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Exploiting Spatio-Temporal Diversity for Water
Saving in Geo-Distributed Data Centers
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Abstract—As the critical infrastructure for supporting Internet and cloud computing services, massive geo-distributed data centers
are notorious for their huge electricity appetites and carbon footprints. Nonetheless, a lesser-known fact is that data centers are also
“thirsty”: to operate data centers, millions of gallons of water are required for cooling and electricity production. The existing water-
saving techniques primarily focus on improved “engineering” (e.g., upgrading to air economizer cooling, diverting recycled/sea water
instead of potable water) and do not apply to all data centers due to high upfront capital costs and/or location restrictions. In this
paper, we propose a software-based approach towards water conservation by exploiting the inherent spatio-temporal diversity of water
efficiency across geo-distributed data centers. Specifically, we propose a batch job scheduling algorithm, called WACE (minimization
of WAter, Carbon and Electricity cost), which dynamically adjusts geographic load balancing and resource provisioning to minimize the
water consumption along with carbon emission and electricity cost while satisfying average delay performance requirement. WACE
can be implemented online without foreseeing the far future information and yields a total cost (incorporating electricity cost, water
consumption and carbon emission) that is provably close to the optimal algorithm with lookahead information. Finally, we validate
WACE through a trace-based simulation study and show that WACE outperforms state-of-the-art benchmarks: 25% water saving while
incurring an acceptable delay increase. We also extend WACE to joint scheduling of batch workloads and delay-sensitive interactive
workloads for further water footprint reduction in geo-distributed data centers.

Keywords—Capacity provisioning, data center, geographic load distribution, resource management, water footprint
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1 INTRODUCTION

Data centers, housing tens of thousands of servers to
satiate the ever increasing demand for Internet and
cloud computing services, are notorious for high energy
consumption. This raises serious concerns for data cen-
ters’ operational costs and sustainability impacts due to
carbon footprints embedded in electricity usage. While
many recent studies have focused on decreasing energy
consumption (e.g., [1], [2]) as well as carbon footprint of
data centers (e.g., [3], [4]) for sustainability, an equally,
if not more, important yet often neglected aspect of data
center sustainability is the massive water footprint.

1.1 Why data center water footprint matters?

Massive water footprint. Data centers consume a sig-
nificant amount of water both directly and indirectly.
Direct onsite water consumption is attributed to cool-
ing systems. While there exist various types of cooling
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systems such as air-side economizer [5], large data cen-
ters, including AT&T [6] and eBay [7], often resort to
cooling towers, where server heat is rejected into the
environment via water evaporation. It is reported that
the U.S. National Security Agency’s data center in Utah
would require up to 1.7 million gallons of water per
day, enough to satisfy over 10,000 household’s water
needs. Cooling facilities of eBay consume 2.52 liters of
water per kilowatt-hour (L/kWh) server energy, as of
2013 summer [7]. Even outside air cooling, which is
particularly suitable for cold climate, consumes water
for temperature/humidity control (e.g., Facebook’s data
center uses 0.42 L/kWh as of February 2014 [8]). In addi-
tion to direct onsite water consumption, data centers are
also held responsible for an enormous amount of indi-
rect water embedded in electricity generation: electricity
production accounts for the largest water withdrawal in
the U.S. and an average of 1.8L of water is evaporated
for just 1KWh of electricity generation (even excluding
the much more water-consuming hydropower) [9], [10].

Extended droughts. Extended droughts and water
shortage are quickly spreading as a global crisis, amid
the anticipation that global water demand may exceed
the supply by 40% in 2030 [11], [12]. Even in the U.S.,
over 70% of the land area was affected by drought
during 2012 [13]. The situation has become even worse
in 2014 for some of the U.S. states: following a three-year
abnormal dryness, California declared drought emergency
on January 17, 2014, urging its residents to cut water
usage by at least 20% [14]. Even in water-abundant
regions, water conservation can benefit data centers in
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acquiring green certifications (such as LEED program,
which 77% large data centers are seeking, as shown
in a recent survey [15]), tax credits [16], government-
mandated water compliance code [17], [18], fulfilling
corporate social responsibility and mitigating business
continuity [6].

1.2 How to conserve water in data centers?

Despite the emergence of water footprint as a critical
concern, little prior research has been done to address
this issue. Some large IT companies such as Google
and Facebook have recently become concerned about the
tremendous amount of water usage by their data centers,
and are developing new techniques to mitigate the water
consumption (e.g., applying air economizer instead of
cooling towers in cold regions, using recycled/sea wa-
ter instead of potable water [8], [19]). However, these
engineering approaches often require high upfront costs
and/or suitable locations/climates, which significantly
limit their applicability to all data centers and hence
necessitate a more “universal” approach that will be
addressed in this paper.

Although water conservation and energy saving are
related, most of the current research on data center
energy optimization (e.g., [4], [20], [21]) is insufficient
for water conservation. This is because existing studies
do not consider spatio-temporal diversity of data cen-
ter water efficiency: 1) temporal diversity results from
volatile weather condition and time-varying energy fuel
mixes of electricity generation; and 2) spatial variation
is because different data center locations (i.e., states)
constitute varying amount of energy fuel mix (details
are provided in Section 3). Moreover, water efficiency is
not equivalent to electricity cost/carbon efficiency (e.g.,
nuclear power consumes more than 2L of water per
kWh, while incurring little carbon emission).

Some recent studies [22], [23] exploit spatial diversity
of water efficiency by scheduling delay-sensitive inter-
active workloads among data centers to reduce water
footprint. However, they neglect the temporal diversity
of water efficiency, which allows untapped water saving
opportunities through dynamically scheduling delay-
tolerant jobs over time.

Our work. We address the dearth as well as urgency
of data center water conservation by integrating spatio-
temporal diversity of water efficiency into workload
scheduling and resource provisioning decisions for geo-
distributed data centers. Our approach judiciously de-
cides “when” and “where” to process workloads as well as
how much computing resource needs to be provisioned,
based on three widely-available control knobs: workload
scheduling (both across and within data centers), turning
on/off servers, and adjusting server processing speeds
(via dynamic voltage and frequency scaling, or DVFS).
While these three have been extensively studied in vari-
ous contexts ( [1], [4], [24]), the uniqueness of our research
is that we integrate spatio-temporal diversity of water

efficiency and propose a new scheduling algorithm to
tune the knobs for water conservation.

It is a challenging problem to reduce water footprint
via resource management. Intuitively, we would like
to process more jobs in data centers with higher wa-
ter efficiency and/or when water efficiency is higher.
Nonetheless, naive techniques will result in two unde-
sirable consequences: (1) electricity cost may be signif-
icantly compromised, and (2) jobs will experience an
intolerable delay if they are only processed in very
water-efficient times, whereas water may be unnecessar-
ily wasted if temporal diversity of water efficiency is
neglected. Moreover, the time-varying nature of water
efficiency (resulting from volatile outside temperature
and energy fuel mixes), job arrival, carbon emission rate
and electricity price adds further challenges to making
resource management decisions over a long timescale,
since it is difficult to accurately foresee “when” water
efficiency is high.

To address the above challenges, we focus on delay-
tolerant batch jobs and propose a provably-efficient
online batch job scheduling algorithm, called WACE
(minimization of WAter, Carbon and Electricity cost),
to minimize water usage while also considering elec-
tricity cost, carbon emission and delay performance in
geo-distributed data centers. WACE exploits the spatio-
temporal variation in water efficiency, electricity price
as well as carbon emission rate, and dynamically dis-
patches workloads to data centers while satisfying de-
lay performance requirement. We conduct a trace-based
simulation to validate WACE. The results show that:
(1) WACE can reduce the total cost while satisfying the
average delay constraint; and (2) compared with state-
of-the-art scheduling algorithms, WACE can reduce the
total cost by approximately 20%, while reducing the
water consumption by approximately 25%. Finally, we
extend WACE to jointly schedule delay-tolerant batch
jobs and delay-sensitive interactive jobs for further water
footprint reduction in geo-distributed data centers.

To sum up, we take the position that addressing the
enormous water footprint is essential for data center
operation, especially in water-stressed regions. We make
the following contributions. First, as compared to the
existing research that jointly considers workload latency,
electricity cost and carbon footprint [4], we reduce data
centers’ water footprint by incorporating water conser-
vation as a complementary yet critical criterion into
resource management, which further extends the current
scope of research on data center sustainability. Second,
we propose a provably-efficient batch job scheduling
algorithm, WACE, which can be implemented online
without foreseeing the far future information. Third,
we evaluate WACE and demonstrate its effectiveness
using simulations based on real-world traces. Last but
not least, we consider jointly scheduling delay-tolerant
batch jobs and delay-sensitive interactive jobs for water
conservation.
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TABLE 1: List of key notations.

Notation Description
a(t) Batch workload arrival
mi(t) # of active servers at data center i
si(t) Server processing speed at data center i
pi(t) Server energy consumption at data center i
wi(t) Water consumption at data center i
ci(t) Carbon emission at data center i
ei(t) Electricity cost at data center i
g(t) Total cost
V Cost-delay parameter

Ji(t) Job queue for each data center i

2 MODEL

In this section, we lay down the system model for our
resource management-based approach towards water
conservation. We consider a discrete-time framework to
model time-varying factors. The entire time horizon of
interest is divided into K time slots of equal length (e.g.,
in the order of minutes or one hour), which we denote
by t = 0, 1, · · · ,K − 1. Resource management decisions
are made at the beginning of each decision time slot. Key
notations are summarized in Table 1. Next, we present
the modelling details for data centers and workloads that
capture three widely-available control knobs: workload
scheduling (both across and within data centers), turning
on/off servers, and adjusting server processing speeds
(via DVFS).

2.1 Workload

In general, there are two types of workloads in data cen-
ters: batch workloads and interactive workloads. Many
batch jobs are delay-tolerant and usually do not require
to be processed immediately after arrival, as long as
they do not get stalled unreasonably long. Examples
of such jobs are Google’s search indexing, periodical
data backups, scientific computing, etc. Therefore, com-
pared to interactive jobs (e.g., web services or business
transactional applications) that typically have a delay
requirement in the order of tens of milliseconds, a larger
delay is acceptable for batch job processing, allowing the
data center operator to leverage the temporal variation
of water-carbon efficiency and electricity price. We will
first focus on scheduling batch jobs, while extension of
jointly scheduling batch and interactive jobs is available
in Section 5. We denote by a(t) the total amount of batch
job arrivals at time t, while the amount of batch jobs
dispatched to data center i is ai(t) subject to a(t) =∑N
i=1 ai(t). We measure the batch workloads in terms of

machine-time, as considered widely in existing literature
[25], [26] and can successfully guide dynamic provision-
ing of computing resources. Note that our model can
also be extended to include the additional constraint that
certain types of jobs can only be dispatched to a subset
of data centers for processing due to, for example, data

availability constraints.1

2.2 Data center

We consider N geo-distributed data centers denoted by
i ∈ {1, 2, · · · , N}. Each data center has an auxiliary onsite
renewable energy source (e.g., solar panels [27]), and
we denote the amount of available renewable energy
at time t by ri(t) for data center i. There are a total
of Mi(t) servers that are homogeneous and available
for processing batch jobs within data center i at time
t. Note that our model is easily extensible to hetero-
geneous servers and, if so, both number and type of
servers allocated to process jobs need to be decided.
Servers may run at different processing speeds and
incur different power via DVFS [28]. Specifically, we
consider an array of finite processing speeds denoted by
Si = {si,1, · · · , si,Ki

}, from which a speed si is chosen for
processing batch workloads for data center i. In general,
server power consumption is related to a variety of
resources, including CPU, memory and disk. However,
since CPU is regarded as the main contributor to power
consumption of a server (besides idle power), we focus
on CPU utilization, while suppressing other components
when calculating server power consumption [1], [29].
Hence, we express the total power consumption of a
server in data center i at time t as αi · sni

i (t) + p0,i [30],
[31], where αi is a positive scaling factor and relates
the processing speed to the power consumption; p0,i
represents the power consumption in idle or static state;
and the exponent parameter ni is determined through
empirical methods (example values of which range from
1 to 3, and can be found in [28], [30], [32]).

Based on the above power model, we now derive
data center power consumption at time t, which is also
equivalent to energy consumption in our model because
all time slots have the same duration and hence power
and energy is used interchangeably. For convenience
of presentation, we simply model the server energy
consumption by interactive workloads in data center i as
an exogenously-determined value pi,int(t). However, we
will include interactive workloads in Section 5 and show
further improvement of such inclusion. Letting si(t) and
mi(t) be processing speed and the number of active
servers for processing batch workloads, respectively, we
can write the total server energy consumption at data
center i as

pi(t) = pi,bat(t) + pi,int(t)

= mi(t) · [αi · sni
i (t) + p0] + pi,int(t).

(1)

Note that we do not consider server utilization to de-
termine pi,bat(t) as batch jobs can be equivalently con-
sidered as running at a constantly high utilization. The
reason is batch jobs are processed at servers’ maximum

1. As specified by the queueing dynamics (in Section 3.3), batch job
arrivals at time t will not be available for processing until time t+ 1,
thereby implicitly capturing the possible delay incurred during the
load dispatching stage (e.g., due to data movement).
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processing capacities given a certain speed, and results
in a continuously high server utilization.

Next, given the available on-site renewable energy
ri(t), data center i’s electricity usage at time t is
[γi(t)pi(t)− ri(t)]+, where [ · ]+ = max{·, 0} and γi(t)
is the factor of Power Usage Effectiveness (PUE) at data
center i capturing the non-IT energy consumption such
as cooling and power supply system. Note that, as our
focus is on workload scheduling, we do not consider fa-
cility management such as battery charging/discharging,
which nonetheless can be integrated using other orthog-
onal techniques [33].

3 ONLINE BATCH JOB SCHEDULING: WACE
In this section, we present our online batch job schedul-
ing algorithm WACE. We will first formulate three types
of “costs” (e.g., water consumption, electricity cost, and
carbon emission), present the problem formulation, and
then develop WACE to minimize the total weighted
cost in the absence of long-term future information (e.g.,
future water efficiency and energy fuel mixes, workload
arrivals, etc.).

3.1 Cost
Our work aims to address three “costs”: water con-
sumption, electricity cost and carbon emission. While
electricity cost can be directly represented and quantified
in terms of monetary values, water consumption and
carbon emission symbolize data center sustainability and
can be converted to monetary costs when we present the
problem formulation [4].
• Water consumption. Data centers consume a signif-

icant amount of water both “directly” (for cooling) and
“indirectly” (for electricity generation) [10], [37]. In what
follows, we provide a brief sketch of these two types
of water consumption, introduce the notion of Water
Usage Effectiveness (or WUE, which measures water
efficiency), and then formulate water consumption in a
data center.

Direct water: Data centers deploy one or more of sev-
eral heat removal methods, among which cooling towers
are widely used in large data centers [5], [10]. Cooling
tower consists of two water loops: chilled water loop and
condenser water loop. While chilled water loop recircu-
lates between chillers and server rooms, condenser water
evaporates and recirculates between chillers and cooling
towers. Cooling towers consume water in two major
ways: evaporation (rejection of heat into the environ-
ment) and “blown down” (to keep the salt concentration
of condenser water at a low level). Given a cooling tower,
direct WUE at time t at data center i is denoted by
εi,D(t). In general, direct WUE can be directly measured
in realtime, and some data centers have been periodically
reporting direct WUE for public access (e.g., dashboard
of Facebook, eBay [7], [8]).

Indirect water: Electricity production accounts for the
largest water withdrawal among all sectors in the U.S.
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Fig. 1: Fuel mix and water/carbon efficiency [40].

[38], [39]. While not all the water withdrawal evapo-
rates/loses (hence considered as “consumed”), and a
small portion of electricity is produced through water-
free renewable sources (e.g., wind, solar PV), the national
average water consumption for electricity production
in the U.S. still reaches 1.8L/kWh, even without con-
sidering hydroelectricity2 which itself is a huge water
consumer [10]. Water efficiency for electricity production
is quantified in terms of Energy Water Intensity Factor
(EWIF), which measures the amount of water consump-
tion per kWh electricity. Table 2 shows the EWIF of
several common energy fuel mixes.

Based on [4], we use the following formula to calculate
the grid power’s water efficiency:

εi,I(t) =

∑
k qi,k(t)× εi,k∑

k qi,k(t)
(2)

where qi,k(t) denotes the amount of electricity generated
and εi,k denotes EWIF for fuel type k in data center i.

Water usage efficiency: To assess the water usage effi-
ciency for data center operation, an emerging metric,
called WUE, was recently developed by The Green Grid
[10]. At a high level, WUE is the ratio of water consump-
tion to IT equipment energy, where water consumption
includes both direct and indirect water consumption (i.e.,
water evaporated/“lost” for on-site data center cooling
and off-site electricity production at power plants [39]).

Now, we formulate the water consumption at time t
for data center i as follows

wi(t) = εi,D(t) · pi(t) + εi,I(t) · [γi(t) · pi(t)− ri(t)]+, (3)

where pi(t) is the server power, εi,D(t) denotes the direct
on-site WUE for cooling system, εi,I(t) is the EWIF
calculated based on (2), γi(t) is the PUE.

Spatio-temporal diversity of WUE: WUE (both direct
and indirect) shows spatial and temporal variation. For
example, indirect WUE is location-specific [10]: different
states in the U.S. demonstrates significant variation in
EWIF because of different energy fuel mixes and/or
cooling systems at power plants. Direct WUE also varies
by location, as corroborated by observing direct WUE
values at two data centers of Facebook [8]. Temporal
variation of EWIF can be seen in Fig. 1(b): it is evident

2. Hydroelectricity is often excluded in the assessment of grid’s
water efficiency, because water is mostly consumed due to indirectly
expedited surface water evaporation during its generation.
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TABLE 2: EWIF and carbon emission rate of common electricity generation methods [34]–[36].

Fuel Type Renewable Nuclear Thermal Imports Hydro
EWIF (L/kWh) 0.225 2.27 1.13 1.8 78.9 (or 0 if excluded)

Carbon (g/kWh) 22.5 15 766 562 13.5

that energy fuel mix is time-varying and hence different
amounts of water are consumed at different times for
the same amount of electricity. Direct WUE is also time-
varying because of non-stationary outside temperatures
for cooling tower locations [5].
• Electricity cost. We denote the electricity price for

data center i at time t by ui(t) which may change over
time/locations. We can express the incurred electricity
cost at data center i during time t as:

ei(t) = ui(t) · [γi(t) · pi(t)− ri(t)]+, (4)

where γi(t) denotes the PUE of data center i.
• Carbon emission. A data center incurs carbon emis-

sion embedded in electricity production [4]. Like EWIF,
the average carbon emission rate of data center i can be
calculated based on the weighted contribution from each
fuel type used in electricity generation of the grid [4].
Table 2 lists the carbon emission rates of several common
energy fuel mixes.

Now, we express the carbon footprint (ignoring neg-
ligible carbon emission from on-site renewable energy
generation) of the data center i at time t as

ci(t) = φi(t) · [γi · pi(t)− ri(t)]+, (5)

where φi(t) is the carbon emission rate [4] converting
electricity usage to carbon emission and has a unit of
g/kWh.

3.2 Problem formulation
In this subsection, the optimization objective and con-
straints are first specified, and then the problem formu-
lation for online batch job scheduling is presented.

Objective. The optimization objective is to minimize
total (operational) cost: electricity cost, water consump-
tion and carbon emission, while ignoring capital costs
(e.g., cost for building data centers, installing renewal
generators and so on) that are orthogonal to our study.
As shown in Fig. 1(b), carbon emission rate (similarly,
electricity cost efficiency, albeit not shown) and water
efficiency are not aligned: low-carbon electricity may
not be water-efficient. Thus, there exists an inherent
tradeoff among electricity cost, carbon emission and
water consumption. In other words, these three metrics
cannot be optimized simultaneously, and hence as in the
existing literature [1], [4], we construct a parameterized
total cost function as follows

g(a(t),m(t), s(t)) =

N∑
i=1

[ei(t) + hw · wi(t) + hc · ci(t)] , (6)

where a(t) = (a1(t), · · · , aN (t)), m(t) =
(m1(t), · · · ,mN (t)), and s(t) = (s1(t), · · · , sN (t)) are the

decision variables representing geographic workload
distribution, number of servers, and server speed
settings, respectively. Moreover, hw ≥ 0 and hc ≥ 0
are weighting parameters for water consumption and
carbon emission relative to the electricity cost. Such a
multi-objective formulation is common in the literature
(e.g., [4] combines electricity cost, carbon emission and
delay). Our optimization objective is to minimize the

long-term average cost expressed as ḡ = 1
K

K−1∑
t=0

g(t),

where K is the total number of time slots in the period
of interest.

Constraints. We list the constraints on scheduling
decisions as follows. First, at any time slot t, the number
of available servers to process the batch jobs needs to
satisfy

0 ≤ mi(t) ≤Mi(t), (7)

where Mi(t) is the total number of servers excluding
those allocated to interactive workloads. The server can
only select one of the supported speeds:

si(t) ∈ Si = {si,0, si,1, · · · , si,Ki
}. (8)

We also need to guarantee that batch jobs will be even-
tually processed (without dropping):

a(t) =

N∑
i=1

ai(t), ∀ t, (9)

āi < b̄i, ∀ i (10)
bi(t) = mi(t) · si(t),∀ i, t, (11)

where āi = 1
K

K−1∑
t=0

ai(t) and b̄i = 1
K

K−1∑
t=1

bi(t) are the

long-term average workload arrival and allocated server
capacity in data center i, respectively, and the constraint
(11) states the relation between the processed batch
jobs and data center capacity provisioning. Note that
although we do not explicitly incorporate the average
delay into the constraints, WACE provides an upper
bound on the maximum queue length (details available
at [54] which is omitted for brevity), translating into an
average queueing delay guarantee.

Problem formulation. We present an offline problem
formulation for batch job scheduling as follows

P1 : min
D

ḡ =
1

K

K−1∑
t=0

g(a(t),m(t), s(t)) (12)

s.t., constraints (7), (8), (9), (10), (11), (13)

where D represents a sequence of decisions, i.e.,
a(t),m(t), s(t), for t = 0, 1, · · · ,K − 1, which we need
to optimize. Clearly, the optimal offline solution to P1
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Algorithm 1 WACE

1: At the beginning of each time t, observe the data
center state information ri(t), εi,D(t), εi,I(t), φi(t) and
ui(t), for i = 1, 2, · · · , N and t = 0, 1, 2, · · · ,K − 1

2: Choose a(t),m(t), s(t) subject to (7), (8), (9), (11) to
minimize

P2 : V · g(a(t),m(t), s(t))−
N∑
i=1

Ji(t) · bi(t)+

N∑
i=1

Ji(t) · ai(t)

(14)

3: Update the batch job queue Ji(t) according to (15).

provides the lowest average cost. However, such a solu-
tion requires complete offline information (i.e., workload
arrivals, direct WUE, EWIF, carbon emission rate, on-site
renewables and electricity prices) throughout the entire
time horizon, which is challenging, if not impossible,
to obtain in practice. Therefore, we resort to an online
algorithm that is implementable based on the currently
available information at the beginning of each time t.

3.3 WACE
We now present an online batch job scheduling al-
gorithm, WACE, which is proved to yield a close-to-
minimum cost compared to the optimal algorithm with
lookahead information. To save space, the performance
analysis of WACE is presented in [54] which follows
sample-path Lyapunov optimization [41].

Batch job decisions are linked together across different
time slots through the long-term constraint (10). Thus, it
is challenging to make online decisions without knowing
the future. Here, we propose an online algorithm that
leverages the recently-developed Lyapunov technique
[41]. Specifically, we replace the long-term constraint (10)
with a batch job queue, and incorporate the queue
information into scheduling decisions. Intuitively, with a
larger queue length, more resources should be allocated
to the data center (e.g., increasing number of server
and/or server speed), and vice versa. As described in Al-
gorithm 1, we incorporate the queue length information
into the objective function to dynamically determine the
balance between clearing queue backlogs (i.e., delay) and
cost minimization. With an initial empty queue Ji(0) = 0,
the job queue is updated as follows

Ji(t+ 1) = [Ji(t)− bi(t)]+ + ai(t), (15)

where [·]+ = max{·, 0}, ai(t) quantifies the batch job ar-
rivals, and bi(t) indicates the amount of processed batch
jobs. In Algorithm 1, we use a control parameter V ≥ 0
(denoted as cost-delay parameter), which can be tuned
to trade the batch job queueing delay for cost i.e., how
much we shall emphasize the cost minimization problem
P1, compared to the long-term delay performance. In

TABLE 3: Data center configuration.

DC # of Servers Peak Power
Location (in thousands) (MW)

CA 100 21
IA 90 19
IL 60 13
NY 70 15

TABLE 4: Average direct WUE and EWIF [10].

DC Location CA IA IL NY
EWIF (L/KWh) 0.19 0.45 3.97 3.22

Direct WUE (L/KWh) 0.7 2.52 0.2 0.49

particular, when the value of V is smaller, the data center
operator follows (10) more closely, therefore resulting in
higher cost but a lower delay. On the other hand, with
larger value of V , data center operator focuses more on
minimizing the cost, suppressing the inclusion of the
queue length in P2. We will further examine the effect of
V in the simulation. Note that, in Algorithm 1, the load
balancing decision a(t) is following the rule of “joining
the shortest queue” to balance the queue length (and
hence queueing delay) across data centers: WACE routes
incoming batch jobs to the data center with the shortest
queue length, thereby prevents the data center with high
job queue from increasing further.

4 PERFORMANCE EVALUATION

In this section, we present trace based simulation studies
of geo-distributed data centers to validate our analy-
sis and evaluate the performance of WACE. First, we
present the data used, and then we present the simula-
tion results.

4.1 Data sets

We consider four geo-distributed data centers located
at: Mountain View (CA), Council Bluffs (IA), Northlake
(IL), and New York (NY). The number of servers and
peak power of each data center are given in Table 3. By
default, PUE of each data center is set to 1.2. Although
we have chosen the continental U.S. for our study due
to the availability of energy fuel mix and electricity price
information, our study is generalizable to the globe,
too. Each server has 15 discrete speed levels, uniformly
ranging from 1.6 GHz to 3 GHz, and the normalized
service rate ranges from 5.3 to 10 jobs per hour, where
each “job” represents a unit of computing workloads. We
model the power consumption of the servers according
to (1). The default weighting parameters for water con-
sumption and carbon emission in (6) are set to hw = 25
and hc = 0.06 respectively to have water and carbon
cost comparable to electricity cost. The default average
delay requirement for batch jobs is 5 hours. The total
simulation period is 1 year and duration of each time
slot is set to 1 hour.
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• Workload trace: The batch workload traces for our
simulations are taken from the research publication [42]
and originally profiled from two real-world data center
traces: Microsoft Research (MSR, which we will use
as the default batch workload) and Hotmail (used for
robustness study). Due to the lack of yearly traces, we
repeat both these traces by adding 30% random noises,
extend them to one year, and scale them for our data
center setting. On average, the default amount of batch
workloads is 25% of the total maximum capacity. We
profile the HTTP server usage in Florida International
University throughout 2012 and use the scaled-up trace
as our interactive workload, with an average utilization
at 15% of the total maximum capacity. By default, the
total interactive workload is distributed to data centers
in proportion to their maximum server capacities. Fig. 2
illustrates a snapshot of the MSR, Hotmail and FIU
workload traces, where the workloads are normalized
with respect to the total maximum capacity of the four
data centers.
• Electricity price and renewable energy: We obtain

the hourly electricity price for three trading nodes closest
to data centers in CA, IA and NY for the year of 2012,
while we collect electricity prices for the data center
in IL from [43]. We obtain from [40] four sets of the
hourly renewable energies (generated through solar pan-
els and wind turbines) during the year of 2012, and scale
them proportionally such that on-site renewable energy
supply takes up approximately 10% of the peak power
consumption of all data centers.
• Others: We use the data presented in [8] to calculate

the direct water consumption in CA data center. For
data centers at IA, IL and NY, we use the average
direct WUE of 2.52 L/kWh, 0.2 L/kWh and 0.49 L/kWh,
respectively, and vary them according to outside wet
bulb temperature to incorporate temporal diversity. We
use the state-level average EWIF (listed in Table 4) and
vary it according to energy fuel mix data collected from
[40]. A sample 48 hour energy fuel mix data is given in
Fig. 1(a). Due to the unavailability of hourly fuel mix
data of IA, IL and NY, we adopt the approach in [4]
and use the monthly fuel mix data to calculate monthly
hourly EWIF and carbon emission rates, and add 15%
randomness to generate the yearly data for these three
data centers.

Due to unavailability of access to data center infor-
mation, we collect the trace-data from various sources.
However, since our collected data appropriately repre-
sents the variation of workloads, electricity price, water
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Fig. 3: Comparison of different algorithms.

efficiency and carbon rate, our purpose of evaluating
WACE is served.

4.2 Results
We drive the simulation using the above trace data.
The water consumption, carbon emission and electric-
ity cost are recorded as outputs of the simulation. We
compare the performance of WACE algorithm against
three benchmark algorithms i.e., SAVING, CARBON
and ALWAYS. We also present insights on how WACE
appropriately captures spatio-temporal variation to out-
perform the benchmark algorithms.

Next, we provide a brief outline of the algorithms that
we compare WACE with.
• SAVING: We consider here an online algorithm that

solely minimizes the electricity cost while discarding
water consumption and carbon emission. Essentially,
SAVING is a variant of WACE by setting the water and
carbon weights to zero.
• CARBON: CARBON only optimizes the carbon

emission while ignoring electricity cost and water con-
sumption. It applies WACE with an “infinite” weight for
carbon footprint.
• ALWAYS: This algorithm processes the workloads

as soon as possible and hence avoids incurring a large
delay. By default, ALWAYS equally distributes the work-
loads to data centers.

4.2.1 Performance comparison
Fig. 3 shows the comparison between WACE and
three benchmark algorithms, i.e., ALWAYS, SAVING
and CARBON, in terms of the average cost, average
delay, average water consumption and average carbon
emission per time slot. In Fig. 3, the average value is
obtained by summing up all the values from time 0 to
time t and then dividing the sum by t + 1. Also, in
our study the average hourly cost, water consumption
and carbon emission represent the sum for all the data
centers, while average queuing delay is averaged over
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Fig. 4: Impact of average delay on different costs.

all the data centers. For WACE, SAVING and CAR-
BON, we choose V to be 210, 55, and 580, respectively.
Fig. 3(a) demonstrates that WACE is more cost-effective
compared to the three benchmarks with a total cost
saving by more than 20%, 11%, and 10%, respectively,
although it can be seen from Fig. 3(b) that the queuing
delay is increased by approximately 1 hour for WACE
compared to benchmarks, which is typically tolerable for
batch jobs. Due to its greedy nature, ALWAYS has the
lowest delay of 1 hour, but it has the highest cost. From
Figs. 3(a) and 3(b), it is evident that WACE takes better
advantage of delay tolerance of batch jobs and is there-
fore capable of achieving lower average total cost by
processing batch jobs during time slots when combined
cost factor is lower (i.e., incorporating electricity price,
water efficiency and carbon emission rate). Figs. 3(c) and
3(d) compare water consumption and carbon emission,
respectively, between WACE and three benchmark algo-
rithms. It demonstrates the benefits of WACE in terms of
sustainability, while incurring a minor delay performance
degradation. Note that WACE achieves lower carbon
emission than CARBON in Fig. 3(d) because of the
choice of control variable V . In particular, CARBON
has an average delay of three hours while batch jobs
experience an average delay of five hours in WACE.
Thus, WACE can better take advantage of the spatio-
temporal diversity of carbon/water efficiency and even
result in a lower carbon footprint than CARBON.

4.2.2 Impact of average delay

To enable a fairer comparison, we show the perfor-
mance of WACE, SAVING and CARBON under the
same average delay. ALWAYS is not shown here be-
cause it does not provide the flexibility of trading delay
for cost saving. We vary the delay constraint from 2
time slots to 12 time slots to show the corresponding
average cost, electricity cost, water consumption and
carbon emission in Fig. 4. We can see from Fig. 4(a) that
the average total cost decreases for all the algorithms
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Fig. 5: Impact of cost-delay parameter V .

with relaxed delay constraint, with WACE achieving the
lowest average total cost among the three algorithms.
With increased delay constraint, WACE performs sig-
nificantly better than other two algorithms. Moreover,
note that increasing the delay beyond 10 hours does not
considerably improve the cost performance for any of the
algorithms. Fig. 4(b) shows similar pattern in terms of
water consumption. We can observe that WACE achieves
lowest water consumption among the three algorithms
since it considers water optimization, while the other
two algorithms neglect water efficiency (which differs
from electricity cost/carbon efficiency). Fig. 4(c) and Fig.
4(d) deliver similar messages in terms of electricity cost
and carbon emission, respectively, but with SAVING
achieving lowest electricity cost and CARBON having
lowest carbon emission, which are expected from the
operating principle of these algorithms. From Fig. 4,
we observe that it is not possible to simultaneously
optimize electricity cost, water consumption and carbon
emission, because the efficiencies of these three metrics
are not strongly correlated. A similar result was reported
by [4]: electricity cost and carbon footprint cannot be
minimized at the same time. Hence, it is important to
properly choose weighting parameters for water and
carbon footprints, such that neither sustainability nor
economic benefit is considerably compromised.

4.2.3 Impact of cost-delay parameter V
We now show how the cost-delay parameter V affects
cost and delay. Fig. 5(a) and Fig. 5(b) show the impact
of V on the average hourly cost and average queueing
delay, respectively. ALWAYS is not considered here, since
it does not use V in its scheduling decision. Fig. 5(a)
shows that for all the algorithms, with the increase in
V , the average cost decreases. In Fig. 5(b), we see that
delay increases with an increase in V and the delay
increase is almost linear. The result conforms with our
analysis that with a greater V , the algorithms are less
concerned with the batch job queue length while caring
more about minimizing the cost. The reason is that, with
a large value of V , the weight of queue length in the
optimization objective (14) is relatively smaller, thereby
equivalently making the queueing delay less stringent.

4.2.4 Impact of water and carbon weights
In this section, we show the effect of water weight (hw)
and carbon weight (hc) on the performance of WACE.
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Fig. 6: Impact of water and carbon weights.
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Fig. 7: Capacity provisioning in CA.

We start with the value zero for both the weight factors
and increase the values up to the level such that the wa-
ter/carbon cost equal to 90% of the total cost. We choose
V appropriately in each case, such that the average delay
is equal to 5 hours. In Fig. 6, we show a set of figures
depicting the impacts of water and carbon weights on
WACE in terms of different costs. As we have shown
that WACE cannot outperform electricity cost-/carbon-
minimizing algorithm SAVING/CARBON (in terms of
electricity cost/carbon), we use ALWAYS as the bench-
mark as it is still widely-used in many performance-
driven data centers. Figs. 6(a) and 6(b) show that with
the increase in the corresponding weighting factors, both
water consumption and carbon emission demonstrate
a decreasing trend. This outcome is as expected, since
the increase in the weighting factor translates into a
higher priority for the corresponding cost during the
optimization process. We see in Fig. 6(c) that, with the
increase in either water or carbon weight, electricity cost
increases because WACE schedules batch jobs to achieve
low water consumption and/or carbon emission, while
giving less attention to electricity price. Moreover, we
observe that WACE has a lower water consumption,
carbon emission and electricity cost in comparison to
ALWAYS for a wide range of water and carbon weight

parameters, demonstrating that WACE can outperform
ALWAYS in terms of water consumption, carbon emis-
sion and electricity cost at the expense of increasing
delay for batch jobs.

4.2.5 Exploiting temporal diversity

In this section, we show how WACE exploits the tem-
poral variation of electricity price, WUE, and carbon
rate to achieve an overall low total cost, whereas the
benchmarks do not. As WACE takes the combination
of electricity cost, water consumption and carbon foot-
print into consideration based on a parameterized cost
function, we combine the three factors into one “cost
factor”, defined as “electricity price + water weight ×
water efficiency+carbon weight×carbon efficiency”,
to better visualize the overall impact of temporal diver-
sity in hourly decisions. Fig. 7 shows a snapshot of 24
hour capacity provisioning and job queue lengths with
different scheduling algorithms for the data center in
CA. In Fig. 7(a), we see that WACE processes more
batch jobs during time slots when the combined cost
factor is comparatively low. However, during 12th time
slot, although the cost factor is relatively higher, WACE
processes more jobs. The reason is that, during time slot
12 the job queue length is too large (shown in Fig. 7(b)),
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Fig. 9: Impact of interactive job.

and hence serving those backlogged jobs and reducing
the queue length become more essential than optimizing
the cost due to delay performance concerns. On the other
hand, Fig. 7(c) shows that ALWAYS processes jobs even
when the combined cost factor is high (e.g., time slots
6, 11). The job queue for ALWAYS is shown in 7(d),
which represents the dispatched batch jobs to the data
center in CA. In Fig. 7(e), we see that more jobs are
processed during time slots when the electricity price
is lower (e.g., time slots 4, 10, 18), since SAVING only
cares about electricity price in its optimization. Similar
pattern can be observed in Fig. 7(g) for CARBON, where
it is evident that more jobs are processed at time slots
with low carbon emission rate.

4.2.6 Exploiting spatial diversity
Now, we show in Fig. 8 how WACE exploits spatial
diversity of electricity price, water efficiency and carbon
emission rate, under the same average batch job delay
of 5 hours (except for ALWAYS). Fig. 8(b) shows the
average amount of batch jobs distributed among the four
data centers for four different algorithms. We see that
WACE sends relatively more workloads to the data cen-
ters in CA and IA than those in IL and NY, because CA
and IA have lower combined cost factors, as seen in Fig.
8(a): WACE is concerned about optimizing all the three
costs (electricity cost, water consumption and carbon
emission), whereas SAVING/CARBON has a different
load distribution pattern because SAVING/CARBON
only favors electricity cost/carbon efficiency.

4.2.7 Sensitivity study
We perform the following two sensitivity studies to
evaluate the robustness of WACE.
• Effect of interactive workload intensity. Since in-

teractive jobs processed by the data center limits the
available server capacity for batch jobs, the amount of
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interactive jobs (measured based on the peak arrival rate
in terms % of total capacity) affects the performance of
batch job scheduling algorithms. We choose the same
settings as those in Fig. 3, but vary the average intensity
of interactive jobs from 0% (i.e., no interactive jobs, only
batch jobs) to 70% of total capacity and observe the op-
erational cost and delay performance in Fig. 9. We see in
Fig. 9(a) that with increase in interactive job intensity, the
average cost increases as expected: increased intensity
means that the data centers process more workloads. It
can be observed that, WACE still achieves the lowest av-
erage total cost, while ALWAYS incurs the highest cost.
Fig. 9(b) shows the average delay performance under
different interactive workload intensities: batch job delay
is not affected much by the change in interactive job
intensity. This is because, the peak load of these two
job types are often at different time slots and hence even
when the data centers process more interactive jobs, they
still have enough server capacity to schedule batch jobs
with a similar delay.
• Different workload set. We conduct our simulation

using a different workload trace — Hotmail (shown in
Fig. 2), under the same settings as those in Fig. 3. Similar
to Fig.3, we compare the average total cost of WACE
with SAVING, CARBON and ALWAYS in Fig. 10(a).
We see that WACE has a average cost 21% lower than
SAVING, 20% lower than CARBON and 30% lower than
ALWAYS. Fig. 10(b) shows the delay performance com-
parison of WACE with the three benchmark algorithms,
where it can be seen that WACE has a higher average de-
lay (approximately 1 hour), which is acceptable for batch
workloads. The results again demonstrate the capability
of WACE in fully taking the advantage of scheduling
flexibility of batch jobs to achieve a lower overall cost.
• Number of data centers. The four data centers

considered in the default case is reasonable, since even
leading IT companies like Faceebook and Google have
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only a handful of self-managed data centers in the U.S.
[44], [45]. Nonetheless, to evaluate WACE in larger sys-
tems, we extend our study to more data center locations
following similar settings as in the default case. We see
in Fig. 11(a) that cost saving increases as we increase
the number of data center locations. Similar observation
is also made in Fig. 11(b) where water saving increases
with the number of data centers. The reason is that as
more data centers are included, more spatial-temporal
diversities and a higher degree of scheduling freedom
can be exploited for more cost saving.

5 JOINT SCHEDULING OF INTERACTIVE AND
BATCH JOBS

In this section, we extend WACE to incorporate interac-
tive job scheduling decisions. The new online algorithm
is called WACE-J (WACE-Joint scheduling of batch and
interactive jobs). We present the model for interactive
jobs, formulate the problem, and then compare WACE-
J with our previous batch job scheduling algorithm
WACE (which considers interactive job scheduling as an
external decision) through a simulation study.

5.1 Model and problem formulation

Model. There are Q regional load balancers, each of
which represents a geographically-concentrated source
of workloads and then forwards the incoming interactive
workloads to the N geo-distributed data centers. We
denote the interactive workload arrival rate at the q-
th regional load balancer by λq(t) = [0, λq,max] and the
workload is dispatched to data center i at a rate of
λi,q(t). We denote by mi,int(t) and si,int(t) the number
of active servers and processing speed for processing
interactive workloads at data center i. We include an av-
erage delay constraint to ensure performance guarantee
of interactive workload and denote the delay threshold
by dth. As in the existing literature [1], [46], we use
a M/M/1 queue to model the service processing at
each server. Specifically, the average service delay for
interactive workloads dispatched from load balancer q
to data center i is

1

si,int(t)−
∑Q

q=1 λi,q(t)

mi,int(t)

+ li,q(t), (16)

where li,q(t) is the average network latency from load
balancer q to data center i which can be approximated
based on the distance [1]. As we include interactive job
scheduling as part of our decisions, the server power
consumption for processing interactive jobs pi,int(t) is no
longer an external variable; instead, it can be expressed
as

pi,int(t) =mi,int(t)·

[αi · sni
i,int(t) ·

∑Q
q=1 λi,q(t)

mi,int(t)si,int(t)
+ p0],

(17)
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Fig. 12: Comparison of different algorithms with
interactive job scheduling.

where αi is a positive scaling factor and relates the
processing speed to the power consumption, p0,i rep-
resents the power consumption in idle or static state,∑Q

q=1 λi,q(t)

mi,int(t)si,int(t)
is the utilization of each server in data

center i. Then, the total server energy consumption at
data center i can be written in the same form as (1), and
expressions of all the three types of costs (i.e., electricity
cost, water consumption, carbon emission) follow the
same as in Section 3.1.

Problem formulation. Following Section 3.2, we
present an offline problem formulation for jointly
scheduling interactive and batch jobs as follows

P3 : min
D

ḡ =
1

K

K−1∑
t=0

g(a(t), λ(t),m(t), s(t)) (18)

s.t., constraints (8), (9), (10), (11), (19)
mi(t) +mi,int(t) ≤Mi, ∀ i, t (20)
si,int ∈ Si = {si,0, si,1, · · · , si,Ki}, ∀ i, t (21)

1

si,int(t)−
∑Q

q=1 λi,q(t)

mi,int(t)

+ li,q(t) ≤ dth, ∀ i, t(22)

N∑
i=1

λi,q(t) = λq(t), ∀ q, t (23)

where D represents a sequence of decisions, i.e.,
a(t), λ(t),m(t), s(t) (also including the resource manage-
ment decisions for interactive jobs, i.e., mint(t), sint(t),
which are omitted for brevity), for t = 0, 1, · · · ,K − 1,
which we need to optimize. Compared to the prob-
lem formulation in P1 for batch job scheduling, the
additional constraints (20)—(23) in the new formulation
P3 represent: data center capacity, server speed setting,
delay performance for interactive jobs, and no workload
dropping constraints. To solve P3, we can use the same
online algorithm as presented in Algorithm 1, with the
addition that interactive job scheduling decisions are also
optimized at the beginning of each time slot. We omit the
details due to space limitations.

5.2 Evaluation
We consider the same settings as used in Section 4
and include one regional load balancer at Denver, CO,
which forwards incoming interactive workloads to the
four data centers. For brevity, we only compare WACE-
J against WACE. Due to the explicit consideration of
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Fig. 13: Impact of delay requirement.

delay performance constraint for interactive jobs, we
modify WACE by considering its interactive job schedul-
ing decision as follows: first, incoming interactive jobs
are distributed to data centers in proportion to data
center capacities; then, servers run at a fixed speed (e.g.,
medium speed in our study) and then choose the mini-
mum number of servers to satisfy the delay requirement.
Fig. 12 shows the comparison in terms of total cost
and water consumption between WACE and WACE-
J, under the same delay requirement: average delay of
five hours for batch jobs and 100ms for interactive jobs.
Fig. 12 shows the benefit of jointly scheduling interactive
and batch jobs in reducing cost and water consumption,
while the benefit in terms of reducing electricity cost and
carbon emission is not shown for brevity.

Next, we vary the average delay requirement for
interactive jobs and show how it affects WACE-J. As
intuitively expected, with a relaxed delay requirement,
the total cost of WACE-J will decrease. Figs. 13(a) and
13(b) show the effect of delay requirement on aver-
age total cost and water consumption, respectively, for
both WACE and WACE-J. In Fig. 13, we observe that
WACE-J has a lower average cost and water consump-
tion than those of WACE: WACE-J explicitly optimizes
load distribution and capacity provisioning decisions
for interactive jobs, while WACE does not utilize this
opportunity and hence incurs a higher average cost and
water consumption.

6 RELATED WORK

Several prior studies have focused on identifying meth-
ods of cost cutting while ensuring the quality-of-service
at the same time. For example, finding a balance be-
tween energy cost of data center and performance loss
through dynamically provisioning server capacity has
been the primary focus of many recent studies [42], [47].
Other approaches that are complementary to dynamic
capacity provisioning include, but are not limited to,
utilizing storage devices to reduce the operational cost
of data centers [26], [48], exploiting the spatio-temporal
variation of electricity prices [1], [20], [31], [46], [49],
and utilizing multiple energy sources (e.g., grid energy,
on-site power generation, etc.) [50]. Moreover, there has
been considerable interest in reducing carbon footprint
through geographical load balancing or “follow the re-
newables” [1], [4]. Nonetheless, none of the existing

literature discusses water consumption reduction in data
centers.

Although water consumption has been a critical is-
sue worth addressing, very little research effort has
been dedicated to improving water sustainability at data
center. Most of the current efforts on water efficiency
can be viewed as improved “engineering”: for example,
installing advanced cooling system [8], using recycled
water [19], and reducing indirect water consumption
through installation of on-site renewable energy project
to scale down electricity consumption [27]. Some other
studies that are remotely related to data center water
consumption are: developing a dashboard to visualize
the water efficiency [51], and pointing out the criticality
of water conservation [52]. Some recent studies [22],
[23] exploit spatial diversity of water efficiency and
geographically schedule interactive workloads among
data centers to reduce water footprint, but they neglect
the temporal diversity of water efficiency, which allows
new water saving opportunities through dynamically
scheduling delay-tolerant jobs over time. Another work
[53] preliminarily addresses water footprint via online
batch job scheduling, but it only considers a single data
center and excludes interactive jobs from its decisions.

To sum up, our work extends the previous literature
[4], [22], [23], [53], and holistically minimizes electricity
cost, carbon emission and water footprint by leveraging
the delay tolerance of batch jobs and integrating spatio-
temporal diversity of data center water efficiency.

7 CONCLUSIONS

In this paper, we addressed the surging water footprint
in data centers. We proposed a provably-efficient online
batch job scheduling algorithm, WACE, which exploits
spatio-temporal diversity of data center water efficiency,
carbon rate and electricity price for minimizing the total
cost (incorporating electricity cost, water consumption
and carbon emission) while bounding the average delay
performance. The software-based approach fundamen-
tally differs from the existing water-saving techniques
that primarily focus on improved “engineering”. We
performed a trace-based simulation study to show that
WACE reduces the water consumption by over 25% and
total cost by 20% compared to state-of-the-art bench-
marks, with an acceptable delay increase. Finally, we
extended WACE to jointly schedule batch and interac-
tive jobs for further water footprint reduction in geo-
distributed data centers.
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