
1580 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

A Flexible Middleware for
Multimedia Communication: Design,

Implementation, and Experience
Burkhard Stiller,Member, IEEE, Christina Class,Student Member, IEEE,
Marcel Waldvogel, Germano Caronni,Member, IEEE, and Daniel Bauer

Abstract—Distributed multimedia applications require a va-
riety of communication services. These services and different
application requirements have to be provided and supported
within: 1) end-systems in an efficient and integrated manner,
combining the precise specification of quality-of-service (QoS)
requirements, application interfaces, multicast support, and se-
curity features and 2) the network. The Da CaPo++++++ system
presented in this paper provides an efficient end-system middle-
ware for multimedia applications, capable of handling various
types of applications in a modular fashion. Application needs
and communication demands are specified by values in terms
of QoS attributes and functional properties, such as encryption
requirements or multicast support. Da CaPo++++++ automatically
configures suitable communication protocols, provides for an ef-
ficient runtime support, and offers an easy-to-use, object-oriented
application programming interface. While its applicability to
real-life applications was shown by prototype implementations,
performance evaluations have been carried out yielding practical
experiences and numerical results.

Index Terms— Application programming interface, flexible
middleware, protocol processing support, quality-of-service
(QoS), security.

I. INTRODUCTION

W ITHIN an environment of highly distributed systems,
sophisticated communication facilities are significant.

A great number of distributed applications, most of them
handling multimedia data, can be supported by tailored com-
munication protocols and efficient middleware transparently
hiding details of network technologies. However, in many
cases, communication middleware may create a performance
and functional bottleneck, since communication protocol im-
plementations available today do not offer proper protocol
functions for handling continuous data adequately. Further-

Manuscript received May 1, 1998; revised April 1, 1999.
B. Stiller, C. Class, and M. Waldvogel are with the Computer Engineering

and Networks Laboratory, TIK of the Swiss Federal Institute of Tech-
nology (ETH), Z̈urich CH-8092 Switzerland (e-mail: stiller@tik.ee.ethz.ch;
class@tik.ee.ethz.ch; and waldvogel@tik.ee.ethz.ch).

G. Caronni was with the Computer Engineering and Networks Laboratory,
TIK of the Swiss Federal Institute of Technology (ETH) Z¨urich CH-8092
Switzerland. He is now with Sun Microsystems Research Laboratory, Palo
Alto, CA 54303 USA (e-mail: gec@acm.org).

D. Bauer was with the Computer Engineering and Networks Laboratory,
TIK of the Swiss Federal Institute of Technology (ETH) Zürich CH-8092
Switzerland. He is now with the IBM Z̈urich Research Laboratory, Rüschlikon
CH-8092 Switzerland (e-mail: dnb@zurich.ibm.com).

Publisher Item Identifier S 0733-8716(99)05601-2.

more, standard run-time environments for protocol processing
are not able to cope with high data rates.

Therefore, emerging multimedia applications require vari-
ous communication features to be integrated and supported
efficiently, which traditionally have been considered sepa-
rately. For example, a video conference on public networks
for confidential enterprise management meetings requires com-
munication protocols providing appropriate encryption and
authentication functionality in addition to multicast data trans-
mission capabilities for audio and video. Many-to-many com-
munication links between participants have to be established
on demand. Moreover, scenarios involving financial transac-
tions or confidential data require different degrees of security.
Therefore, for real-world applications, an integrated solution
for communication middleware has to provide security and
multicasting functionality in addition to multimedia services.
The developed middleware Da CaPo provides multimedia
support within end systems that is adaptable to application
needs. This concept is applicable to standard communication
processing environments. In addition, a number of reusable
middleware services for dealing with multimedia application
communication services are defined and implemented. Da
CaPo integrates many aspects of research results obtained
so far, e.g., quality-of-service architectures, object-oriented
system development, efficient protocol run-time systems, pro-
tocol configuration, and advanced protocol function support.
The Da CaPo middleware demonstrates within a powerful
and efficient system that a general purpose end-system middle-
ware for multimedia support is operational and interoperable
with other end systems applying Da CaPo as their choice
of middleware.

Extending a multimedia middleware far beyond traditionally
layered communication architectures has offered manifold
opportunities for the provision of tailored multimedia com-
munication services. This avoids common design pitfalls for
multimedia communications, such as low efficiency or dedi-
cated functionality. Therefore, the following three classes of
requirements hold for communication middleware in general.
They imply major design goals for Da CaPo and its
implementation specifically claim:

A. Efficiency

Middleware has to provide an efficient multimedia com-
munication protocol processing support that is applicable to

0733–8716/99$10.00 1999 IEEE

STILLER et al.: FLEXIBLE MIDDLEWARE FOR MULTIMEDIA COMMUNICATION 1581

standard workstations and operating systems. In addition, it has
to support many specific protocol functionalities, e.g., multi-
casting and security, in an integrated fashion. The Da CaPo
runtime system and its protocol processing algorithm—called
Lift—represent a flexible processing scheme for controlling
modular protocol tasks based on a standard workstation’s
operating system.

B. Usability

A homogeneous quality-of-service (QoS)- based multimedia
communication interface, similar for all kinds of multimedia
applications, is essential. The interface should be easy to use
for application programmers and independent of specific mul-
timedia applications. Therefore, a QoS-based application pro-
gramming interface (API) achieves application transparency
by assisting the exchange of control and user data between
applications and the middleware. Furthermore, it has to offer
the unchanged performance of the underlying communication
subsystem to applications. This allows for the provision of the
following features:

1) the specification of various functional requirements, such
as degrees of privacy or reliability, multicast group man-
agement, and addressing, in terms of QoS parameters;

2) the transfer of and agreement on application require-
ments in terms of traditional QoS attributes, including
numerical values for, e.g., bandwidth, delay, or bit error
rates;

3) the enabling of application programmers to design
reusable application components whenever possible or
intended.

C. Modularity

A variety of communication protocols and network tech-
nologies has to be supported in a modular fashion for a wide
spectrum of traditional and multimedia applications. Based
on QoS specifications, modular communication functions and
specific protocols are selected flexibly, e.g., for live audio,
stored video, or plain data transfer, where protocols consist of
building blocks. A series of various protocols and functions,
particularly for security and multicast, has been implemented
as prototypes and is integrated into Da CaPo.

Da CaPo ’s real-life applicability, including the list of
previously mentioned features, has been experienced and
tested within an application framework, offering by itself a
modular structure. This framework has been implemented for
real-life scenarios and applications, such as a teleseminar or a
picture phone. These applications and the middleware provide
the basis specifically for performance evaluations under real-
life conditions. A picture phone is discussed with respect to
the previously stated claims.

This paper is organized as follows. Section II briefly com-
pares related work on various aspects related to middleware for
multimedia communications. Whereas Section III discusses
the design of Da CaPo , Section IV points out imple-
mentation issues. While Section V shows its practical use,
Section VI evaluates obtained results. Finally, Section VII
summarizes the work and draws conclusions.

II. RELATED WORK

On one hand, related work on middleware covers ap-
proaches with a strong architecture-oriented focus. These
approaches define the access level and degree of transparency
for distributed applications to communication functionality. In
general, they may cover transaction-based applications, direc-
tory services, location-independent services, or dynamic object
invocation. Examples of some general purpose middleware
comprise DCE [1], CORBA [2], TINA-C [3], COM [4], or
ANSA [5]. The views of these middleware approaches focus
mainly on the interoperability issue as well as the generic
service provision, but they do not concentrate on efficient
communication protocol processing or multimedia quality-of-
service (QoS) support in the first place. The latter aspects
started to be dealt with in recent work; however, they have
not been finished yet. The approach TAO [6] deals with
investigations of CORBA-based middleware for high-speed
networks and applications. The AQuA approach [7] develops
adaptable object-oriented distributed computing systems while
applying quality objects to manage system characteristics. The
support of computational grids for applications is described
in Globus [8], which defines the design of a special purpose
middleware.

On the other hand, the support of diverse functionalities
and the provision of adequate performance of the middleware
is crucial for multimedia-capable approaches. Due to the wide
range of relevant topics that are integrated to provide a flexible
multimedia middleware presented in this paper, a number of
different areas of related work is relevant. Four main groups
of aspects are dealt by the Da CaPo middleware:

• provision of advanced communication functionality;
• flexible and multimedia middleware;
• efficient runtime system and protocol configuration;
• application support by QoS specification.

Another set of important related work has been selected and
categorized according to these main aspects. Table I depicts
these aspects in addition to further comparison criteria, where
a criterion not applicable is marked by N/A.

While multimedia middleware is intended to support a wide
range of multimedia applications, flexible middleware intro-
duces an orthogonal concept for communications to support
adjustable protocol processing for high-performance applica-
tions and high-speed networks, as done within ADAPTIVE
[9] or F-CSS [10]. Generally speaking, to facilitate a flexible
approach requires structuring protocols in a modular fashion,
where separate building blocks can interoperate efficiently. Da
CaPo offers a set of protocol functions implemented in
terms of software modules that run in an efficient runtime
system, the Lift algorithm.

Efficient runtime support for general protocol processing
tasks has been investigated, e.g., in the x-kernel for modular
protocols [11], the Scout operating system for path-based
module interconnections [12], and the Crossbow project sup-
porting a high-performance toolkit for experimenting with IP
next-generation protocols [13]. In particular, for middleware-
supporting tailored communication protocols accommodating
the needs of communications, a suitable run-time system

1582 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

TABLE I
COMPARISON OF SELECTED RELATED WORK

for fine-grained and interoperating modules is essential. In
contrast to the integrated layer processing approach (ILP)
[14], Da CaPo favors a modular protocol processing ap-
proach which is integrated with the application level framing
(ALF) approach [14] to achieve good protocol and application
performance.

Most existing approaches provide application knowledge
to the middleware environment by offering an interface for
the specification of QoS parameters. In OSI’95 [15], a QoS-
based transport service including QoS parameter definitions
was developed; the Lancaster QoS-architecture (QoS-A) [16]
defined a QoS concept for end systems, and the QoS broker
[17] investigated QoS management issues, which are continued
in the QualMan approach [18]. A comparison of QoS spec-
ification and management, as well as general QoS concepts,
may be found in [19] and [20]. Many of these approaches
allow for the detailed characterization of applications and the
specification of their communication requirements on different
levels, such as the application-level, the transport-level, or the
end-system level. But they are lacking open, extensible, and
efficient API’s, e.g., in support of multimedia applications.
Therefore, object-oriented interfaces for stand-alone systems
have been studied, e.g., IPC-SAP [21] or Sockets, [22]
in addition to procedural ones, such as WinSock2 [23]. The
Da CaPo middleware integrates an open QoS-based object-
oriented interface with the exploitation of many QoS attributes
for configuring a specifically tailored communication protocol,
as well as the selection of an appropriate network technology,
if at all applicable.

Multimedia middleware must integrate various functionali-
ties, e.g., encompassing security and multicasting capabilities.
Security issues are dealt by a number of approaches, e.g.,
the Globus approach [8], the work for high-level network
protocols such as the secure socket layer [24], and a number of
specific security algorithms and protocols. A good overview
of security relevant policies and solutions may be found in
[25]. Many algorithms deal with multicast communications,
such as for Audiocast [26] and multicast routing [27]. A
feature-rich and efficient multicast framework for end-to-
end QoS guarantees for multipoint communications (MCF)
is presented in [28]. However, it has not been well un-
derstood how QoS requirements, security mechanisms, and
multicast communication protocols interoperate within one
single middleware at the same time. Da CaPooffers a new

Fig. 1. Overall Da CaPo++ middleware architecture.

approach for handling security requirements as QoS attributes,
integrating multicasting independent of the underlying network
technology and providing synchronization mechanisms for
multimedia data streams. While this paper focuses on security
issues, further details can be obtained from [29].

To summarize, the Da CaPo approach combines most
of the advantages mentioned earlier for related work and
handles multimedia applications and advanced functionality
in an integrated and efficient manner as not performed before.
This includes the Da CaPo middleware provision on end
systems for standard workstations, showing a close cooper-
ation between applications, the API, security and multicast
capabilities, QoS concepts, and the communication middle-
ware itself.

III. Da CaPo DESIGN

The Da CaPo middleware is end-system based and
located between the network access and the API (see Fig. 1).
The middleware, as well as the API, supports multimedia com-
munications since multiple time-dependent media flows (in
addition to native data flows being part of a single or multiple
flow session) can be processed on standard workstations. This
is due to the middleware’s good performance and its provision
of appropriate protocol functions.

Da CaPo provides on end system’s communication
protocols in support of application flows. In addition, it covers

STILLER et al.: FLEXIBLE MIDDLEWARE FOR MULTIMEDIA COMMUNICATION 1583

Fig. 2. Da CaPo++ component relations.

the possibility of flexibly configuring these communication
protocols built out of protocol functions according to appli-
cation requirements expressed in terms of QoS parameters
[29]. A configuration process to perform this application-
driven adaptation is directly supported by a number of internal
Da CaPo components (see Fig. 2) and a component to
configure the required protocol. In addition, this configuration
is based on application requirements, availability of local
resources, and network prerequisites, as well as protocol
functions and mechanisms including their properties [30]. Rel-
evant protocol functions, e.g., checksumming or flow-control,
are processed during run time by individual communication
modules (later referred to as C-modules), and they are located
in the heart of the protocol. Applications access any type
of communication service in a configured communication
protocol via the API through application support modules (A-
modules), including a direct multimedia device support. This
integration is achieved by combining the physical end-system
architecture in terms of data-producing or consuming devices
into the Da CaPo design, e.g., for multimedia devices
cameras, microphones, or speaker boxes.

On the network access side of Da CaPo, available
networks in terms of asynchronous transfer mode (ATM) and
an Ethernet-based Internet are utilized, particularly offering
different levels of guarantees for network performance, such
as bandwidth guarantees or no guarantees at all. Since an
application does not have to care about differences in network
mechanisms, used properties, and especially semantics, of
different networks are hidden. This level of abstraction is
provided by transport modules (T-modules) being part of the
configured communication protocol. To summarize, every Da
CaPo protocol consists of one A- and T-module each and
up to multiple C-modules.

For design purposes, the Da CaPo middleware covers
end-system issues on standard workstations, common multi-
media devices, and applications on top (see Fig. 1). The Da
CaPo core—determining an instance of the middleware
on one end-system—and an API reside once per workstation
in end-systems, while multiple applications may utilize the
same middleware core at the same time [31]. To accommodate

diverse networks, QoS specifications are used in the API and
in the core as powerful abstractions, enabling application pro-
grammers to ignore specific properties. Also, most applications
and protocol modules of the core do not have to care how end
system internal security services or unicast or multicast are
internally implemented.

All important details of Da CaPo tasks and additional
internals of the middleware core are discussed to follow. The
following introduces how sessions are configured and set up.
Afterwards, the data transport mechanism is explained, includ-
ing the module concepts used the resource management. The
designed security features are discussed before an overview of
the API developed is presented.

A. Da CaPo Tasks and Components

The Da CaPo core determines the heart of the middle-
ware, it performs all functions related to session management
and data transfer, and it specifies an evolution of the original
Da CaPo system [30]. Its central goal is to take as much
burden as possible off the application and the programmer,
while still giving them a maximum of freedom. To show how
Da CaPo achieves these properties, the following issues
describe main functionalities and tasks from an application
viewpoint for setting up a communication association.

• The application names the source or sink for data and
specifies communication requirements. It may choose
among predefined protocols offered by the protocol data-
base, instead of specifying a list of parameters itself.

• The application identifies the communication peer, re-
quests the establishment of an association, and starts the
data transfer for sessions consisting of a single or multiple
flows.

• Afterwards, data transport is performed independently of
the application. Instead of caring about each individual
packet that is transmitted, the application is free to return
to its main task, e.g., perform user interaction.

• Whenever important communication events happen, e.g.,
alarms or change requests of QoS specifications, the
application is notified to take appropriate measures. The
application can also query and modify the state of flows
at any time.

• When the transmission of user data is finished, the appli-
cation requests a session teardown.

The main workhorse is the Da CaPo core. As shown
in Fig. 2, it consists of several main components, which
interact closely. Applications send requests through the API
to the session manager, which performs the necessary session
management functions. It receives help for setting up proto-
cols—configured out of modules—from information stored in
the protocol database. It also assigns resources and buffers
to the protocols themselves, which perform the actual data
transfer. The security manager tasks will be discussed in
Section III-E.

B. Session Specification

Recall that Da CaPo ’s main design goals were to pro-
vide a modular and efficient middleware. It should offer

1584 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

Fig. 3. Session hierarchy.

applications the flexibility of specifying their communication
needs in detail where desired, but also remain oblivious about
elements applications do not want to specify and still receive
reasonable service. To achieve this, a two-layer model was
chosen. The application can: a) specify the types of flows
needed, e.g., audio transmission, and b) mention any specific
QoS requirements it has for each of these flows.

To allow this, sessions have to be created in a modular
fashion. They form bundles of unidirectional data flows which
form the basic data transport entities; e.g., a picture phone
session would consist of an audio flow in one direction, an
audio flow in the reverse direction, and a corresponding pair
of video flows.

To achieve this modularity, a single session needs to be split
into a hierarchy of elements, which are selected according to
application-specified parameters and then combined into the
final protocol. In the picture phone example (see Section V-C),
the application would specify its need for a session consisting
of the previously mentioned audio and video flows. The ses-
sion hierarchy is depicted in Fig. 3. Since many protocols will
require feedback mechanisms, e.g., retransmission requests or
camera control, the data flows are split into two data paths, a
“forward” main path, consisting of the data and some protocol
control information, and a “return” path, transmitting this
feedback information.

Every data path can be implemented by a protocol stack,
which can be built according to the application’s requirements.
Each flow definition can specify the set of functions the under-
lying protocol may need to fulfill. For a video flow, this might
include frame grabbing, compression, encryption, transmission
on the sending side, and the corresponding inverse functions

on the receiving side. These generic protocol functions can
each be implemented by any number of modules, tuned to a
specific environment and making use of the existing hardware.
Such modules could include a SunVideo frame grabber, DES
encryption, support for a specific ATM networking card,
among others.

This approach for abstraction allows for a high flexibility
in that the application does not need to know any details
of data transfer from the source to the sink, but still can
influence whatever is needed. For example, an application
might request compression and does not care about how the
video stream is compressed, as long as a specified compression
factor providing a specified minimum quality is met, but it
might request a specific encryption scheme with specified
parameters.

Besides the flows specified by the application, each session
requires a reliable flow, used internally by Da CaPo for
session-wide management information. It is used at session
setup time to inform the joining participant of protocols and
parameters being used. Later on, it is used to send out-of-
band session control information between individual modules,
the middleware coreper se, or between applications.

At configuration time, all modules performing necessary
services are selected and configured according to a set of
requirements specified by applications. These requirements
are grouped into several categories, e.g., peer to which to
connect to, throughput, security parameters, and levels, e.g.,
high-level/abstract requirements and low-level requirements.

High-level requirements specify parameters in an abstract
manner and do not necessarily provide complete determinism
with respect to modules selected and parameters tuned, as
long as the result meets the requirements. In contrast, low-
level requirements select a specific module to use or a specific
parameter of a given module. Requirements usually do not
specify fixed values, but a (possibly weighted) range, so the
Da CaPo middleware has flexibility in fulfilling requests.
Since the requirements specified may conflict with or have
influences on each other, a precedence hierarchy has been
set up. Low-level requirements have precedence over abstract
requirements, which in turn override system-specified default
parameters. After configuration, the application is informed of
the configuration success and values selected.

A single module is not of much use; it needs at least
a corresponding peer at the other end of an association.
Often, the receiving module also needs to provide feedback
to the sending module to function properly. This shows that
many operations classically considered as one function indeed
consist of up to four parts (see Fig. 4). In Da CaPo,
these four parts are treated independently. A forward path
consists of a “down” part in the sender transporting (usually
much) data toward the network and a matching “up” part in
the receiver, in addition to a corresponding backward path
with comparatively little control information. The forward
and backward data paths may have different module con-
figurations, either because only some modules need to have
access to the backward path or because the modules in the
backward path themselves need some protocol processing,
e.g., authenticated acknowledgments. Each of the data paths

STILLER et al.: FLEXIBLE MIDDLEWARE FOR MULTIMEDIA COMMUNICATION 1585

Fig. 4. Module relations.

had to be completely separate. To provide efficient use of the
backward (feedback) channel, communication among the parts
of the module performing operations in either the “up” or
“down” path have to be simple and fast.

C. Lift

As described earlier, protocols determine the middleware’s
view of application flows. Flows are split into two data paths
(see Fig. 3) for the forward (data and control) and backward
(feedback) direction. User data transfer only occurs in one
direction (forward path), where resource reservation based
on the requirements may be applied. The backward path is
used for control information only, e.g., acknowledgments and
quality feedback, which encompasses usually small amounts of
data. Thus, flows are unidirectional from an application point
of view, but they are bidirectional for control.

Although Fig. 3 may suggest that there is a lot of hierarchi-
cal overhead involved, this overhead is negligible for protocol
processing (see Section VI). A limited amount of overhead
occurs at session setup, and almost no penalties are to be paid
at run time, where all protocols’ selected module instances are
directly accessed, making the layering a conceptual tool only.

In each data path, data is transported by an algorithm called
Lift, an active transport mechanism, originally developed in
a first version in the predecessor project Da CaPo [32].
Once started, the Lift works autonomously, calling in turn
the modules’ processing functions, according to the sequence
set out at protocol configuration time. The Lift goes on to
transfer data from the network to the user or vice versa, until
it receives new instructions from the application or one of
the modules it passes by. The Lift passes a packet along
all modules within a protocol, and each module performs
appropriate changes and may request the Lift to pause, bring
another packet, or discard the packet. The independence of
the Lift—every Lift responsible for a single protocol runs
in a separate thread—frees other system parts from duties
(see Section IV-C for Lift/module interaction). It also makes
a protocol easy to trace and schedule.

Compared to most other flexible protocol architectures, this
scheme does not cause each module to be stacked on top
of each other on the function call stack, possibly requiring
a large stack for local variables. Compared to traditional

stacking architectures, after a module returns the control back
to the Lift, only minimal module state is present, making this
an ideal point for efficient context switching. An additional
advantage is that module implementation can be simplified.
They do not need to care for special cases, such as errors
returned from called modules. Instead, the Lift determines the
decision-making mechanism. To relieve the programmer from
a burden, generally a module’s handler function will be called.
This is achieved by requesting a module for its requirements
at protocol setup time. Knowing all the requirements in
advance enables further optimizations. This approach eases
configuration changes since there is only one location that
knows about the protocol chaining.

The actions a module can control include the following.

• Communication between forward and backward path:
the corresponding module in the other path received
information which it will need to send out with the next
data packet. This schedules a Lift run in the other path.

• Out-of-band information has to be transmitted to the
module implemented in the communication peer.

• The module has remaining data to be transmitted. Do
not turn idle after finishing protocol processing for the
current packet.

• The module is currently busy; wait for a mutex to be
cleared.

Normally, the Lift passes a packet through all modules in
only one direction, according to the direction of the data path.
It starts with an empty packet, obtained from a buffer list
maintained by the buffer manager, which is being filled with
data by the first module. The packet is possibly modified by
intermediate modules and emptied by the last module in the
chain. Under some circumstances, e.g., for segmentation and
reassembly or reliable data transmission, modules may not
only have data to fill in, but entire packets to send. In this case,
the module will signal the Lift that its next run should only
be a partial run to pick up the remaining data. This partial run
merely covers the signaling module and the modules beyond it.

Concerning memory requirements of modules, buffers con-
taining packets show a packet structure including a fixed
header, where each module owns a prearranged number of
bytes at a known offset. The packet also contains a variable-
sized data block for use by A-modules to transport end-to-end

1586 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

data. Since protocol details are known at initialization time, the
size of the maximum data block can be deduced in advance;
growing and shrinking data blocks within these limits is just
a matter of determining which part of the allocated block
contains the data (see Section III-D).

Probably one of the main points of interest for the applica-
tion programmer concerns the control he has over running
protocols. It is possible to create or destroy sessions and
to pause or restart flows in a session, where the control
flow is used to transmit changes in the session’s state, and
thus is always active (see Section III-F). The A-module can
be directly controlled by applications and provides feedback
to applications using request/response messages and asyn-
chronous events. This scheme can be used to request fast
forward or rewind functions for a remote video server and
could be extended to control a remote camera, e.g., zooming
and panning.

D. Resource Management

Another one of the main goals for designing the Da
CaPo core was to provide efficiency by reducing data
copying. Therefore, the Lift only transports a packet descriptor.
A packet consists of three buffers whose sizes are determined
at configuration time. One of the buffers holds data of variable
length to be transmitted between A-modules located at peers.
Another buffer holds the constant-sized header, enabling all
modules to communicate information to its partner module
located at the peer. A third buffer is used for communication
between modules in a single data path within one end system
and is not transmitted over the network. Packets and buffers
are managed by the buffer manager, also keeping track of
reference counts for each buffer. This allows modules to keep
a copy of a buffer by a referencing pointer without actually
copying the data. Segmentation and reassembly modules can
also pass on partial buffers to avoid the creation of partial
copies. The possibility to pass partial buffers together with
separate constant-sized headers gives processing advantages.
As far as Da CaPo is concerned, it also allows for a zero-
copy operation using Application Layer Framing [14], even
for segmentation/reassembly.

The buffer manager—and all other components requiring
system resources—request their resources from the resource
manager (see Fig. 2). It provides an abstraction layer for mem-
ory, CPU resources (in the form of threads), and timers. This
simplifies portability, reduces memory management overhead,
and minimizes memory copying.

E. Security Functionality

In Da CaPo , encryption and authentication functions
are not only available as an integral part of the middleware,
but the security degrees (amount of privacy and authenticity
required for messages) are also treated as QoS parameters.
In an environment handling multimedia data streams of high
data volume, computational resources required to provide the
highest level of security usually exceed available CPU power.
For this reason, the provided amount of security (the strength

Fig. 5. Application authentication data structure.

and therefore the computational requirements of employed
protocols) is variable, depending on user demands.

Privacy and authenticity of communication are as much
considered a basic-service quality parameter of the network
as packet loss rate, bandwidth, and delay. Together with
C-modules providing the actual data security, the security man-
ager (see Fig. 2) represents all security functionality within
Da CaPo . Special C-modules encrypt or authenticate ar-
bitrary data streams, and the security manager provides peer
authentication services. It is fed with application requirements
and translates them into low-level security parameters, collects
randomness from system state to provide keying material, and
assures security at run time. Additionally, it includes the key
database and cryptographic routines of pretty good privacy
(PGP) [33]. For integration purposes, PGP has been changed
into a library and linked into the middleware.

1) Authentication Services:In Da CaPo , communica-
tion peers and local applications connecting to the middleware
are authenticated. The application or the user must authenticate
itself when the application first requires services from Da
CaPo through the application programming interface (see
Section III-F). During the delegation of identity, the applica-
tion indicates the keys in the database to be used and provides
a passphrase to unlock them. This information (see Fig. 5)
is passed from the application via the API to the security
manager. Fig. 5 shows details on data structures shared be-
tween the security manager and the Da CaPoapplication
programming interface. In practice, only the provision of a
key ID for a public/private key pair and the corresponding
passphrase are required to prove one’s identity to the middle-
ware. The middleware then utilizes the public/private key pair
that is provided by the user and its own public/private key in
the proof of authenticity to the peer system. The administrator
of a system must be trusted because he can impersonate any
user accessing the middleware by multiple means; one of the
means is the capture of the passphrase as it is transferred from
the user to the middleware.

As an additional means of control, the user may choose to
terminate any or all applications using the middleware on his

STILLER et al.: FLEXIBLE MIDDLEWARE FOR MULTIMEDIA COMMUNICATION 1587

Fig. 6. Abstraction of requirements.

behalf. This is done by accessing a separate user interface that
directly connects to the security manager.

Admission control of communicating peers is done by
applications because evaluations have shown that criteria for
admission control are too varied to be efficiently delegated
to the middleware. Upon arrival of a new peer, the security
managers exchange: 1) certified keys and 2) additional au-
thenticating material forming a authentication hierarchy. So
an application could specify whether it would only accept a
particular remote user or that it would also trust the remote ap-
plication or the remote middleware. If the application accepts
the association, communication begins.

2) Security QoS Translation:Security parameters can be
controlled as application requirements. Security parameters in
Da CaPo express requirements on four separate layers:
1) user requirements; 2) abstract application requirements;
3) low-level requirements; and 4) infrastructure requirements.
Depending on requirements put upon a layer, certain costs
result. Requirements posed on the infrastructure are, e.g., nec-
essary CPU seconds per real second for a flow transmission,
memory consumption, or network bandwidth.

Low-level requirements within the middleware cover pa-
rameters, such as key length, choice of algorithm, and key
change rate and are easily understood and directly adhered to
by modules. As it is the goal of Da CaPo to provide a
comfortable environment for application programmers, these
parameters may be well known and straightforward; neverthe-
less, the average application programmer or even user cannot
be expected to fully understand their security implications.
Additionally, it might be undesirable to preselect encryption
and authentication algorithms and their parameters in detail.
Whenever advances in cryptology indicate the insufficient
safety of such an algorithm, all applications statically demand-
ing the algorithm would require changes.

To address this problem, low-level requirements are derived
from application and user-level requirements, as outlined in
Fig. 6. The application can specify the required strength of
security algorithms to be employed, defined as the amount of
time communicated information is supposed to stay unreadable
or authenticated against a predefined class of potential ene-
mies. The model employed in Da CaPo to specify security
requirements on the user level is the threat model. Users
specify the most likely attacker, e.g., casual hacker, determined
group, competing enterprise, multinational corporation, or
rogue government agency, as well as the presumed value of
the information. Therefore, the system must provide security
mechanisms whose breaking costs are higher than this value.
Additionally, a probability specifies how likely these promises
should be met.

This type of parameters can be determined easily by the
user than the low-level requirements. These parameters are
evaluated based on a database containing strengths and weak-
nesses of different algorithms, together with their likeliness to
be broken or weakened in the years to come. This likeliness is
based on current and expected cryptanalytic results. Creating
and maintaining this database is not an easy task, but is only
marginally more complex than directly specifying well-chosen
low-level security parameters in the first place. One advantage
of this database is that it only needs to be defined once by
the developer or administrator of the middleware and not by
every application programmer or user. Additionally, whenever
necessary due to advances in cryptology, the strength of
security mechanisms offered to applications can be increased
transparently by updating the database. This mechanism even
allows for adding new and improved encryption algorithms
without user or application programmer involvement.

3) Security Assurance:The Da CaPo middleware al-
lows for modification of security parameters in an ongoing
communication. This reconfiguration can switch off or change
cryptographic algorithms without interrupting the flow of
data. This admits users to tune system performance in a
fine-grained manner, e.g., receiving better quality in video
transmissions when security is not required. At the same
time, if underlying infrastructure offers security functionality
by itself or if it is considered to be secure (e.g., a leased
line or an office LAN are usually considered much more
private and authentic than packet radio or the Internet), security
functionality employed in the middleware can be reduced. As
an additional consideration, the middleware administrator may
enforce certain minimal security requirements which cannot
be circumvented by applications relying on the Da CaPo
middleware.

The security assurance component in the security manager
also monitors the usage of keying material and keeps track of
the amount of encrypted data and period the key that was used.
Whenever the user or the systems determines the necessity,
a change of keying material is initiated. To economize costly
asymmetric cryptographic operations, multiple data encryption
keys are transferred as one asymmetrically encrypted data
packet and containing keys are consumed as needed.

Within this novel approach of the Da CaPo middleware,
security functionality is integrated tightly into the Da CaPo
core and protocol processing. This provides key management
and a variety of encryption and authentication functions to
flows and sessions, which are selectable be users in a similar
fashion as they request for reliable transfer of data.

F. API

API for communication services is the only interface vis-
ible to application programmers in end systems from the
middleware. Since data streams may vary according to their
type, location, and origin of data, two basic abstractions
for application data streams, called flows and sessions, have
been designed (see Section III-B). This allows for hiding all
communication protocol specific features [34]. In addition,
basic operations for dealing with quality-of-service (QoS) have
been introduced [30]. Although, for example, transmission

1588 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

Fig. 7. API architecture.

control protocol (TCP) considers one type of user data only,
namely a general stream of bytes, a general-purpose QoS-
based API needs to distinguish between several different
data types. Transport protocol properties for audio, video,
and user data are different in terms of maximum accept-
able delay, loss rates, required bandwidth, security levels,
and multicasting features. This is formalized in a configu-
ration file, as depicted and discussed in Section V. How-
ever, the application always handles communications in an
association-based manner, where the API handles association
context information, e.g., including session identifiers, and
the underlying protocols may provide a connection-oriented
or connectionless service. In general, the API utilizes an
object model, where the base class of flows consists of
three subclasses for an audio flow, a video flow, and a
data flow, each of them containing the respectively required
functionality. As every flow may receive or sent data only,
separate classes encompass the required functionality. There-
fore, applying the concept of multiple inheritance to these
classes, the requested instance will be automatically generated
based on the application requirement specification, and it
contains the functionality for, e.g., sending user data which
is termed .

An important difference is encountered for data from ap-
plications and live data, originating from multimedia devices.
As the Berkley software distribution (BSD) socket interface
[35] considers data only being directly generated or consumed
by the application, inefficiencies when moving data from user
to kernel space and vice-versa are significant. Since this is
not suitable for every type of application, e.g., for a video
conference application, video and audio data may traverse
directly from their associated device (camera and microphone)
or file to the corresponding remote device (monitor and
speakers), without having to transit through the application. In
general, for any application, only the less expensive control
of devices—in terms of the amount of data—still remains
under the responsibility of applications which may include
control commands, such as fast forward or fast rewind for
video. Multimedia user data per se are directly handled by the
appropriate multimedia device.

The design of a general-purpose QoS-based communi-
cation API implies the provision of three different steps,
which are independent of the underlying middleware.
First, within an application process, resources are locally
allocated and configured according to application needs using
available API functions (see Section IV-E and Table IV).
This process is similar to opening and binding a BSD
socket with options. Second, a setup process is involved
to establish an association between two or more end
points and to exchange user data. Third, user data are
transferred via the API, if they do not originate from
multimedia devices; otherwise, they are handled by the
corresponding A-module directly. The designed API has
to enforce phase one and two to offer the application
programmer a maximum degree of flexibility. This takes
into consideration that application QoS requirements play
an important role not only during the establishment phase
(including configuration and reservation), but also during run
time (QoS renegotiation).

To support several applications on top of the Da CaPo
middleware, a client–server approach has been designed. This
facilitates the resource management tasks for port numbers,
devices, and memory (see Fig. 7). The upper API is linked to
the application, while the lower API defines the front end of the
Da CaPo core. Functionalities and tasks are accessible by
ways of the control access point and data access points. During
the setup procedure of associations, the main control protocol
assures that the appropriate number of resources is allocated.
While user data is in transit, the control delivery protocol
is applied. The data delivery protocol ensures that common
shared memory or appropriate interprocess communication
(IPC) schemes are utilized to optimize the communication
performance.

A central issue in the API is concerned with the defi-
nition of an end-to-end association between peers. Besides
middleware-internal encryption and decryption functionalities
being supported, the application and the user must authenticate
themselves during the establishment phase. Succeeding the
authorization, an association between two or more applications
must be defined in terms of user data streams and QoS

STILLER et al.: FLEXIBLE MIDDLEWARE FOR MULTIMEDIA COMMUNICATION 1589

requirements, which is additionally supported by separate
memory segments for every session.

IV. I MPLEMENTATION

A. Object-Oriented Module Implementation

The entire Da CaPo core is object based, in order to
achieve the desired modularity of the middleware. This is most
noticeable with modules: neither the module selection and
configuration components nor the setup components or the Lift
algorithm needs any adaptation when a new module is added.
In order to have all the flexibility of an object-based approach,
yet still exert full control over everything that happens and
the speed available, the core and every module was written
in the C programming language. Since creating classes and
instances is not supported by the C run-time environment,
a special run-time support was created. Modules form basic
building blocks and behave like classes in an object-oriented
environment: they have a descriptor structure which contains
key elements identifying them, e.g., their name and a list of
function pointers to call and perform well-known functions.
Additionally, they have an assigned partner module to be used
at peers.

Individual instances of a module can be created using a
function in the Da CaPo run-time system. Instances do also
have a descriptor structure, containing identifying elements,
information about which module they stem from, and protocol
in which they are used. Unlike most other object-oriented
systems, it also contains function pointers. As each module
gets to know application requirements at configuration time, it
can and must adapt to these parameters, i.e., an audio module
may configure the sampling rate and input device according to
specified requirements. Although most modules are capable of
handling different media types, each individual instance will
process only a single data type during its lifetime. Therefore,
some modules go even further and change their instance’s
function pointers to point to functions which are optimized
for a number of special cases, at initialization or even run
time. This turned out to be especially handy in implementing
protocol state machines. A module that has adapted itself to its
environment is called a virtual module. For example, instances
of transport modules know whether the configured protocol
will ever use header fields or what the maximum size of
a data block can be, and do replace their generic function.
Also, when audio receiver modules are instantiated, they can
determine whether they are the second instance and can make
sure that the first instance (and any further instance to be
created) will use the audio mixer. Using a mixer is required
since the used audio device only supports a single reader and
a single writer.

Instances cannot only find out about their class or other
instances of the same class, they can also determine infor-
mation about any module within their session, both on the
local and remote site. After having found the desired module,
they can also communicate with them—locally, using method
invocations and remotely, by sending them a control packet.
Although the class concept is being used, no inheritance is
currently provided, but modules providing similar functionality

may share code providing common functionality by putting it
to a code library.

Besides internal test, protocol trace/debug, measurement,
and traffic generation modules, a number of multimedia
communication protocol processing modules have been
implemented. Among A-modules are modules to transmit
application-to-application data (RawData) and to receive and
transmit from the audio and video ports or from stored files
including the usual rewind and fast forward functionality, e.g.,
SunVideo, VideoFile, SunAudio, and AudioFile. T-modules
include unicast and multicast transport support for ATM, user
datagram protocol (UDP), and TCP, where multicast for TCP
is emulated by opening multiple ordinary TCP connections.
C-modules for different groups have been implemented, such
as flow control and reliable transfer (Alternating Bit Protocol,
Idle Repeat Request, Multicast Error Control), segmentation
and reassembly, encryption [DES, Triple DES, IDEA, and RC5
in both electronic code book (ECB) and cipher block chaining
(CBC) modes, Diffie–Hellman and RC4], and authentication
(H-MAC MD5, RSA signature). All these modules are
designed for multimedia communications. They are capable
of handling different data types at performances required by
high-quality streaming media.

B. Protocol Database

As we have seen, each data path is implemented as a series
of individual modules in Da CaPo . Although the modules
are independent of each other, the corresponding modules in
the forward and backward path usually share their instance
variables to simplify state updates. Since these modules are
tailored to be used together, they are combined into one
mechanism. A mechanism usually has a natural way to be
integrated into a protocol, e.g., video compression should be
done in the down path on the sending side and the corre-
sponding decompression step on the receiving side. Reconsider
the authentication of acknowledgments; sometimes, it would
be useful to use a mechanism a little bit differently, e.g.,
decompress stored video in the sender, because the receiver
is only able to handle uncompressed video or use the seg-
mentation/reassembly module to assemble tiny packets from
the source into suitably large network packets. To fulfill these
demands, it is possible to individually swap each mechanism
in a protocol (specified by flags in the protocol database) along
all its symmetry axes: swap sender and receiver side, up and
down direction, or forward and backward path.

During the development and testing of the Da CaPo
middleware, it turned out that the level of flexibility mentioned
in Section III-B and prototypically implemented in [36] is
seldom needed. It results in indeterministic behavior and
requires a lot of effort on the side of the module designer to
fully specify the configuration dependencies (each module may
specify pre- and postconditions as requirements, e.g., a reliable
transport below). Last, but not least, it also introduces a very
high evaluation overhead at session setup time. Therefore, the
middleware-internal table of modules has been augmented by
a database of preconfigured protocols. Each of these named
protocol definitions consists of a sequence of modules to

1590 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

Fig. 8. Sample protocol database entry.

use and configuration parameters to these modules. Still, the
application retains complete control and can override any of
the parameters; yet it was possible to greatly simplify the
configuration algorithm during session setup both in code and
run-time overhead.

A sample protocol definition for a secure video transmission
is shown in Fig. 8. All fields from left to right contain the name
of the protocol function, the name the instance should get
(if needed for communications between otherwise unrelated
modules), the name of the preferred mechanism to be used, the
order in which the modules should be executed, and swap and
module options including side swapping. The processing order
must be specified because it was originally planned to allow for
the parallel execution of independent protocol functions. This
has not been implemented, since the synchronization overhead
between parallel threads turned out to be much higher than the
performance improvements achievable.

C. Module Configuration and Operation

Although the modules can be used very flexibly, knowledge
of only a few simple interfaces is needed to implement a
module (see Fig. 9). In general, modules are passive and are
called when they need to perform a function, directing the
caller using return codes. If a module wants to make use of an
interface, it simply provides a function which will be called
at appropriate times.

At session setup, the connection manager and all other
requested protocols are created. The connection manager is
a regular communication protocol, but with the special duty to
help in connection setup and transmission of control and out-
of-band messages. Each protocol fulfills requirements given
by the application, which the Configuration Manager resolves
in a two-pass process: in the first pass, traversing from the
A- to the T-module, it determines all module requirements
using the function. In the second pass, traversing the
opposite direction, it resolves these requirements using the

function. If the preferred configuration of the modules
is not able to match all requirements, each module is queried
for other potential configurations using the function.
After the decision has been made, all modules are instantiated
accordingly.

At run time, modules’ and functions are
called whenever data transport is allowed to start/resume,
or is paused/stopped, based on instructions of local and re-
mote applications. After that, modules’ and (re-
quest/indication) functions are called as long as at least one
module signals that it has more data ready. After that, the Lift
turns idle and waits for anyone calling its data ready function

to continue, e.g., because of a timer event or the backward
path signaling the forward path that it has finally received the
acknowledge.

Return values of the and functions are especially
powerful. They signal, e.g., whether the module has data
that should be transported, whether the module is busy and
cannot accept new data now, whether it or its sibling in the
other path has more packets ready, or whether it wants to
send out-of-band data. After signaling that out-of-band data
is ready, the connection manager picks up the data by calling
the function and will deliver it through the network to the
matching module’s function.

All and functions are called after each other (if
both are defined), where the idea of the request function is
to send data into the module and the idea of the indication
function is to get data out of the module again. This looks
redundant at first, but in fact this can be used to simplify
the design of modules due to a design particularity of the
Lift. Whenever the Lift has transferred a packet through all
modules, it performs a reverse scan through the indication
functions to find out whether any module has anything more
to send, which it would start transporting. This results in a
simplification of segmentation or retransmit modules, while
still assuring the packet order.

To obtain a detailed view on some different protocols
supported, Table II depicts an excerpt and configuration in
terms of configured A-, C-, and T-modules, where short
module and protocol names are presented.

D. Security Modules and Protocols

To implement and evaluate the basic QoS mapping mech-
anisms for user and abstract application requirements, the
Da CaPo middleware offers different security modules
and protocols. This allows to show their usability in the
context of multimedia protocols and continuous media support.
Modules for key agreement, privacy, and authentication are
provided (see Table III). Note that MD4 is not practically used
anymore, since it has been broken in the meantime, and DH
for agreement on a shared secret is only usable in conjunction
with RC4. It can be used when no peer authenticity is required
or perfect forward secrecy has to be provided.

Protocols providing either encryption, authentication, or
both can be configured. By specifying appropriate QoS re-
quirements, the application can choose which cryptographic
algorithm is to be used in appropriate security modules. QoS
requirements can be changed on run time, while users can
directly influence the behavior of active protocols, change
the employed cryptographic algorithms, or switch off cryp-
tographic mechanisms completely.

E. Implementation of the API

While the complete API is discussed in [37], an excerpt of
main interface functions offered for the session and flow level
are listed in Table IV. These functions are applied from the
application programmer to utilize the Da CaPo middleware
as exemplified in Section V-C.

As a general task, the API has to cross a process bound-
ary between applications and the Da CaPo core. The

STILLER et al.: FLEXIBLE MIDDLEWARE FOR MULTIMEDIA COMMUNICATION 1591

Fig. 9. Module interfaces.

TABLE II
EXAMPLES OF SOME DEVELOPED MODULES AND PROTOCOLS

TABLE III
IMPLEMENTED SECURITY MODULES

application itself is considered as the “API client process”
utilizing the upper part of the API. The “API server process”
offers the lower part of the API. Multiple API clients, one
for each application, reside in a multithreaded process on
a workstation and applications including the upper part of
the API generate a request followed by a response from the
lower part of the API. Events can be directed toward the
application in an asynchronous fashion. Shared memory and
Interprocess Communication paradigms are offered by the API
to efficiently support various types of stored data coming
from applications. Particularly, bypassing the API for data
originating from devices achieves a sufficient throughput for
continuous multimedia data streams (see Section VI).

V. EXAMPLE: IMPLEMENTATION OF A

PICTURE PHONE ON TOP OF Da CaPo

Da CaPo has been validated by the implementation of
an extensive application framework on top of the middleware.
A modular design has been retained also for complex appli-

TABLE IV
EXCERPT OFPUBLIC SESSION- AND FLOW-LEVEL API METHODS

cations resulting in a three-level framework [38], [39]. Since
its modularity reflects the modularity of Da CaPo on the
application level, its basic idea is briefly introduced. Based
on the example of a picture phone implementation on top of
Da CaPo , the usability design goal of the Da CaPo
middleware is discussed.

A. A Three-Level Application Framework

As control mechanisms and user interfaces for different data
and connection types may be reused in different applications,
a three-level application framework has been defined and is
depicted in Fig. 10.

It is per seindependent of Da CaPo and can be applied
to all sorts of applications. The application component level
comprises atomic units providing a well-defined functionality,

1592 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

Fig. 10. Three-level application framework.

e.g., the display of video data. This functionality is system
specific and directly can for example make use of Da CaPo
A-modules. An application consists of one or more application
components and offers a single homogeneous functionality
being provided in close cooperation by the application compo-
nents. For example, a picture phone determines an application
in this sense. An application scenario fulfills a completely
specified task within a real-world scenario. It consists of
one or more applications being logically structured. As the
application and application scenario level often cannot be
separated clearly, a picture phone can be used as part of, for
example, a telebanking scenario (application) or as a simple
picture phone (application scenario).

B. Applying the Da CaPo Middleware

In order to make use of the Da CaPo middleware, it
has to be installed on all involved end-systems of senders and
receivers. Within the development environment, Da CaPo
has been implemented on Sun workstations operating Solaris
2.5.1. The Da CaPo core including the lower part of the
API is implemented in C. A compilation is required on the
dedicated end system. The compiled core is running perma-
nently on these end systems, and applications can connect to
the core and utilize the middleware. The upper part of the API
is currently implemented as a C library and must be linked
to applications built on top of Da CaPo .

Dedicated functionality like video compression using Sun’s
video card [40] can be used only if the required hardware is
available on the end-systems. Applying, for example, com-
pression schemes like JPEG, which are also supported, the
interoperability is increased as JPEG can be decoded on other
platforms as well. In order to use Da CaPo on other
platforms, like Windows NT, the Sun specific part of the
code, e.g., the thread management, of Da CaPoneeds to
be ported.

Existing applications can run on top of the middleware
after the integration of the Da CaPo API. Data gen-
erated and consumed by the application is transmitted to
and received from the Da CaPo core via the API meth-
ods and . These methods are
called in a ported application whenever data is written to
or received from, e.g., TCP sockets. Data transmission is
provided by Da CaPo transparently to the application.
While this is a valid approach to apply the Da CaPo
middleware, applications hardly profit from the supported mid-
dleware functionality. Especially the handling of multimedia
data within the Da CaPo middleware eases and supports
the efficient implementation of new multimedia applications.

Fig. 11. Picture phone configuration file.

This is demonstrated by the example of a picture phone
implementation on top of Da CaPo .

C. Implementation of a Picture Phone

The Da CaPo picture phone allows two participants
to communicate by exchanging live audio and video. Da
CaPo A-modules capturing and presenting live audio or
live video data, respectively, are combined with unreliable
unicast data transmission T-modules to live audio and live
video protocols.

The configuration file for the picture phone session in the
creator, i.e., the caller, is depicted in Fig. 11. The speci-
fied session determines a unicast session while it consists
of four flows, each one for sending and receiving audio
and video, respectively. Every flow is assigned a type, e.g.,

. This type specifies the data type, the
source/sink of the flow, and the direction of the flow. In this
case the session creator is a receiver of a . In
this example, data is sent directly to the device and not passed
via the application (see Section III-F). Depending on the data,
end systems, and the communication medium available, QoS
parameters are specified for every flow. They may encompass
throughput, frames/s, samples/s, bits/pixel, for example. The
communication protocol is configured out of selected modules,
where the decision is based on the configuration file, and
the protocol is instantiated by the Da CaPo core (see
Section III-A) saccording to the specified QoS.

The example of the configuration file (see Fig. 11) specifies
two values (maximum and minimum) per parameter for audio
and video data. In the sample configuration file, the communi-
cation requests different delay and jitter characteristics in both
directions, specifying an asymmetric communication.

Multimedia data capture and presentation is performed
by the instantiated A-modules, whereas data transmission is
performed by different Da CaPo protocols.

STILLER et al.: FLEXIBLE MIDDLEWARE FOR MULTIMEDIA COMMUNICATION 1593

Fig. 12. Applying the API to the picture phone.

Implementing a Da CaPo picture phone requires the
following steps, which are depicted in Fig. 12.

1) A Da CaPo client must be created exactly once per
application. The corresponding method (
constructor) in the upper API creates a Da CaPo
client and connects it to the Da CaPo middleware.
Authentication information of the application is passed
in the and evaluated in the secu-
rity manager during creation of the Da CaPo client.
After this method invocation, the functionality of Da
CaPo can be used.

2) Sessions for data transmission must be instantiated.
The picture phone is implemented within one single
data session. The corresponding API method requires
a configuration file and the identification number of the
Da CaPo client. The configuration file passed to this
method is depicted in Fig. 11.

3) A connection based on the specified QoS parameters
must be established between sender and receiver. This
is done by the method invocation. The con-
nection information passed to this method contains a
structure specifying the address of the peer, its port
number, as well as the own address and port number.
Both port numbers are used to establish the connection
between the connection managers of both peers. A
callback function is specified within this method call.
This function is called whenever an event must be passed
from the upper API to the specified session.

4) The session is activated () to start data flows
sending and receiving data. Due to the specification
in the configuration file (see Fig. 11), data is captured
directly by the device (microphone and camera) and
displayed on the device (speakers and monitor). Data
transmission continues until the method is
called.

5) To stop data transmission, the session is deactivated
(). If the session is deactivated gracefully,
the Lift algorithm delivers all data pending in the mid-
dleware for this session to the participating modules
before the session is stopped. Deactivating the session
instantaneously would result in a graceless deactivation
of all participating flows. After deactivation, the session
can be resumed again by the method.

6) Before leaving an application, involved sessions must
be closed (). This frees resources reserved by the
Da CaPo middleware and deletes all data structures

related to this session. Afterwards the destructors for
session objects and the Da CaPo client objects are
called.

These method invocations are sufficient to implement a
picture phone on top of Da CaPo . Additionally, a graphical
user interface has been implemented in Tcl/Tk [41]. The
connection information is specified in this user interface. The
user can enter the communication peer’s machine; a default is
used for the port number. By activating user buttons, the peer
can be connected, data transmission can be started or stopped,
and the connection can be closed.

Within the Da CaPo project, numerous applications
including a teleseminar scenario and a media server have been
implemented in order to evaluate the Da CaPomiddleware
further. As the results obtained have shown, the support of
multimedia data provided by Da CaPo is adequate, and
even complex multimedia applications can be implemented
easily [39].

VI. EVALUATION OF Da CaPo

The performance of data communication obtained in a given
implementation determines the quality of communication ser-
vices and protocols. The Da CaPo middleware as described
earlier has been implemented on standard workstations [31],
such as Sun SPARC20 and Sun UltraSPARC 170E (evaluation
machine) running the non real-time operating system Solaris
2.5.1. The Da CaPo middleware has been evaluated using
the Quantify tool [42] and high-resolution system time mea-
surements directly. Standard Sun multimedia equipment has
been utilized, such as cameras, microphones, and the SunVideo
board [40], offering real-time image capture and compression
for digital video.

Concerning the performance numbers to follow, first the
overall overhead due to modularity is discussed. Afterwards,
security relevant performance figures are outlined, and finally,
the API’s efficiency is presented. Both writing and sending
of user data requires semaphore operations for accessing the
shared memory. For this reason, the sending (460 ms)
and the receiving delays (12 ms) for data originating in
applications on top of the Da CaPo middleware on an end
system were measured. The throughput numbers achievable
for various protocols differ, specifically based on the special
protocol configuration applied. For example, the results for an
unreliable protocol processing determine: the sender requires
on average 45 versus 18s, and the receiver requires 41
versus 31 s. Concerning the measured upper bounds in
the unreliable case, 273s for the sender and 323s for
the receiver have been observed within the Solaris operating
system environment. Therefore, Da CaPo achieves in this
case an average sender throughput of 38.4 Mbit/s for 88 Byte
packets and 44.8 Mbit/s for 1024 Byte packets. The worst
but guaranteed case throughput for the unreliable protocol is
determined by 2.4 and 3.7 Mbit/s, respectively.

A. Lift Performance and Protocol Processing Overhead

The performance of the Lift determines the overhead in-
volved in the concept of achieving modularity within Da

1594 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

Fig. 13. Protocol overhead based on modules.

CaPo . The processing overhead is shown in Fig. 13. These
numbers include the overhead incurred by the resource man-
ager to allocate necessary packet memory and is referred to
in total as protocol overhead. 1000 Lift runs were performed.
All data were measured in wall clock time, and modules in the
protocol were measurement modules, having a measurement
overhead of 0.6 s each. This results in an overhead of 9s
for the packet allocation and the per-run Lift overhead, plus
0.4 s for each module in the data path. The high maximum
numbers stem from occasional context switches in the non
real-time multitasking system. Therefore, the goal of achieving
efficiency has been reached while remaining as modular as
possible.

The total run-time overhead depending on the amount of
memory requested for a flow with three modules is shown in
Fig. 14. As it can be seen, the memory management (using
the standard C library) takes a constant 5s (difference
between memory allocation of 0 Byte and allocation of1
Byte), except for the first run, which takes additional 60s.
The overall maximum value occurs the first time a buffer is
requested; all future requests are handled fast. The first run
also includes inherent semaphore signaling overhead by the
operating system needed to start the Lift thread blocked ini-
tially. It was considered important to reduce the high overhead
inherent to handling multimedia devices before addressing the
much smaller overhead related to module processing. It turned
out to be impossible to reduce the multimedia device overhead,
since specifications describing their operation could not be
obtained in enough detail. The maximum value in the figure is
again due to context switches. Note that the required time is
independent of the requested memory size in terms of buffers.
Only the initial setup time increases slightly with buffer size.

B. Security Modules

For the evaluation of the security performance, 1000 pack-
ets of 1000 Byte length each were sent using the TCP
T-module over Ethernet connecting two Sun UltraSPARC’s
170E as sender and receiver. For every 100 packets sent, a
key change for the symmetric algorithm took place, while an
RSA operation including their encryption and decryption was
performed every 500 packets. The user CPU consumption of
the authentication module Message Digest MD5 and the en-

Fig. 14. Protocol overhead based on memory.

Fig. 15. Comparison of security modules.

cryption module DES-CBC are studied in detail, while further
mechanism numbers are given for additional comparisons.

An overview of all numbers is depicted in Fig. 15. Specif-
ically, within the MD5 module the calculation of the MD5
checksum accounts for 97.6% of the CPU usage. 2.1% of the
time was used for extracting keys, the rest is accounted by
module specific overhead. The per-packet CPU usage for 100
packets without a key change is 0.086 ms. This corresponds
to a theoretical throughput of 92 Mbit/s.

To perform the encryption and certification of transmitted
session keys and to signal required control data to the Lift,
30.65 ms per key change are required, where the certification
takes 93.48% of the time and the encryption of the session
key with a peer’s public key takes 6.47%. This behavior shows
that operations using a public RSA key are much cheaper than
operations using a private RSA key, which is caused by the
difference in time consumed by the modular exponentiation
algorithm, depending on the number of 1-bits in the exponent.

Concerning the encryption module, the encryption of 999
packets of 1000 Byte length each with DES in CBC mode
takes 199.71 ms. This includes 10 DES key changes, 0.73 ms
each, and two refills of the pool of session keys holding five
keys at a time. This takes 1.08 ms per refill. The per packet
CPU usage without key changes amounts to 186.94 ms. This
results in 0.187 ms per packet or in a theoretical throughput of
the purely software-based DES implementation of 42 MBit/s.

C. Security Protocols

Different security protocols encrypting plain data have been
evaluated by sending 10 MByte of data in 10 000 packets,

STILLER et al.: FLEXIBLE MIDDLEWARE FOR MULTIMEDIA COMMUNICATION 1595

TABLE V
ACHIEVED THROUGHPUT OFSECURITY PROTOCOLS

determining the full end-to-end performance achieved. Keys
have been changed every 100th packet and an asymmet-
ric encryption operation (RSA) has been performed every
500 packets. Table V shows the real overall (application-to-
application) throughput values that can be achieved using
security in Da CaPo .

These values include runtime, operating system, application,
API, and A-module overhead, as they are calculated from
elapsed times. Normally, multimedia data communication in
Da CaPo would run even more efficiently, because data
is transferred from the middleware directly to output devices
and vice versa. Even when coming from the application,
throughput is sufficient for multimedia data applications, e.g.,
five encrypted CD-quality audio streams may be transmitted
from a SUN workstation utilizing an RC5 with 12 rounds and
128 bit keys in conjunction with keyed MD5 authentication.

To perform the translation of abstract application require-
ments to low level requirements in the Da CaPo middle-
ware, a way to predict resource consumption as a function of
employed security algorithms needs to be found. The solution
is a formula that can be fed by implementation and platform-
dependent figures, resulting in the number of CPU seconds
required for the encryption or authentication of a certain
amount of data—including key change and internal processing
overhead. For simplification purposes, the calculated resource
consumption represents the maximum of the cost on the
sending and the receiving side.

The formula below determines required CPU seconds per
Mbit of processed data. indicates the number of packets that
are contained in an Mbit, represents the system inherent
per-packet protocol processing cost (e.g., 0.015 ms for the
measurement environment), indicates the per-megabit
module inherent overhead, stands for the number of RSA
key encryptions done per Mbit (not equal to the number of
key changes, as several keys can be grouped together for one
RSA operation), determines the number of keys that are
grouped together, and defines for the number of bytes in
one single key. RSA stands for the cost of a single RSA
operation (approximately 3.6 ms per Byte). and
represent the cost for changing the key of an algorithm and
the cost for gathering the random material used to form the
following key (about 1.3 ms per key):

CPU
Mbit

RSA

Applying an example to this formula shows that the result
depends on the number of packets per megabit, the number of
key changes, and the key encryption/exchanges per megabit.
Assuming 1000 Byte packets, key changes to be performed
every 100 kByte, and RSA operations performed every five

TABLE VI
ALGORITHM COSTS AND THROUGHPUT

Fig. 16. Saturated raw API throughput.

key changes, the following algorithm dependent cost result:

To combine required costs for authentication and encryption,
CPU seconds per Mbit values for authentication and encryp-
tion must be summarized. Table VI represents cost values
and achievable middleware throughput as derived for the
measurement platform of Da CaPo .

D. API Performance

The API plays an important role during connection estab-
lishment and data transfer. Control data are exchanged between
the application and the Da CaPo core over a Unix domain
socket by an IPC mechanism. User data exchange is supported
by a shared memory concept [37], and data is either injected
or received by an application in the upper part of API. Within
the lower part of the API, the A-module either generates new
data or consumes incoming data. Fig. 16 depicts the maximum
performance that can be expected for sending or receiving data
over the API. These results were obtained by sending and
receiving, respectively, 1000 packets of 1000 Bytes size each.
The difference between the maximal sending throughput and
the maximal receiving throughput is due to the overhead in A-
modules, since data coming from the application are available
to the Lift after an additional thread-switch for accessing the
call-back function from the Lift.

API measurements with varying packet sizes in the sending
direction are presented in Fig. 17. An almost linear relation
between the packet size and the throughput is achieved,
reaching the maximum for 8 kByte packets at approximately
108 Mbit/s. These figures are caused by the relatively large
overhead due to semaphore operations of the shared memory
which are an inherent problem of the applied operating system.

1596 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

Fig. 17. API throughput.

Fig. 18. Throughput comparison of different API mechanisms.

The required time to copy larger packets via the C-library
call is not significant compared to these operations.
Since multimedia data originating in devices bypass the API,
these obtained numbers specifically determine the upper limit
to the application-to-application throughput. The high degree
of modularity applied to all threads (Lift, API) and processes
(applications) could be reduced further to achieve an ever
higher API throughput; however, implemented applications
experienced a sufficient performance, as these figures show.

The Da CaPo API throughput achieved has been com-
pared to a number of different alternatives, as depicted in
Fig. 18. The triangles show that the Da CaPoAPI performs
very well ranging from 13.7 Mbit/s for 256 Byte packets to
274.2 Mbit/s for 8 kByte packets [37]. These numbers are
inline with Unix Sockets as well as Internet Sockets. Of course,
a shared memory solution would give better performance;
however, note that only user data not originating from a
multimedia device must cross the API. Therefore, the API
does not act as bottleneck for multimedia data transmissions.

VII. SUMMARY AND CONCLUSIONS

The Da CaPo middleware is a comprehensive systems
approach providing QoS-based multimedia services to appli-

cations. Its key characteristics and major results comprise the
following list.

• The application programming interface hides away com-
plex protocol issues from the programmer, providing an
abstract and QoS-based interface.

• Security—and though not discussed in detail, multi-
cast—are seamlessly integrated into the QoS specification
offered by Da CaPo .

• The Da CaPo approach provides valuable and well-
adapted services and protocols to application program-
mers. By applying it in the implementation of a sample
real-life picture phone application, a significant proof of
concept has been presented.

• A prototype has been implemented and submitted to
performance measurements. The results show that the
implementation approach taken provides for a highly
efficient protocol processing (Lift algorithm) that has been
shown to fulfill soft real-time requirements, even when
secure protocols are used.

The application programming interface of Da CaPo
offers the required degree of transparency between applications
and the middleware. While the complexity of the Da CaPo
core and communication-relevant tasks is completely hidden
from the application programmer, a useful exploitation is
possible with QoS attribute specifications. Although breaking
the transparency by handling application QoS within the Da
CaPo core in the first place (applications are requested
to specify their communication requirements for underlying
“layers”), this offers an order of magnitude-better alternatives
in providing a best-suited communication protocol and service
from the middleware’s point of view. Even in case of QoS-
ignorant applications, communication facilities are provided by
the middleware relying on predefined standard communication
protocols. The API abstractions developed show to be suit-
able and easy-to-use for application programmers providing
QoS specifications. The support of efficient data transfers is
achieved at the same time. Since multimedia devices and
the middleware are tightly interconnected, applications do not
require much effort for controlling these devices. Therefore,
many difficult aspects of multimedia support are no longer
part of the application, but are completely handled within the
middleware. The general-purpose and QoS-based communica-
tion API offers a set of functions for communication purposes,
where the flow types defined in the API are extensible and may
be used naturally to generate objects and protocols required
for communications.

Security and multicasting functionality is made available to
users in the same way as they request for a reliable transfer
of messages. The Da CaPo approach integrates security
functionality into middleware by synthesizing security into
additional QoS attributes. Thus, properties of secure protocols
are as changeable as those of insecure protocols, provided that
both parties agree on such changes.

Da CaPo is capable of accommodating in a tailored fash-
ion a variety of multimedia application requirements due to its
internal configuration facility for communication protocols and
services. This flexibility achieved is fruitful for applications;

STILLER et al.: FLEXIBLE MIDDLEWARE FOR MULTIMEDIA COMMUNICATION 1597

however, it is only required at the level of different protocols
and for a group of protocol functions concerning security,
multicasting, and error control. Experiences gained from the
prototypical implementation reveal that protocol processing for
the transmission of continuous data, e.g., audio or video, can
be performed with the Lift efficiently on standard workstations.
Specifically, the exact number of concurrently supported data
streams depends on their particular requirements, e.g., in terms
of security protocol functions. The Lift as a runtime system
for modular protocols shows, in the given implementation
environment, a minimum overhead of 9s for the packet
allocation and a per-run Lift overhead of 0.4s for each
module in the Lift’s data path. This determines adequate
protocol processing efficiency for a highly modular approach
at the same time.

Concluding, the approach of supporting applications by
advanced middleware, in terms of flexible protocol selection
as well as QoS support, is a promising one. Its viability has
been demonstrated by the design and implementation of the
Da CaPo middleware. Further advantages of Da CaPo
are concerned with its independence of the underlying op-
erating system and the possibility to port the prototypical Da
CaPo implementation easily. Even though the performance
of Da CaPo is not optimal completely at a few places
in its current implementation, specifically due to undesirable
operating system interactions, the proof of concept for flexibly
configured communication protocols has been furnished, and
an efficient multimedia support on standard workstation’s
hardware has been accomplished successfully.

ACKNOWLEDGMENT

The authors would like to express many thanks to their for-
mer Swiss Federal Institute of Technology (ETH) Da CaPo
team members C. Conrad, T. Tommingas, and M. Vogt, to a
group of diploma students, and to two project partners from
former XMIT AG, Dietikon (now with Swisscom), and Swiss
Bank Corporation, Basel (now UBS). G. Fankhauser and B.
Bauer commented on earlier versions of this paper. Finally,
the authors would like to thank the anonymous reviewers fro
their comments and suggestions.

REFERENCES

[1] H. W. Lockhart,OSF DCE—Guide to Developing Distributed Applica-
tions. New York: McGraw-Hill, 1994.

[2] Object Management Group, “CORBA: The common object request
broker architecture,” revision 2.0, July 1995.

[3] The TINA-C Homepage. (1998). [Online]. Available WWW:
http://www.tinac.com.

[4] D. Rogerson,Inside COM. Redmond, WA: Microsoft Press, 1997.
[5] R. van den Linden, “An overview on the advanced network systems

architecture (ANSA),” APM Ltd., Cambridge, U.K., Architectural Rep.
AR.000.00, 1993.

[6] I. Pyarali, C. O’Ryan, D. C. Schmidt, N. Wang, W. Kachro, and A.
Gokhale, “Applying optimization patterns to design real-time ORB’s,”
in Proc. Fifth USENIX Conf. OO Technologies and Systems COOTS’99,
San Diego, CA.

[7] M. Cukier, J. Ren, C. Sabnis, D. Henke, J. Pistole, W. H. Sanders, D.
E. Bakken, M. E. Berman, D. A. Karr, and R. E. Schantz, “AQuA: An
adaptive architecture that provides dependable distributed objects,” in
Proc. 17th IEEE Symp. Reliable Distributed Systems (SRDS’98),IEEE,
West Lafayette, IN.

[8] I. Foster and C. Kesselman, “The Globus project: A status report,” in
Proc. 12th Int. Parallel Processing Symposium and Ninth Symp. Parallel
and Distributed Processing (IPPS/SPDP’98).

[9] D. Schmidt and T. Suda, “Transport system architecture services for
high-performance communication subsystems,”IEEE J. Select. Areas
Commun.,vol. 11, pp. 489–506, May 1993.

[10] M. Zitterbart, B. Stiller, and A. Tantawy, “A model for flexible high-
performance communication subsystems,”IEEE J. Select. Areas in
Commun.,vol. 11, pp. 507–518, May 1993.

[11] L. Peterson and N. Hutchinson, “The x-Kernel: An architecture for
implementing network protocols,”IEEE Trans. Software Eng.,vol. 17,
pp. 64–76, Jan. 1991.

[12] D. Mosberger, “SCOUT: A path-based operating system,” Ph.D. disser-
tation, Univ. Arizona, Tucson, AZ, 1997.

[13] D. Decasper, M. Waldvogel, Z. Dittia, H. Adiseshu, G. Parulkar, and
B. Plattner, “Crossbow—A toolkit for integrated services over cell-
switched IPv6,” inProc. IEEE ATM Workshop,Lisboa, Portugal, June
1997.

[14] D. Clark and D. Tennenhouse, “Architectural considerations for a new
generation of protocols,”ACM Comput. Commun. Rev., vol. 20, pp.
200–208, Sept. 1990.

[15] A. Danthine, “The OSI’95 transport service with multimedia support,”
in Research Reports ESPRIT, Project 5341, vol. 1. Berlin, Germany:
Springer-Verlag, 1994

[16] A. Campbell, G. Coulson, and D. Hutchinson, “A quality of service
architecture,”Comput. Commun. Rev., vol. 1, pp. 6–27, Apr. 1994.

[17] K. Nahrstedt, “An architecture for end-to-end quality-of-service pro-
vision and its experimental verification,” Ph.D. dissertation, Univ.
Pennsylvania, Philadelphia, PA, 1995.

[18] S. Narayan, K. Nahrstedt, and H. Chu, “QoS-aware resource manage-
ment for distributed multimedia applications,”J. High Speed Network-
ing, to be published.

[19] C. Aurrecoechea, A. T. Campbell, and L. Hauw, “A survey of QoS
architectures,”Multimedia Systems,vol. 2, no. 6, pp. 138–151, 1998.

[20] B. Stiller, Quality-of-Service—Dienstg¨ute in Hochleistungsnetzen.
Bonn, Germany: International Thomson, 1996.

[21] D. Schmidt, “IPCSAP: An object-oriented interface to operating system
interprocess communication services,”C++ Rep., vol. 4, pp. 1–10,
Nov./Dec. 1992.

[22] S. Böcking, “Sockets++: A uniform application programming interface
for basic-level communication services,”IEEE Commun. Mag., vol. 34,
pp. 114–123, Dec. 1996.

[23] “WinSock2: information, architecture, and specification.” (1997). [On-
line]. Available WWW: http://www.sockets.com/.

[24] A. Frier, P. Karlton, and P. Kocher, “The SSL 3.0 protocol.” (1996).
Netscape Communications Corporation. [Online]. Available WWW:
http://home.netscape.com/eng/ssl3/.

[25] M. Purser,Secure Data Networking.London, U.K.: Artech House,
1993.

[26] S. Casner and S. Deering, “First IETF internet audiocast,”ACM Comput.
Communic. Rev., vol. 22, pp. 92–97, July 1992.

[27] S. Deering, “Multicast routing in a datagram internetwork,” Ph.D.
dissertation, Stanford Univ., Stanford, CA, Dec. 1991.

[28] D. Bauer, B. Stiller, and B. Plattner, “An error-control scheme for a
multicast protocol based on round-trip time calculations,” inProc. 21st
IEEE Conf. Local Computer Networks,Minneapolis, MN, Oct. 1997,
pp. 212–221.

[29] B. Stiller, D. Bauer, G. Caronni, C. Class, C. Conrad, B. Plattner,
and M. Waldvogel, “Project Da CaPo++—Volume I: Architectural and
detailed design,” TIK, Swiss Federal Institute of Technology, Zürich,
Switzerland, Tech. Rep. 28, July 1997.

[30] T. Plagemann, B. Plattner, M. Vogt, and T. Walter, “Model for dynamic
configuration of light-weight protocols,” inProc. Third IEEE Workshop
Future Trends of Distributed Systems,Taipeh, Taiwan, Apr. 1992, pp.
100–106.

[31] B. Stiller, D. Bauer, G. Caronni, C. Class, C. Conrad, B. Plattner,
and M. Waldvogel, “Project Da CaPo++—Volume II: Implementation
documentation,” TIK, Swiss Federal Institute of Technology, Z¨urich,
Switzerland, Tech. Rep. 29, Aug. 1997.

[32] M. Vogt, T. Plagemann, B. Plattner, and T. Walter, “Eine Laufzei-
tumgebung f̈ur Da CaPo,” inProc. GI/ITG Arbeitstreffen “Verteilte
Multimediale Systeme,”Stuttgart, Germany, Feb. 1993, pp. 3–17.

[33] P. Zimmermann,The Official PGP Users Guide.Boston, MA: MIT
Press, 1995.

[34] C. Conrad and B. Stiller, “A QoS-based application programming
interface for communication middleware,” inProc. 22nd IEEE Conf.
Local Computer Networks,Minneapolis, MN, Nov. 1998, pp. 274–283.

[35] W. R. Stevens,UNIX Network Programming. Reading, MA: Addison-
Wesley, 1992.

1598 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 17, NO. 9, SEPTEMBER 1999

[36] T. Gutekunst, “Shared window systems,” Ph.D. dissertation, Swiss
Federal Institute of Technology, Zürich, Switzerland, 1995.

[37] C. Conrad and B. Stiller, “A QoS-based application programming
interface for communication middleware,” inProc. SPIE for the Voice,
Video, and Data Communication Symposium,vol. 3233, Dallas, TX,
Nov. 1997, pp. 248–259.

[38] B. Stiller, “An application framework for the Da CaPo++ project,” in
Proc Fifth Open Workshop High Speed Networks,ENST, Paris, France,
Mar. 1996, pp. 4–17/4–24.

[39] B. Stiller, C. Class, M. Waldvogel, G. Caronni, D. Bauer, and B. Plattner,
“The design and implementation of a flexible middleware for multimedia
communications comprising usage experiences,” TIK, Swiss Federal
Institute of Technology, Z̈urich, Switzerland, Tech. Rep. 54, July 1998.

[40] Sun Microsystems,SunVideo User’s Guide, 1994.
[41] B. Welch,Practical Programming in Tcl and Tk,2nd ed. Upper Saddle

River, NJ: Prentice-Hall PTR, 1997.
[42] Pure Software,Quantify User’s Guide, 1995.

Burkhard Stiller (M’98) received the Dipl. degree
in computer science and the Ph.D. degree from
the University of Karlsruhe, Germany, in 1990 and
1994, respectively.

From January 1991 until September 1995, he was
a Research Assistant at the Institute of Telematics,
University of Karlsruhe. He was on leave from 1994
to 1995 for a one-year EC Research Fellowship at
the Computer Laboratory, University of Cambridge,
Cambridge, U.K. Since November 1995, he has
been with the Computer Engineering and Networks

Laboratory, TIK, the Swiss Federal Institute of Technology (ETH), Zürich,
Switzerland as a Lecturer for multimedia communications and a Research
Associate. Besides managing research projects in Germany, Switzerland, and
the U.K., his primary research interests include architectures for multimedia
communication systems, middleware, quality-of-service models, charging and
accounting systems, and ATM networking.

Dr. Stiller currently acts as Technical Program Cochair for the DSOM’99
and has served as a reviewer for journals, conferences, and workshops. He is
a member of the ACM and the Gesellschaft f¨ur Informatik GI in Germany.

Christina Class (S’96) received the Dipl. degree in
computer science applied to business administration
from the University of Mannheim, Germany, in
1995. She is currently completing the Ph.D. de-
gree in the Department of Electrical Engineering at
the Swiss Federal Institute of Technology (ETH),
Zürich, Switzerland.

Since 1995, she has been a Research Assistant
with the Computer Engineering and Networks Lab-
oratory, TIK at the ETH. Her research interests
include communication protocols, multimedia, mid-

dleware, quality-of-service, and synchronization of multimedia data.
She is a student member of the ACM.

Marcel Waldvogel received the Dipl. degree in
computer science from the Swiss Federal Institute
of Technology (ETH), Z̈urich, Switzerland, in 1994.
He is currently working toward the Ph.D. degree at
the Computer Engineering and Networks Laboratory
TIK at the ETH. He is maintaining the Swiss PGP
key server.

His research interests include security and privacy
issues in communication networks and distributed
systems, algorithms for high-speed packet classifi-
cation, and distributed storage systems.

Mr. Waldvogel is a member of the ACM.

Germano Caronni (M’95) received the Dipl. de-
gree in computer science from the Swiss Federal
Institute of Technology (ETH), Z̈urich, Switzerland,
in 1993. Currently, he is pursuing the Ph.D. degree
on quality-of-service (QoS) based dynamic security.

In 1993, he joined the Computer Engineering
and Networks Laboratory, TIK at the ETH as a
Research Assistant. Since 1997, he has been with
Sun Microsystems Laboratories, Mountain View,
CA, and he is now with the Network and Security
Group there. He was one of the first to invent a

process to watermark images, participated in the IETF (IPSEC), and he
led the independent implementation effort for SKIP (secure TCP/IP) and its
integration into an adaptive firewall. His work and publications’ focus are in
the area of distributed systems and communication security.

In 1997, Mr. Caronni won the RC5/48 challenge of RSA Data Security
Inc. He is a member of the ACM.

Daniel Bauer received the Dipl. degree in computer
science in 1993 and the Ph.D. degree in electrical
engineering in 1997, both from the Swiss Federal
Institute of Technology (ETH), Z¨urich, Switzerland.

He is a Researcher at the IBM Research Labora-
tory, Zürich, Switzerland. From 1993 until 1997, he
worked as a Research Assistant with the Computer
Engineering and Networks Laboratory, TIK at the
ETH. His research interests include routing, quality-
of-service, distributed computing, multimedia, mul-
ticasting, and resource management.

