn time, thgtruct auth.data {
size of the maximum data block can be deduced in advance; process_id;
growing and shrinking data blocks within these limits is just ~ // simplified RFC822 address, e.g. <joe@doe.com>
a matter of determining which part of the allocated block —4Se¥-id: .
. . /I String with separate fields, e.g. name = netscape_navigator;
contains the data (see Se_Ctlon_ ”I'D)-_ ) /I ver = 2.0b; platform = sundu; os = sunos5.5.1; author = foo@bar.
Probably one of the main points of interest for the applica- application.id;
tion programmer concerns the control he has over running // Hash of application file(s), signed by trusted entity.
rotocols. It is possible to create or destroy sessions and 3Pplication.certificate;
{:) P fl . . hy h | /! Given as PGP key ID, RFC822 or hex style.
0 pause or restart ows in a session, where the control \ oy bublic key.id;
flow is used to transmit changes in the session’s state, and / Unlocking the key in the PGP DB.
thus is always active (see Section llI-F). The A-module can user-private.key.passphrase;
be directly controlled by applications and provides feedback / Alternative “é giving the passphrase.
. . . user private_key;
to applications using request/response messages and asyn-, String passed on to the user for confirmation.
chronous events. This scheme can be used to request fast query.string;
forward or rewind functions for a remote video server ang:
could be extended to control a remote camera, e.g., zoomg}& 5. Application authentication data structure.

and panning.

D. Resource Management and therefore the computational requirements of employed

Another one of the main goals for designing the DBrotocols) is variable, depending on user demands.

CaPor+ core was to provide efficiency by reducing data Priyacy and au_thentic_ity of cpmmunication are as much
copying. Therefore, the Lift only transports a packet descriptdiPsidered a basic-service quality parameter of the network
A packet consists of three buffers whose sizes are determirfsy Packet loss rate, bandwidth, and delay. Together with
at configuration time. One of the buffers holds data of variabfe'modules providing the actual data security, the security man-
length to be transmitted between A-modules located at pee?§®" (Se€ Fig. 2) represents all security functionality within
Another buffer holds the constant-sized header, enabling Bt CaPe-+. Special C-modules encrypt or authenticate ar-
modules to communicate information to its partner modufitrary data streams, and the security manager provides peer
located at the peer. A third buffer is used for communicatigithentication services. It is fed with application requirements
between modules in a single data path within one end syst@ff! translates them into low-level security parameters, collects
and is not transmitted over the network. Packets and buffégfidomness from system state to provide keying material, and
are managed by the buffer manager, also keeping track a$sures security at run time. Additionally, it includes the key
reference counts for each buffer. This allows modules to keflgtabase and cryptographic routines of pretty good privacy
a copy of a buffer by a referencing pointer without actuall{PGP) [33]. For integration purposes, PGP has been changed
copying the data. Segmentation and reassembly modules t¥A & library and linked into the middleware.
also pass on partial buffers to avoid the creation of partial 1) Authentication Servicestn Da CaPe-+, communica-
copies. The possibility to pass partial buffers together wifPn peers and local applications connecting to the middleware
separate constant-sized headers gives processing advant@g@g;}uthenticated. The application or the user must authenticate
As far as Da CaPe+ is concerned, it also allows for a zerodtself when the application first requires services from Da
copy operation using Application Layer Framing [14], evefraPo++ through the application programming interface (see
for segmentation/reassembly. Section IlI-F). During the delegation of identity, the applica-
The buffer manager—and all other components requirirfin indicates the keys in the database to be used and provides
system resources—request their resources from the reso@cdeassphrase to unlock them. This information (see Fig. 5)
manager (see Fig. 2). It provides an abstraction layer for meid-passed from the application via the API to the security
ory, CPU resources (in the form of threads), and timers. Thiganager. Fig. 5 shows details on data structures shared be-
simplifies portability, reduces memory management overheddgen the security manager and the Da GaRRoapplication
and minimizes memory copying. programming interface. In practice, only the provision of a
key ID for a public/private key pair and the corresponding
) ] ) passphrase are required to prove one’s identity to the middle-
E. Security Functionality ware. The middleware then utilizes the public/private key pair
In Da CaPg-+, encryption and authentication functionghat is provided by the user and its own public/private key in
are not only available as an integral part of the middlewarthie proof of authenticity to the peer system. The administrator
but the security degrees (amount of privacy and authenticity a system must be trusted because he can impersonate any
required for messages) are also treated as QoS parametegsr accessing the middleware by multiple means; one of the
In an environment handling multimedia data streams of higheans is the capture of the passphrase as it is transferred from
data volume, computational resources required to provide tiie user to the middleware.
highest level of security usually exceed available CPU power.As an additional means of control, the user may choose to
For this reason, the provided amount of security (the strengdrminate any or all applications using the middleware on his



STILLER et al. FLEXIBLE MIDDLEWARE FOR MULTIMEDIA COMMUNICATION 1587

This type of parameters can be determined easily by the
user than the low-level requirements. These parameters are
evaluated based on a database containing strengths and weak-
nesses of different algorithms, together with their likeliness to
be broken or weakened in the years to come. This likeliness is
based on current and expected cryptanalytic results. Creating
and maintaining this database is not an easy task, but is only
Fig. 6. Abstraction of requirements. marginally more complex than directly specifying well-chosen

low-level security parameters in the first place. One advantage
behalf. This is done by accessing a separate user interface fiahis database is that it only needs to be defined once by
directly connects to the security manager. the developer or administrator of the middleware and not by

Admission control of communicating peers is done b§very application programmer or user. Additionally, whenever
applications because evaluations have shown that criteria fi@icessary due to advances in cryptology, the strength of
admission control are too varied to be efficiently delegat&@curity mechanisms offered to applications can be increased
to the middleware. Upon arrival of a new peer, the securitj@nsparently by updating the database. This mechanism even
managers exchange: 1) certified keys and 2) additional @llows for adding new and improved encryption algorithms
thenticating material forming a authentication hierarchy. Sithout user or application programmer involvement.
an application could specify whether it would only accept a 3) Security AssuranceThe Da CaPe+ middleware al-
particular remote user or that it would also trust the remote dpws for modification of security parameters in an ongoing
plication or the remote middleware. If the application accepg®@mmunication. This reconfiguration can switch off or change
the association, communication begins. cryptographic algorithms without interrupting the flow of

2) Security QoS TranslationSecurity parameters can bedata. This admits users to tune system performance in a
controlled as application requirements. Security parameterdfiite-grained manner, e.g., receiving better quality in video
Da CaPa+ express requirements on four separate layei§ansmissions when security is not required. At the same
1) user requirements; 2) abstract application requiremeriigae, if underlying infrastructure offers security functionality
3) low-level requirements; and 4) infrastructure requirementdy itself or if it is considered to be secure (e.g., a leased
Depending on requirements put upon a layer, certain codge or an office LAN are usually considered much more
result. Requirements posed on the infrastructure are, e.g., n@iévate and authentic than packet radio or the Internet), security
essary CPU seconds per real second for a flow transmissittictionality employed in the middleware can be reduced. As
memory consumption, or network bandwidth. an additional consideration, the middleware administrator may

Low-level requirements within the middleware cover pagnforce certain minimal security requirements which cannot
rameters, such as key length, choice of algorithm, and k¢ circumvented by applications relying on the Da Cafo
change rate and are easily understood and directly adheredhigdleware.
by modules. As it is the goal of Da CalReg- to provide a  The security assurance component in the security manager
comfortable environment for application programmers, the&so monitors the usage of keying material and keeps track of
parameters may be well known and straightforward; nevertife amount of encrypted data and period the key that was used.
less, the average application programmer or even user canftenever the user or the systems determines the necessity,
be expected to fully understand their security implicationg. change of keying material is initiated. To economize costly
Additionally, it might be undesirable to preselect encryptiodSymmetric cryptographic operations, multiple data encryption
and authentication algorithms and their parameters in det&#ys are transferred as one asymmetrically encrypted data
Whenever advances in cryptology indicate the insufficiepeicket and containing keys are consumed as needed.
safety of such an algorithm, all applications statically demand-Within this novel approach of the Da CaP¢ middleware,
ing the algorithm would require changes. security functionality is integrated tightly into the Da CaPp

To address this problem, low-level requirements are deriveg@re and protocol processing. This provides key management
from application and user-level requirements, as outlined &nd a variety of encryption and authentication functions to
Fig. 6. The application can specify the required strength 86ws and sessions, which are selectable be users in a similar
security algorithms to be employed, defined as the amountfaghion as they request for reliable transfer of data.
time communicated information is supposed to stay unreadable
or authenticated against a predefined class of potential ehe AP
mies. The model employed in Da CaP#é to specify security APl for communication services is the only interface vis-
requirements on the user level is the threat model. Usédlpge to application programmers in end systems from the
specify the most likely attacker, e.g., casual hacker, determimadtidleware. Since data streams may vary according to their
group, competing enterprise, multinational corporation, @ype, location, and origin of data, two basic abstractions
rogue government agency, as well as the presumed valuefaf application data streams, called flows and sessions, have
the information. Therefore, the system must provide securityeen designed (see Section IlI-B). This allows for hiding all
mechanisms whose breaking costs are higher than this valcemmunication protocol specific features [34]. In addition,
Additionally, a probability specifies how likely these promisebasic operations for dealing with quality-of-service (QoS) have
should be met. been introduced [30]. Although, for example, transmission
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Fig. 7. API architecture.

control protocol (TCP) considers one type of user data only,The design of a general-purpose QoS-based communi-
namely a general stream of bytes, a general-purpose Qo8tion API implies the provision of three different steps,
based APl needs to distinguish between several differamhich are independent of the underlying middleware.
data types. Transport protocol properties for audio, videBirst, within an application process, resources are locally
and user data are different in terms of maximum accepHocated and configured according to application needs using
able delay, loss rates, required bandwidth, security levetsjailable API functions (see Section IV-E and Table IV).
and multicasting features. This is formalized in a configuFhis process is similar to opening and binding a BSD
ration file, as depicted and discussed in Section V. Howecket with options. Second, a setup process is involved
ever, the application always handles communications in #m establish an association between two or more end
association-based manner, where the API handles associafiomts and to exchange user data. Third, user data are
context information, e.g., including session identifiers, artdansferred via the API, if they do not originate from
the underlying protocols may provide a connection-orientedultimedia devices; otherwise, they are handled by the
or connectionless service. In general, the API utilizes awmrresponding A-module directly. The designed API has
object model, where the base class of flows consists tof enforce phase one and two to offer the application
three subclasses for an audio flow, a video flow, and pmogrammer a maximum degree of flexibility. This takes
data flow, each of them containing the respectively requiréato consideration that application QoS requirements play
functionality. As every flow may receive or sent data onlyan important role not only during the establishment phase
separate classes encompass the required functionality. Thérecluding configuration and reservation), but also during run
fore, applying the concept of multiple inheritance to thesime (QoS renegotiation).
classes, the requested instance will be automatically generate@io support several applications on top of the Da CaRo
based on the application requirement specification, andniiddleware, a client—server approach has been designed. This
contains the functionality for, e.g., sending user data whidhcilitates the resource management tasks for port numbers,
is termedSendDataFlow. devices, and memory (see Fig. 7). The upper API is linked to
An important difference is encountered for data from aphe application, while the lower API defines the front end of the
plications and live data, originating from multimedia device®a CaPa-+ core. Functionalities and tasks are accessible by
As the Berkley software distribution (BSD) socket interfaceays of the control access point and data access points. During
[35] considers data only being directly generated or consumib@ setup procedure of associations, the main control protocol
by the application, inefficiencies when moving data from usesssures that the appropriate number of resources is allocated.
to kernel space and vice-versa are significant. Since thisVighile user data is in transit, the control delivery protocol
not suitable for every type of application, e.g., for a vides applied. The data delivery protocol ensures that common
conference application, video and audio data may traversigared memory or appropriate interprocess communication
directly from their associated device (camera and microphor{@C) schemes are utilized to optimize the communication
or file to the corresponding remote device (monitor angerformance.
speakers), without having to transit through the application. InA central issue in the API is concerned with the defi-
general, for any application, only the less expensive contnoktion of an end-to-end association between peers. Besides
of devices—in terms of the amount of data—still remainsiiddleware-internal encryption and decryption functionalities
under the responsibility of applications which may includbeing supported, the application and the user must authenticate
control commands, such as fast forward or fast rewind ftmemselves during the establishment phase. Succeeding the
video. Multimedia user data per se are directly handled by thathorization, an association between two or more applications
appropriate multimedia device. must be defined in terms of user data streams and QoS
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requirements, which is additionally supported by separateay share code providing common functionality by putting it

memory segments for every session. to a code library.
Besides internal test, protocol trace/debug, measurement,
IV. IMPLEMENTATION and traffic generation modules, a number of multimedia

communication protocol processing modules have been
implemented. Among A-modules are modules to transmit

The entire Da CaPp+ core is object based, in order togpplication-to-application data (RawData) and to receive and
achieve the desired modularity of the middleware. This is magansmit from the audio and video ports or from stored files
noticeable with modules: neither the module selection amgtluding the usual rewind and fast forward functionality, e.g.,
configuration components nor the setup components or the I8finvideo, VideoFile, SunAudio, and AudioFile. T-modules
algorithm needs any adaptation when a new module is addglude unicast and multicast transport support for ATM, user
In order to have all the flexibility of an object-based approaclatagram protocol (UDP), and TCP, where multicast for TCP
yet still exert full control over everything that happens ang emulated by opening multiple ordinary TCP connections.
the speed available, the core and every module was writ€Amodules for different groups have been implemented, such
in the C programming language. Since creating classes agflow control and reliable transfer (Alternating Bit Protocol,
instances is not supported by the C run-time environmendle Repeat Request, Multicast Error Control), segmentation
a special run-time support was created. Modules form basiad reassembly, encryption [DES, Triple DES, IDEA, and RC5
building blocks and behave like classes in an object-orientgtboth electronic code book (ECB) and cipher block chaining
environment: they have a descriptor structure which contai(GBC) modes, Diffie—Hellman and RC4], and authentication
key elements identifying them, e.g., their name and a list ¢i-MAC MD5, RSA signature). All these modules are
function pointers to call and perform well-known functionsdesigned for multimedia communications. They are capable
Additionally, they have an assigned partner module to be usedhandling different data types at performances required by
at peers. high-quality streaming media.

Individual instances of a module can be created using a
function in the Da CaPé+ run-time system. Instances do also
have a descriptor structure, containing identifying elemen8, Protocol Database

information about which module they stem from, and protocol As we have seen, each data path is implemented as a series
in which they are used. Unlike most other object-orientegk individual modules in Da CaRe+. Although the modules
systems, it also contains function pointers. As each modigge independent of each other, the corresponding modules in
gets to know application requirements at configuration time,tife forward and backward path usually share their instance
can and must adapt to these parameters, i.e., an audio mogigables to simplify state updates. Since these modules are
may configure the sampling rate and input device accordingttfllored to be used together, they are combined into one
specified requirements. Although most modules are capablengéchanism. A mechanism usually has a natural way to be
handling different media types, each individual instance wilhtegrated into a protocol, e.g., video compression should be
process only a single data type during its lifetime. Thereforgone in the down path on the sending side and the corre-
some modules go even further and change their instancggonding decompression step on the receiving side. Reconsider
function pointers to point to functions which are optimizeghe authentication of acknowledgments; sometimes, it would
for a number of special cases, at initialization or even ruse useful to use a mechanism a little bit differently, e.g.,
time. This turned out to be especially handy in implementingecompress stored video in the sender, because the receiver
protocol state machines. A module that has adapted itself toigsonly able to handle uncompressed video or use the seg-
environment is called a virtual module. For example, instancggentation/reassembly module to assemble tiny packets from
of transport modules know whether the configured protoctile source into suitably large network packets. To fulfill these
will ever use header fields or what the maximum size @femands, it is possible to individually swap each mechanism
a data block can be, and do replace their generic functidn.a protocol (specified by flags in the protocol database) along
Also, when audio receiver modules are instantiated, they calhits symmetry axes: swap sender and receiver side, up and
determine whether they are the second instance and can mé@d&n direction, or forward and backward path.
sure that the first instance (and any further instance to beDuring the development and testing of the Da CaRo
created) will use the audio mixer. Using a mixer is requireghiddleware, it turned out that the level of flexibility mentioned
since the used audio device only supports a single reader amdSection IlI-B and prototypically implemented in [36] is
a single writer. seldom needed. It results in indeterministic behavior and
Instances cannot only find out about their class or othegquires a lot of effort on the side of the module designer to
instances of the same class, they can also determine infitty specify the configuration dependencies (each module may
mation about any module within their session, both on ttepecify pre- and postconditions as requirements, e.g., a reliable
local and remote site. After having found the desired modulgansport below). Last, but not least, it also introduces a very
they can also communicate with them—Iocally, using methddgh evaluation overhead at session setup time. Therefore, the
invocations and remotely, by sending them a control packetiddleware-internal table of modules has been augmented by
Although the class concept is being used, no inheritanceasdatabase of preconfigured protocols. Each of these named
currently provided, but modules providing similar functionalityprotocol definitions consists of a sequence of modules to

A. Object-Oriented Module Implementation
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{ to continue, e.g., because of a timer event or the backward
{“pfVideo”, NULL, “mcVideo™, 1, 0,0,0}, path signaling the forward path that it has finally received the
{“pfAuth”, NULL, “meMD”,  2,0,0,0}, acknowledge.

{“pfAsymAuth”, NULL, “meDS”,  3,0,0,0}, Return values of theeq and ind functions are especially
{“pfPrivacy”, NULL, “mcCBC” 4, 0,0,0}, powerful. They signal, e.g., whether the module has data
{“pfKeyAgreement”, NULL, “mcDH”, 5, 0,0,0}, that should be transported, whether the module is busy and
{“pfTransport”, NULL, “mcATM”, 0, 0,0,0} cannot accept new data now, whether it or its sibling in the
} other path has more packets ready, or whether it wants to
Fig. 8. Sample protocol database entry. send out-of-band data. After signaling that out-of-band data

is ready, the connection manager picks up the data by calling

use and configuration parameters to these modules. Still, the out function and will deliver it through the network to the
application retains complete control and can override any wfatching module’sin function.
the parameters; yet it was possible to greatly simplify the All req and ind functions are called after each other (if
configuration algorithm during session setup both in code ahdth are defined), where the idea of the request function is
run-time overhead. to send data into the module and the idea of the indication

A sample protocol definition for a secure video transmissidunction is to get data out of the module again. This looks
is shown in Fig. 8. All fields from left to right contain the nameedundant at first, but in fact this can be used to simplify
of the protocol function, the name the instance should gidte design of modules due to a design particularity of the
(if needed for communications between otherwise unrelateidt. Whenever the Lift has transferred a packet through all
modules), the name of the preferred mechanism to be used,nigdules, it performs a reverse scan through the indication
order in which the modules should be executed, and swap dndctions to find out whether any module has anything more
module options including side swapping. The processing order send, which it would start transporting. This results in a
must be specified because it was originally planned to allow fsimplification of segmentation or retransmit modules, while
the parallel execution of independent protocol functions. Thisill assuring the packet order.
has not been implemented, since the synchronization overheadio obtain a detailed view on some different protocols
between parallel threads turned out to be much higher than twpported, Table Il depicts an excerpt and configuration in
performance improvements achievable. terms of configured A-, C-, and T-modules, where short

_ _ _ module and protocol names are presented.
C. Module Configuration and Operation

Although the modules can be used very flexibly, knowleddd Security Modules and Protocols

of only a few simple interfaces is needed to implement a To implement and evaluate the basic QoS mapping mech-
module (see Fig. 9). In general, modules are passive and anisms for user and abstract application requirements, the
called when they need to perform a function, directing thea CaPe-+ middleware offers different security modules
caller using return codes. If a module wants to make use of and protocols. This allows to show their usability in the
interface, it simply provides a function which will be calledcontext of multimedia protocols and continuous media support.
at appropriate times. Modules for key agreement, privacy, and authentication are

At session setup, the connection manager and all oth@pvided (see Table IIl). Note that MD4 is not practically used
requested protocols are created. The connection managearigmore, since it has been broken in the meantime, and DH
a regular communication protocol, but with the special duty for agreement on a shared secret is only usable in conjunction
help in connection setup and transmission of control and owtith RCA4. It can be used when no peer authenticity is required
of-band messages. Each protocol fulfills requirements given perfect forward secrecy has to be provided.
by the application, which the Configuration Manager resolvesProtocols providing either encryption, authentication, or
in a two-pass process: in the first pass, traversing from theth can be configured. By specifying appropriate QoS re-
A- to the T-module, it determines all module requiremen@uirements, the application can choose which cryptographic
using theguess function. In the second pass, traversing thalgorithm is to be used in appropriate security modules. QoS
opposite direction, it resolves these requirements using ti&gjuirements can be changed on run time, while users can
calc function. If the preferred configuration of the moduleslirectly influence the behavior of active protocols, change
is not able to match all requirements, each module is querid® employed cryptographic algorithms, or switch off cryp-
for other potential configurations using thenfigs function. tographic mechanisms completely.
After the decision has been made, all modules are instantiated ]
accordingly. E. Implementation of the API

At run time, modules’start and stop functions are  While the complete API is discussed in [37], an excerpt of
called whenever data transport is allowed to start/resurmeain interface functions offered for the session and flow level
or is paused/stopped, based on instructions of local and aee listed in Table IV. These functions are applied from the
mote applications. After that, moduleg’eq and ind (re- application programmer to utilize the Da CaPe middleware
guest/indication) functions are called as long as at least oae exemplified in Section V-C.
module signals that it has more data ready. After that, the Lift As a general task, the APl has to cross a process bound-
turns idle and waits for anyone calling its data ready functicary between applications and the Da CaRo core. The
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Fig. 9. Module interfaces.

TABLE I TABLE IV
ExAmMPLES OF SOME DEVELOPED MODULES AND PROTOCOLS ExcerPT OF PuBLIC SEssion AND FLow-LEVEL APl METHODS
Protocols A-modules C-modules T-modules Function Description
Audio Ethernet AudioFile - McastSocket Ses- Constructor of a session object requiring the configura-
Audio ATM AudioFile - McastSocket sion{() tion file and a reference on the previously instantiated API
Video Ethernet VideoFile Measure ATMMultiSocket client object as parameters.
Video ATM VideoFile Measure ATMMuitiSocket Con- The session either actively connects to a peer or passively
Reliable Data RawAPI - MultiTCPSocket nect () waits for a connect() from a peer. Parameters are addresses
Unreliable Data RawAPI - UDPSocket and ports, necessary for both unicast and multicast connec-
CryptoDES RawAP1 MDS, DES, RSA UDPSocket tions.
Crypto-IDEA RawAPI MD53, IDEA, RSA UDPSocket Confi- Every flow of a session is configured by the communica-
CryptoRC5 RawAPI MD5, RCS, RSA UDPSocket gure() tion subsystem.
Acti- The transport of data is started or resumed for every flow
TABLE il ;Z:it(:;— %;: Stfzxsllson.n of data is stopped or paused for every flow
IMPLEMENTED SECURITY MODULES spo ppe p y
vate () of a session.
Function Algorithm Parameter Flow- A new flow is dynamically added in the session (allocation
Key Agreement | DH Size of shared secret Join () of resources).
Privacy DES, Key change interval, ECB or CBS Flow- An existing flow dynamically leaves the session (dealloca-
(block cipher) 3DES, modes, number of rounds and key Leave () tion of resources).
IDEA, RC5  length for RC5 Close() The session is terminated and all resources are de-
Privacy RC4 Key length, Key change interval allocated.
(stream cipher) SetReqg- New QoS requircments can be forwarded to the
Symmetric Au- | MD4, MD5  MAC on/off, Key change interval Flow() Da CaPo++ core during run-time.
thentication GetReqg- Actually configured values of QoS requirements can be re-
Asymmetric RSA Signing interval Flow() trieved.
Authentication Send- User data can be sent within a flow using its flow descrip-
Data- tor.
o . . Flow()
application itself is considered as the “API client procesS™Receive- | For receiving data the asynchronous approach via a call-
utilizing the upper part of the API. The “API server process”bata- back function is available.
offers the lower part of the API. Multiple API clients, one Flow()

for each application, reside in a multithreaded process on o )
a workstation and applications including the upper part &ations resulting in a three-level framework [38], [39]. Since

the API generate a request followed by a response from t& modularity reflects the modularity of Da CaPé on the
lower part of the API. Events can be directed toward trpplication level, its basic idea is briefly introduced. Based
application in an asynchronous fashion. Shared memory & the example of a picture phone implementation on top of
Interprocess Communication paradigms are offered by the AP® CaPe-+, the usability design goal of the Da CaP¢

to efficiently support various types of stored data comingiddleware is discussed.

from applications. Particularly, bypassing the API for data
originating from devices achieves a sufficient throughput 6t
continuous multimedia data streams (see Section VI).

A Three-Level Application Framework

As control mechanisms and user interfaces for different data
and connection types may be reused in different applications,
V. EXAMPLE: IMPLEMENTATION OF A a three-level application framework has been defined and is
PICTURE PHONE ON TOP OF Da CaPe-+ depicted in Fig. 10.
Da CaPa-+ has been validated by the implementation of It is per seindependent of Da CaRet+ and can be applied
an extensive application framework on top of the middlewartn all sorts of applications. The application component level
A modular design has been retained also for complex apptiemprises atomic units providing a well-defined functionality,
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Application W SESSION CREATOR UNICAST Picturephone
Scenario S FLOW VIDEORECV.DEVICE VideoRecvFlow

THROUGHPUT 4.5 2.0

Application FPS 5 13
DELAY 0.2 0.45

o JITTER 0.001 0.0035
Application ENDFLOW
Component FLOW AUDIO.RECV.DEVICE AudioRecvFlow

. o THROUGHPUT 1.41 1.41
Fig. 10. Three-level application framework.

DELAY 0.2 0.45
JITTER 0.001 0.0035

. . . . . . ENDFLOW
e.g., the display of video data. This functionality is system FLOW VIDEO.SEND.DEVICE VideoSendFlow
specific and directly can for example make use of Da GaPo THROUGHPUT 4.5 2.0
A-modules. An application consists of one or more application ggiAY g 5 é345
components and offers a single homogeneous functionality JITTER 0.001 0.0035
being provided in close cooperation by the application compo- ENDFLOW
nents. For example, a picture phone determines an application FLow ?’S{ié?J_GSHE;IL?T—DE]YIIIClE Ard;fsendmw
in th!s_ sense. Ar_1 z?\ppllcanon scenario fuh_‘llls a completely DELAY 0.1 0.3
specified task within a real-world scenario. It consists of JITTER 0.001 0.003
one or more applications being logically structured. As the ENDFLOW

ENDSESSION

application and application scenario level often cannot be
separated clearly, a picture phone can be used as part of,Higr11. Picture phone configuration file.
example, a telebanking scenario (application) or as a simple

picture phone (application scenario). This is demonstrated by the example of a picture phone

implementation on top of Da CaRet.
B. Applying the Da CaPe+ Middleware

In order to make use of the Da CaP¢ middleware, it
has to be installed on all involved end-systems of senders dn
receivers. Within the development environment, Da GalPo  The Da CaPe-+ picture phone allows two participants
has been implemented on Sun workstations operating Soladascommunicate by exchanging live audio and video. Da
2.5.1. The Da CaPRp+ core including the lower part of the CaPo-+ A-modules capturing and presenting live audio or
APl is implemented in C. A compilation is required on thdive video data, respectively, are combined with unreliable
dedicated end system. The compiled core is running permaicast data transmission T-modules to live audio and live
nently on these end systems, and applications can connectitieo protocols.
the core and utilize the middleware. The upper part of the APIThe configuration file for the picture phone session in the
is currently implemented as aHGt library and must be linked creator, i.e., the caller, is depicted in Fig. 11. The speci-
to applications built on top of Da CaRear-. fied session determines a unicast session while it consists

Dedicated functionality like video compression using Sunsf four flows, each one for sending and receiving audio
video card [40] can be used only if the required hardware @d video, respectively. Every flow is assigned a type, e.g.,
available on the end-systems. Applying, for example, coiIDEO_RECV_DEVICE. This type specifies the data type, the
pression schemes like JPEG, which are also supported, sloeirce/sink of the flow, and the direction of the flow. In this
interoperability is increased as JPEG can be decoded on otb&se the session creator is a receiver BideoRecvFlow. In
platforms as well. In order to use Da CaP® on other this example, data is sent directly to the device and not passed
platforms, like Windows NT, the Sun specific part of the&ia the application (see Section IlI-F). Depending on the data,
code, e.g., the thread management, of Da GaPmeeds to end systems, and the communication medium available, QoS
be ported. parameters are specified for every flow. They may encompass

Existing applications can run on top of the middlewarthroughput, frames/s, samples/s, bits/pixel, for example. The
after the integration of the Da Calrg- APIl. Data gen- communication protocol is configured out of selected modules,
erated and consumed by the application is transmitted wiere the decision is based on the configuration file, and
and received from the Da Calg- core via the APl meth- the protocol is instantiated by the Da CaPp core (see
ods SendDataFlow and RecvDataFlow. These methods are Section IlI-A) saccording to the specified QoS.
called in a ported application whenever data is written to The example of the configuration file (see Fig. 11) specifies
or received from, e.g., TCP sockets. Data transmission tigo values (maximum and minimum) per parameter for audio
provided by Da CaPe+ transparently to the application.and video data. In the sample configuration file, the communi-
While this is a valid approach to apply the Da CaRe cation requests different delay and jitter characteristics in both
middleware, applications hardly profit from the supported midlirections, specifying an asymmetric communication.
dleware functionality. Especially the handling of multimedia Multimedia data capture and presentation is performed
data within the Da CaPp+ middleware eases and supportby the instantiated A-modules, whereas data transmission is
the efficient implementation of new multimedia applicationgerformed by different Da CaRe+ protocols.

g/mplementation of a Picture Phone
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5:

6:

: pp->Activate ();

/* create Da CaPo++ client */ related to this session. Afterwards the destructors for
: client = new DaCaPoClient (securityInfoStruct); session objects and the Da CaPp client objects are

/* create session */ called.
: pp = new Session (configFileName, client);

/* connect session to peer */ These method invocations are sufficient to implement a
: pp->Connect (connectInfo, callbackFct); picture phone on top of Da CaRea-. Additionally, a graphical

/* start or resume session */ user interface has been implemented in Tcl/Tk [41]. The

/* stop/pause session or hold on line */ connection information is specified in this user interface. The
pp->Deactivate (GRACEFUL); user can enter the communication peer’'s machine; a default is
;;jé‘l’zze“(‘f_sessmn "/ used for the port number. By activating user buttons, the peer

' can be connected, data transmission can be started or stopped,

Fig. 12. Applying the API to the picture phone. and the connection can be closed.

Implementing a Da CaPe+ picture phone requires the
following steps, which are depicted in Fig. 12.

1)

2)

3)

4)

5)

6)

Within the Da CaPe+ project, numerous applications
including a teleseminar scenario and a media server have been
implemented in order to evaluate the Da CaRomiddleware
A Da CaPe-+ client must be created exactly once pefyrther. As the results obtained have shown, the support of
application. The corresponding metha@th¢aPoClient myltimedia data provided by Da CaRe- is adequate, and

constructor) in the upper API creates a Da CaR0 even complex multimedia applications can be implemented
client and connects it to the Da CaPe middleware. egasily [39].

Authentication information of the application is passed
in the securityInfoStruct and evaluated in the secu- Vi

rity manager during creation of the Da CaP# client. o ) _ _
After this method invocation, the functionality of Da The performance of data communication obtained in a given

CaPok+ can be used. implementation determines the quality of communication ser-
Sessions for data transmission must be instantiatd£€s and protocols. The Da CaPe middleware as described

The picture phone is implemented within one Sing|§arller has been implemented on standard workstations [31],
data session. The corresponding APl method requir%'éCh as Sun SPARC20 and Sun UltraSPARC 170E (evaluation

a configuration file and the identification number of thgachine) running the non real-time operating system Solaris
Da CaPe-+ client. The configuration file passed to thig-5-1. The Da CaPp+- middleware has been evaluated using
method is depicted in Fig. 11. the Quantify tool [42] and high-resolution system time mea-
A connection based on the specified QoS parametétgements directly. Standard Sun multimedia equipment has

must be established between sender and receiver. TRREN utilized, such as cameras, microphones, and the SunVideo
is done by theConnect method invocation. The con- board [40], offering real-time image capture and compression

nection information passed to this method contains fgr digital video. _
structure specifying the address of the peer, its portConcermng the performance numbers to follow, first the
number, as well as the own address and port numb@yerall overhead due to modularity is discussed. Afterwards,
Both port numbers are used to establish the connectigRCUrity relevant performance figures are outlined, and finally,
between the connection managers of both peers. the API's efﬁment_:y is presented. Both \_/vntmg and sen_dmg
callback function is specified within this method call©f User data requires semaphore operations for accessing the
This function is called whenever an event must be pass red memory. For this reason, the sendlgg_ldo_ ms_)
from the upper API to the specified session. and .the_ receiving delays<@l2 ms) for_ data originating in
The session is activateddtivate) to start data flows 2PPlications on top of the Da Cafe- middieware on an end

sending and receiving data. Due to the specificati(ﬁéfStem were measured. The throughput numbers achievable

in the configuration file (see Fig. 11), data is capturefﬁ’r various protocols differ, specifically based on the special

directly by the device (microphone and camera) aerOtOCOI configuration applied. For example, the results for an

displayed on the device (speakers and monitor) Dategreliable protocol processing determine: the sender requires

transmission continues until the methbeactivate is ©N average 45 versus 1gs, and the receiver requires 41
called versus 31lus. Concerning the measured upper bounds in

g unreliable case, 278s for the sender and 323s for

To stop data transmission, the session is deactivafﬁ i h b b d within the Solari .
(Deactivate). If the session is deactivated gracefullyf e receiver have been observed within the Solaris operating

the Lift algorithm delivers all data pending in the mid.System environment. Therefore, Da CaPe achieves in this

dleware for this session to the participating moduld@S€ an average sendgr throughput of 38.4 Mbit/s for 88 Byte
before the session is stopped. Deactivating the sess kets and 44.8 Mbits for 1024 Byte packets. The WOI‘S.I
instantaneously would result in a graceless deactivati Ut guaranteed case throughput for the unreliable protocol is

of all participating flows. After deactivation, the sessiorqletermIned by 2.4 and 3.7 Mbit/s, respectively.

can be resumed again by thetivate method. . i

Before leaving an application, involved sessions mu& Lift Performance and Protocol Processing Overhead

be closed ¢{lose). This frees resources reserved by the The performance of the Lift determines the overhead in-
Da CaPea-+ middleware and deletes all data structuregolved in the concept of achieving modularity within Da

. EvALUATION OF Da CaPe-+
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Fig. 13. Protocol overhead based on modules. Fig. 14. Protocol overhead based on memory.
CaPot-+. The processing overhead is shown in Fig. 13. These Key Change 1 1 ]
numbers include the overhead incurred by the resource man- "™
. Processin:
ager to allocate necessary packet memory and is referred to  ncsiz1 [ms/packet]
in total as protocol overhead. 1000 Lift runs were performed. — KeyChange ] [ms]
All data were measured in wall clock time, and modules in the Processing I I 1 [ms/packet]
protocol were measurement modules, having a measurement A | |
. " Key Change
overhead of 0.6:s each. This results in an overhead ofi® DES GO I [ms]
for the packet allocation and the per-run Lift overhead, plus Prosessing _I_l [ms/packet]
0.4 us for each module in t.he data path. Th.e high maximum processes =] ms/packel]
numbers stem from occasional context switches in the non

0 0.1 0.2 0.3 0.4 0.5

real-time multitasking system. Therefore, the goal of achieving
efficiency has been reached while remaining as modular g 15. Comparison of security modules.

possible. %rfyption module DES-CBC are studied in detail, while further

The total run-time overhead depending on the amount . . . .
. . mechanism numbers are given for additional comparisons.
memory requested for a flow with three modules is shown IN'An overview of all numbers is depicted in Fig. 15. Specif-

Fig. 14. As it can be seen, the memory management (usin S .
the standard C library) takes a constantus (difference |cglly, within the MD5 module the calculation of the MD5

. . checksum accounts for 97.6% of the CPU usage. 2.1% of the

between memory allocation of 0 Byte and allocation>f . ; )
Byte). except for the first run, which takes additional 66 time was used for extracting keys, the rest is accounted by
Yie), P ' module specific overhead. The per-packet CPU usage for 100

The overall maximum value occurs the first time a buffer IS ckets without a kev change is 0.086 ms. This corresponds
requested; all future requests are handled fast. The first r%n y 9 . ' P

: . . : %R a theoretical throughput of 92 Mbit/s.
also includes inherent semaphore signaling overhead by o perform the encryption and certification of transmitted

operating system needed to start the Lift thread blocked Nk ssion keys and to signal required control data to the Lift,

. . . . S
yally. It was cons_|dered "T‘po”.a”t to.reduce the high OV?rhe% .65 ms per key change are required, where the certification
inherent to handling multimedia devices before addressing a%es 93.48% of the time and the encryption of the session

much smaller overhead related to module processing. It turr’ke { with a peer's public key takes 6.47%. This behavior shows

O.Ut to be |m_p_os§|ble to redqc_e the m_ultlmedla_ device overhe at operations using a public RSA key are much cheaper than
since specifications describing their operation could not be . ; : o
. : : . : . operations using a private RSA key, which is caused by the

obtained in enough detail. The maximum value in the figure | I o
ifference in time consumed by the modular exponentiation

again due to context switches. Note that the required t'mea{sgorithm, depending on the number of 1-bits in the exponent.

independent of the requested memory size in terms of buffer Concerning the encryption module, the encryption of 999

Only the initial setup time increases slightly with buffer S'Zepackets of 1000 Byte length each with DES in CBC mode

takes 199.71 ms. This includes 10 DES key changes, 0.73 ms

each, and two refills of the pool of session keys holding five
For the evaluation of the security performance, 1000 packeys at a time. This takes 1.08 ms per refill. The per packet

ets of 1000 Byte length each were sent using the TGHPU usage without key changes amounts to 186.94 ms. This

T-module over Ethernet connecting two Sun UltraSPARCIgsults in 0.187 ms per packet or in a theoretical throughput of

170E as sender and receiver. For every 100 packets senthepurely software-based DES implementation of 42 MBit/s.

key change for the symmetric algorithm took place, while an )

RSA operation including their encryption and decryption was: Security Protocols

performed every 500 packets. The user CPU consumption oDifferent security protocols encrypting plain data have been

the authentication module Message Digest MD5 and the exvaluated by sending 10 MByte of data in 10000 packets,

B. Security Modules



STILLER et al. FLEXIBLE MIDDLEWARE FOR MULTIMEDIA COMMUNICATION 1595

TABLE V TABLE VI
ACHIEVED THROUGHPUT OF SECURITY PROTOCOLS ALGORITHM COSTS AND THROUGHPUT
Security Protocol | Throughput Algorithm | MD5  DES _ 3DES IDEA  RC5-12-16
DES/MDS5 5.87 Mbit/s Acost 0.0108 00234 0.0701 0.0380 0.0129
IDEA/MD5 4.19 Mbit/s Kb 16 8 16 16 16
RC5-12-16/MD5 | 8.30 Mbit/s Kcost 0 0.0007 0.0022 0.0002 0.0001
CPU
oMby | 0029 0035 0091 0.056 0.031
- . Mbit/s 35 29 11 18 32
determining the full end-to-end performance achieved. Keys
have been changed every 100th packet and an asymmet-
ric encryption operation (RSA) has been performed every 80
500 .pac_kets. Table V shows the real overall (appllcatmn—t.o— 70 1 7 Data Send
appIpauc_m) throughput values that can be achieved using — 60l Data Receive
security in Da CaP¢+. E
These values include runtime, operating system, application, g 50 ¢
API, and A-module overhead, as they are calculated from g 404
elapsed times. Normally, multimedia data communication in 5 30 L o123
Da CaPea-+ would run even more efficiently, because data g 0
£ 2014

is transferred from the middleware directly to output devices
and vice versa. Even when coming from the application, 107
throughput is sufficient for multimedia data applications, e.g.,
five encrypted CD-quality audio streams may be transmitted
from a SUN workstation utilizing an RC5 with 12 rounds andig- 16. Saturated raw API throughput.
128 bhit keys in conjunction with keyed MD5 authentication.

To perform the translation of abstract application requirgey changes, the following algorithm dependent cost result:
ments to low level requirements in the Da CaPRe middle-
ware, a way to predict resource consumption as a function of C =125-0.000015 4 Agess + 0.25 - 1.25 - 55 - 0.0036
employed security algorithms needs to be found. The solution +1.25 - K op + 1.25 - 0.0013.
is a formula that can be fed by implementation and platform-

d dent fi iting in th b t CPU To combine required costs for authentication and encryption,
ependent Tigures, resuiting in he number o secor&gu seconds per Mbit values for authentication and encryp-
required for the encryption or authentication of a certa

flon must be summarized. Table VI represents cost values

amount of data—including key change and internal processiggd achievable middleware throughput as derived for the
Basurement platform of Da CaPe-.

overhead. For simplification purposes, the calculated resou
consumption represents the maximum of the cost on the
sending and the receiving side.

The formula below determines required CPU seconds p%'r AP Performance
Mbit of processed data: indicates the number of packets that The API plays an important role during connection estab-
are contained in an MbitP,..; represents the system inherenlishment and data transfer. Control data are exchanged between
per-packet protocol processing cost (e.g., 0.015 ms for tHe application and the Da CafPa- core over a Unix domain
measurement environmentji.... indicates the per-megabitSocket by an IPC mechanism. User data exchange is supported
module inherent overheag, stands for the number of RSAbY @ shared memory concept [37], and data is either injected
key encryptions done per Mbit (not equal to the number &F received by an application in the upper part of API. Within
key ChangeS, as several keys can be grouped together for mlower part of the API, the A-module either genel’ates new
RSA operation),s determines the number of keys that ard8lata or consumes incoming data. Fig. 16 depicts the maximum
grouped together, and, defines for the number of bytes inperformance that can be expected for sending or receiving data
one single key. RSA.; stands for the cost of a single RSAOVer the API. These results were obtained by sending and
operation (approximately 3.6 ms per Bytd...; and R...; €Ceiving, respectively, 1000 packets of 1000 Bytes size each.
represent the cost for changing the key of an algorithm adde difference between the maximal sending throughput and
the cost for gathering the random material used to form t#ee maximal receiving throughput is due to the overhead in A-

ULTRA 170E I SPARC20

following key (about 1.3 ms per key): modules, since data coming from the application are available
s to the Lift after an additional thread-switch for accessing the
CPU[W} = K Peost + Acost + priksRSAcost call-back function from the Lift.

b Koy 4 R API measurements with varying packet sizes in the sending
cost cost: direction are presented in Fig. 17. An almost linear relation
Applying an example to this formula shows that the resutetween the packet size and the throughput is achieved,
depends on the number of packets per megabit, the numberezfching the maximum for 8 kByte packets at approximately
key changes, and the key encryption/exchanges per megal3 Mbit/s. These figures are caused by the relatively large
Assuming 1000 Byte packets, key changes to be performederhead due to semaphore operations of the shared memory
every 100 kByte, and RSA operations performed every fiwehich are an inherent problem of the applied operating system.
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1000 . cations. Its key characteristics and major results comprise the
Standard Doughput following list.
andard Deviation x
¢ The application programming interface hides away com-
100 ¢ 3 plex protocol issues from the programmer, providing an
e abstract and QoS-based interface.
/ e Security—and though not discussed in detail, multi-
10 — E cast—are seamlessly integrated into the QoS specification
e offered by Da CaP#¢+.
e The Da CaPé&+ approach provides valuable and well-
adapted services and protocols to application program-
mers. By applying it in the implementation of a sample
0.1 . real-life picture phone application, a significant proof of
100 1000 10000 concept has been presented.
Packet Size [Byte] < A prototype has been implemented and submitted to
Fig. 17. API throughput. performance measurements. The results show that the
implementation approach taken provides for a highly
. efficient protocol processing (Lift algorithm) that has been
Internet Sockets —— shown to fulfill soft real-time requirements, even when

Unix Sockets - S i | d
Shared Memory —- - » Secure protocols are used.

Da CaPo++ APT - e The application programming interface of Da CaRe
- offers the required degree of transparency between applications
and the middleware. While the complexity of the Da CaRo
. core and communication-relevant tasks is completely hidden
from the application programmer, a useful exploitation is
possible with QoS attribute specifications. Although breaking
the transparency by handling application QoS within the Da
. CaPot-+ core in the first place (applications are requested
o to specify their communication requirements for underlying
10 ' “layers™), this offers an order of magnitude-better alternatives
100 1000 10000 . e . e :
Packet Size [Byte] in providing a best-suited communication protocol and service
from the middleware’s point of view. Even in case of QoS-
ignorant applications, communication facilities are provided by
the middleware relying on predefined standard communication
The required time to copy larger packets via the C-libraprotocols. The API abstractions developed show to be suit-
call memcpy() is not significant compared to these operationable and easy-to-use for application programmers providing
Since multimedia data originating in devices bypass the ARDoS specifications. The support of efficient data transfers is
these obtained numbers specifically determine the upper limadhieved at the same time. Since multimedia devices and
to the application-to-application throughput. The high degrege middleware are tightly interconnected, applications do not
of modularity applied to all threads (Lift, API) and processegquire much effort for controlling these devices. Therefore,
(applications) could be reduced further to achieve an evgiany difficult aspects of multimedia support are no longer
higher API throughput; however, implemented applicationgart of the application, but are completely handled within the
experienced a sufficient performance, as these figures showiddleware. The general-purpose and QoS-based communica-
The Da CaPe-+ API throughput achieved has been comton API offers a set of functions for communication purposes,
pared to a number of different alternatives, as depicted \fhere the flow types defined in the API are extensible and may
Fig. 18. The triangles show that the Da CaPpAPI performs  pe ysed naturally to generate objects and protocols required
very well ranging from 13.7 Mbit/s for 256 Byte packets tGgr communications.
274.2 Mbit/s for 8 kByte packets [37]. These numbers are gecyrity and multicasting functionality is made available to
inline with Unix Sockets as well as Internet Sockets. Of coursggers in the same way as they request for a reliable transfer
a shared memory solution would give bet_te_r pgrformancgf messages. The Da CaPe approach integrates security
however, note that only user data not originating from gnctionality into middleware by synthesizing security into
multimedia device must cross the API. Therefore, the ARlyditional QoS attributes. Thus, properties of secure protocols
does not act as bottleneck for multimedia data transmissionge 55 changeable as those of insecure protocols, provided that
both parties agree on such changes.
Da CaPea-+ is capable of accommodating in a tailored fash-
VII. SUMMARY AND CONCLUSIONS ion a variety of multimedia application requirements due to its
The Da CaP#+ middleware is a comprehensive systemiternal configuration facility for communication protocols and
approach providing QoS-based multimedia services to apmervices. This flexibility achieved is fruitful for applications;

Throughput (Send) [Mbit/s]

1000

100

Throughput | Mbit/s]

Fig. 18. Throughput comparison of different APl mechanisms.
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however, it is only required at the level of different protocols|8] I. Foster and C. Kesselman, “The Globus project: A status report,” in

and for a group of pl’OtOCOl functions concerning security, Proc. 12th Int. Parallel Processing Sympqsium and Ninth Symp. Parallel
It . d trol. E . ined f th and Distributed Processing (IPPS/SPDP’98) ] )
multicasting, and error control. Experiences gained from the) p. schmidt and T. Suda, “Transport system architecture services for

prototypical implementation reveal that protocol processing for  high-performance communication subsystem&EE J. Select. Areas

e ; ; ; Commun.yol. 11, pp. 489-506, May 1993.
the transmission of continuous data, €9, audio or video, CﬁB] M. Zitterbart, B. Stiller, and A. Tantawy, “A model for flexible high-

be performed with the Lift efficiently on standard workstations. ~ performance communication subsystemtEEE J. Select. Areas in
Specifically, the exact number of concurrently supported data Commun.yvol. 11, pp. 507-518, May 1993.

; ; ; : L. Peterson and N. Hutchinson, “The x-Kernel: An architecture for
streams _depends on thelr_partICU|ar rgquwements,_ e.g.inte implementing network protocolsJEEE Trans. Software Engvol. 17,
of security protocol functions. The Lift as a runtime system  pp. 64-76, Jan. 1991.
for modular protoco's ShOWS, in the given imp'ementatioHZ] D. Mosberger, “SCOUT: A path-based operating system,” Ph.D. disser-

. .. tation, Univ. Arizona, Tucson, AZ, 1997.
environment, a minimum overhead of /8 for the packet (131 p pecasper, M. Waldvogel, Z. Dittia, H. Adiseshu, G. Parulkar, and

allocation and a per-run Lift overhead of Oub for each B. Plattner, “Crosshow—A toolkit for integrated services over cell-

module in the Lift's data path. This determines adequate S‘gSChed IPv6,” inProc. IEEE ATM Workshogl.isboa, Portugal, June
1997.

protocol proce_ssing efficiency for a highly modular approac[m] D. Clark and D. Tennenhouse, “Architectural considerations for a new
at the same time. generation of protocols,ACM Comput. Commun. Rewol. 20, pp.

; ; inati 200-208, Sept. 1990.
Concluding, the approach of supporting applications b[¥5] A. Danthine, “The OSI'95 transport service with multimedia support,”

advanced middleware, in terms of flexible protocol selection ~ i, research Reports ESPRIT, Project 53¢4l. 1. Berlin, Germany:
as well as QoS support, is a promising one. Its viability has  Springer-Verlag, 1994

: : : A. Campbell, G. Coulson, and D. Hutchinson, “A quality of service
been demonstrated by the design and implementation of {8 architecture,"Comput. Commun. Rewol. 1, pp. 6-27, Apr. 1994,

Da CaPe-+ middleware. Further advantages of Da C&Ro [17] K. Nahrstedt, “An architecture for end-to-end quality-of-service pro-
are concerned with its independence of the underlying op- vision and its experimental verification,” Ph.D. dissertation, Univ.

. -~ . Pennsylvania, Philadelphia, PA, 1995.
erating system and the possibility to port the prototypical D[@S] S. Narayan, K. Nahrstgdt, and H. Chu, “QoS-aware resource manage-

CaPet-+ implementation easily. Even though the performance = ment for distributed multimedia applications]” High Speed Network-
of Da CaPe-+ is not optimal completely at a few places, _ ing to be published.

L . . ipe . 19] C. Aurrecoechea, A. T. Campbell, and L. Hauw, “A survey of QoS
in its current implementation, specifically due to undesirable™ ,chitectures, Multimedia Systemszol. 2, no. 6, pp. 138-151, 1998.

operating system interactions, the proof of concept for flexib[g0] B. Stiller, Quality-of-Service—Dienstt¢ in Hochleistungsnetzen.
configured communication protocols has been furnished, an Bonn, Germany: International Thomson, 1996.
n's

- . . . D. Schmidt, “IPCSAP: An object-oriented interface to operating system
an efficient multimedia Support on standard workstatio interprocess communication service€%+ Rep, vol. 4, pp. 1-10,
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