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Water-Constrained Geographic Load
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Abstract—Spreading across many parts of the world and presently hard striking California, extended droughts could even potentially
threaten reliable electricity production and local water supplies, both of which are critical for data center operation. While numerous
efforts have been dedicated to reducing data centers’ energy consumption, the enormity of data centers’ water footprints is largely
neglected and, if still left unchecked, may handicap service availability during droughts. In this paper, we propose a water-aware

workload management algorithm, called WATCH (WATer-constrained workload sCHeduling in data centers), which caps data centers

long-term water consumption by exploiting spatio-temporal diversities of water efficiency and dynamically dispatching workloads
among distributed data centers. We demonstrate the effectiveness of WATCH both analytically and empirically using simulations:
based on only online information, WATCH can result in a provably-low operational cost while successfully capping water consumption
under a desired level. Our results also show that WATCH can cut water consumption by 20 percent while only incurring a negligible
cost increase even compared to state-of-the-art cost-minimizing but water-oblivious solution. Sensitivity studies are conducted to

validate WATCH under various settings.

Index Terms—Data center, geographical load balancing, resource management, sustainable IT, water footprint

1 INTRODUCTION

XTENDED droughts are becoming a norm worldwide.

For example, California has been experiencing its
fourth year of drought in a row, mandating water restric-
tions throughout the state [3]. Meanwhile, drought is
emerging as a hidden threat to many industry sectors,
including data centers.

Electricity production. Data centers have a gigantic appe-
tite for electricity. Nonetheless, extended droughts and
water shortage are threatening reliable electricity produc-
tion (e.g., in Texas and California [36] which are also major
markets of data centers), because electricity production,
especially thermoelectric and nuclear power, consumes an
astonishing amount of water in the power plant through
steam condensation (i.e., water evaporates from cooling
towers into the environment) [32]. For example, the US
national average water consumption reaches 1.8 liters water
per kilowatt-hour electricity (L/kWh), excluding the even
more water-consuming hydropower [45].

Cooling system. While advanced cooling systems (e.g., air
economizer [10]) are good at water saving, most data
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centers are located in places where installation of such cool-
ing systems is not feasible or economical. Thus, it is com-
mon that data centers, such as AT&T and eBay [5], [7], rely
on water-intensive methods for cooling (e.g., water-side
economizer and water-cooled chillers) [46]. It was estimated
that a 15 MW data center could consume 360,000 gallons of
cooling water each day [8], while another report [26] said
that the US National Security Data center in Utah would
require up to 1.7 million gallons of water for cooling each
day (enough to satiate 10,000 households’ daily needs).

Even in regions with relatively abundant water, there are
strong motivations for data centers to conserve water. For
example, reducing water by 10-25 percent is a prerequisite
for green certifications (e.g. LEED program [48]) which pro-
vide tax/zoning benefits and are being actively pursued by
77 percent of large data centers as shown in a recent survey
[46]. Water compliance codes are tightening in many
regions [3], and the US government requires all federal facil-
ities to reduce water usage by 2 percent each year through
2020 [6]. Last but not least, forward-looking companies
have been taking active steps to conserve water for mitigat-
ing business risks, improving public image and fulfilling
social responsibility (e.g., AT&T’s recent efforts [7]).

Limitations of the existing research. Although water foot-
print is surfacing as a critical concern, it has been rarely
studied for data centers. The recent progress towards
energy/cost/carbon reduction [20], [27], [29], [30], [40] turns
out to be inadequate for water conservation. As specified in
Section 2, this is because data center water usage effective-
ness (WUE, i.e., water consumption per unit IT energy [45])
changes over location and also over time in its own way: the
same amount of energy but consumed at different times/
locations may result in different water footprints.
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The latest efforts to reduce water consumption in data
centers have primarily focused on facility or infrastructure
upgrades (i.e,, improved “engineering”), such as using
recycled water or seawater instead of potable water, using
chemicals to reduce water “blown down” in cooling towers,
and directly using outside cold air [7], [10], [16], [22]. These
techniques, however, often require high upfront costs and/
or suitable locations/climate conditions (which may not be
satisfied by drought areas). Moreover, the offsite water
usage at power plants, which is attributed to data centers
[20], [45], is still left unaddressed.

Proposed approach. Recognizing the critical importance of
conserving water for data centers, we focus on a set of geo-
distributed data centers and study: how to minimize data
centers’ operational cost while surviving drought by keep-
ing the long-term overall water footprint under a cap?' We
choose to cap the long-term water footprint rather than
purely minimizing it, because survival of drought clearly
requires persistent efforts and water capping matches the
current practice to achieve water conservation (e.g., indus-
try goal [7], water rationing, government regulations [6],
green certifications [48]). Instead of tackling the problem
using improved “engineering”, we propose a software-
based approach by optimizing workload management. Our
approach relies on the following two techniques.

e Geographic load balancing (GLB): dynamically dis-

patching workloads to geo-distributed data centers.

e Power proportionality: dynamically turning on/off

servers in accordance with workloads.

Both GLB and power proportionality have been extensively
studied in various contexts (e.g., electricity cost [23], [29], [30],
[40], carbon emission [20]). Nonetheless, what makes our
research unique is that we exploit the inherent spatial and tempo-
ral diversities of data centers” water efficiencies and optimize GLB
and power proportionality decisions for water conservation.

It is a very challenging problem to minimize operational
cost while capping water consumption using GLB and power
proportionality. First, dispatching more workloads to water-
efficient data centers may result in high electricity cost, and
hence it is non-trivial to successfully cap water footprint
while keeping the operational cost low. Second, when using
power proportionality, incorrectly turning off too many serv-
ers may result in intolerable performance degradation,
whereas turning off too few servers may unnecessarily
increase operational cost and waste water. Last but not least,
achieving water capping involves budgeting water consump-
tion over a long term and hence optimally doing so requires
the knowledge of far future information (e.g., outside tem-
perature, which affects water efficiency), but such offline
information is practically challenging to obtain accurately.

To address the above challenges, we propose a new
online workload management algorithm, called WATCH
(WATer-constrained workload sCHeduling in data cen-
ters), which can achieve a low operational cost while suc-
cessfully capping the long-term water footprint without
foreseeing the far future. The general intuition of WATCH
is that if the actual water footprint has exceeded the

1. Unless otherwise stated, “long-term” refers to one year and
matches the current water accounting period [6], [45].

expected level thus far, WATCH will put more emphasis
on reducing the water consumption optimizing GLB and
power proportionality decisions, such that the water defi-
cit can be decreased and ultimately satisfy the desired
water capping. We formally prove that WATCH results in
a close-to-minimum operational cost compared to the opti-
mal algorithm with complete offline information, given
arbitrary run-time system dynamics. To evaluate WATCH
under realistic settings, we perform a trace-based simula-
tion, demonstrating that WATCH can significantly reduce
the water footprint (e.g., by 20 percent) while incurring a
small cost increase even compared to state-of-the-art cost-
minimizing but water-oblivious solution. Finally, we
extend WATCH in two different directions: (1) integrating
WATCH with carbon footprint capping (which is a key
aspect of sustainability); and (2) capping onsite cooling
water consumption for each data center.

To sum up, our approach relies on yet optimizes the
widely-available GLB and power proportionality knobs for
long-term water capping. It has the following key features:
(1) it requires little modification to the current software
stacks and can be easily implemented, as there already exist
various mechanisms to enable GLB and power proportion-
ality [20], [23], [40]; (2) it is an online approach and does not
require any long-term offline information; and (3) it only
incurs a slight operational cost increase while slashing
water consumption (e.g., by 20 percent, which is the water
reduction percentage being urged in California [38]). While
we recognize the importance of the existing water-saving
techniques based on improved “engineering” [7], [10], [22],
we emphasize that our proposed approach provides a com-
plementary yet unique perspective to the current research.
To our best knowledge, this is the first study to use work-
load management for long-term water capping in geo-
distributed data centers.

2 BACKGROUND

Following the metric developed by the Green Grid [45], we
measure data center water efficiency as water usage effec-
tiveness, which is defined as the ratio of total water con-
sumption to the IT energy usage. Instead of water
withdrawal, we focus on water consumption (e.g., evapora-
tion into the air), because it is a more accurate indicator of
how much water does not return to source (i.e., “lost”) [32].

e Direct WUE. As shown in a recent survey [46], cool-
ing towers are commonly employed in large data
centers as the heat rejection mechanism. In general,
onsite (or direct) water consumption in cooling tow-
ers consists of two major parts: water evaporation
and water “blown down”, where the former is
employed to transfer heat to the environment and
the latter is for keeping salt concentration of the con-
denser water from becoming too high [16]. “Blown
down” water consumption depends primarily on
water quality: the higher water quality, the more
cycles of concentrations (i.e., water recirculation
times) and hence the less blown-down water [16].
Quantitatively, blown-down water can be expressed
as one (S — 1)th of the evaporated water, where S is
the cycle of concentrations (typically 3-10).
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Fig. 1. (a) Direct WUE versus outside wet bulb temperature [44]. Lines/
markers represent modeled/measured values. (b) Three-day outside
temperature starting from July 1, 2012 [11].

To highlight the impact of outside wet bulb tem-
perature on the direct WUE, we present an empirical
measurement model based on an industry cooling
tower [44]. Specifically, following recommended
operational settings, we show the direct WUE at dif-
ferent cycles of concentrations (i.e., water recircula-
tion times) in Fig. la, which clearly demonstrates
that the direct WUE increases with outside wet bulb
temperature (because at a lower wet bulb tempera-
ture, water cools down more by the outside air and
less through evaporation). Using data fitting based
on least square errors, we obtain an empirical direct
WUE model as WUE gijeet = % (6x107°-T3— 0.01-

T‘f +0.61 - T, — 10.40), where S is the cycle of con-
centrations and 7, is the outside wet bulb tempera-
ture (in Fahrenheit).

e Indirect WUE. We now present the indirect water
efficiency following [20], [25]. Indirect WUE
depends on the energy fuel mixes (e.g., coal,
nuclear, hydro) as well as cooling techniques used
by power plants and hence is also called Electricity
Water Intensity Factor (EWIF) [32], [45]. Since elec-
tricity produced by different energy fuels becomes
non-differentiated once entering the grid, we con-
sider the average EWIF which can be estimated as
EWIF = %, where b, denotes the amount

L

of electricity generated from fuel type k in location
serving the data center, and EWIF}, is the EWIF
for fuel type k [20], [25]. Note that variations in
energy fuel mixes of electricity generation (to meet
various demand levels, shown in Fig. 2a) results in
temporal diversity of EWIF. Further, indirect EWIF
also varies by location, because each fuel type has
its own distinct EWIF [45] and energy fuel mix is
typically different between states as some states
may use less water-efficient energy generation
than others [45].

Finally, we show in Fig. 2b the state-level EWIF versus
average carbon emission rate in 50 U.S. states: “greener”
states may not necessarily be less “thirstier” [32], [45].> This
implies that the existing research (e.g., [20]) that favors car-
bon reduction may result in more water footprint. Similar
statements also hold for water efficiency versus electricity
price, whose details are omitted for brevity. As a result, the
existing cost-/carbon-driven techniques do not necessarily

2. Readers may refer to [45] for detailed EWIF data, and to [47] for
complete carbon efficiency data.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.5, NO.2, APRIL-JUNE 2017

2 50 HYDRO Ag
§40 1 ® IMPORTS < 6
=30 1 THERMAL 2
c B NUCLEAR }4
320 - RENEWABLES| o
210 | - . 22

0 — T T T T T T T T 0

0 12 24 36 48 60 0 02 04 06 08 1 12

CO2 Equivalent (Kg/KWh)
(a) (b)

Fig. 2. (a) Three-day fuel mix data of California ISO starting from Sep 1,
2013 [1]. (b) State-level EWIF versus CO, emissions in the US [45], [47].

lead to water conservation, thereby necessitating the exploi-
tation of spatio-temporal diversities of water efficiency to
survive drought.

3 WATER-AWARE WORKLOAD MANAGEMENT

In this section, we present a water-aware online workload
management algorithm that can successfully cap the overall
water footprint under a desired level for data centers’ sur-
vival of drought while incurring a negligible penalty in
other aspects such as operational cost. Towards this end, we
describe the general approach, present the model, formulate
the problem and then present the algorithm WATCH.

3.1 General Approach
Our proposed research for data centers’ survival of drought
relies on the following two technical approaches.

o  Geographic load balancing: Many large IT companies
are operating data centers in geographic locations
for redundancy/latency concerns. Incoming work-
loads, especially “request-response” web services
(e.g., search, e-commerce), can be flexibly scheduled
among multiple data centers using HTTP redirection
or persistent HTTP proxies to tunnel requests [33].

e Power proportionality: The basic principal to enable
power proportionality (also referred to as “dynamic
right-sizing”) is to turn off unused servers, as static/
idle servers may consume even 60 percent of full
power [29]. Hence, turning off some servers when
workload is low can effectively reduce energy con-
sumption as well as water footprint.

While both GLB and power proportionality have been
extensively studied [19], [23], [27], [29], [30], we focus on
optimizing GLB and power proportionality decisions for
data center’s water footprint capping: (1) how to dispatch
workloads to geo-distributed data centers (i.e., the percent-
age of incoming workloads scheduled to each data center);
and (2) how many servers to turn on in each data center.

3.2 Model

We consider a discrete-time decision model by dividing the
entire time period of interest (e.g., typically a year, as used
by LEED [48] and suggested by [45]) into K time slots. For
example, each time slot can be one hour [30]. The important
notations used are presented in Table 1.

Data center. We consider NV geo-distributed data centers,
indexed by ¢ = 1,2, ..., N. The service capacity of data cen-
ter ¢ is represented by A/; homogeneous servers each having
a service rate of u; (i.e., the average number of jobs that can
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TABLE 1
List of key Notations

Notation Description
M; Total no. of servers in data center ¢
m; No. of servers turned ON at data center ¢
a; Workload dispatched to data center ¢
Aj Workload arriving at gateway j
I Service rate of a server in data center ¢
Vi PUE of data center 7
lij Network delay from gateway j to data center ¢
e; Electricity cost of data center ¢
w; Water footprint of data center ¢
Z Long-term water footprint constraint
g Total cost
q Water budget deficit queue

be processed in a unit time). We denote by m;(t) the number
of servers turned on in data center i. We model data center
power based on the utilization as follows

a;(t)
mi(t)ii)’
where y,(t) is the Power Usage Effectiveness (PUE) factor,
a;(t) = 2.5:1 Aij(t) is the total amount of workloads dis-
patched to data center i (with \; ;(t) being the amount of
workloads originating from the jth gateway, as will be spec-

ified later), ey, is the static server power regardless of the
workloads (as long as a server is turned on) and eu is the
the server utilization. This model can capture server power
with a reasonable accuracy, validated by real-world meas-
urements [17] and extensively used in prior studies [29],
[30], [41].

Electricity cost. As in [30], [40], [41], we consider real-time
pricing (due to electricity market deregulation) and denote
the electricity price in data center ¢ at time ¢ by u;(¢). Hence,
the incurred electricity cost of data center i is

ei(a;(t),m;(t)) = u;(t) - pi(a;(t), m;(t)). (@)

pilai(t),mi(t)) = y;(t) - mi(t) -

€0,i + €ci

is

dynamic power when a server is busy. Essentially, .-

Water consumption. The direct cooling water consumption
can be obtained by multiplying server power consumption
with the direct WUE, while the indirect water consumption
depends on the electricity usage as well as the local EWIF.
Thus, we can express the water consumption of data center
1 attime? as

wld) = [V?(t)

where ¢, p(t) is the direct WUE (i.e., ratio of water to IT
energy) at time ¢ and ¢; ;(¢) is the EWIF (i.e., ratio of water
to electricity production) of the electricity powering data
center .

Workload. As in many of the prior GLB studies [20], [30],
we focus on delay-sensitive interactive workloads (also
interchangeably referred to as jobs) that can be flexibly
scheduled among multiple data centers. There are .J gate-
ways, each of which represents a geographically-concen-
trated source of workloads (e.g., a state or province). We

n 61,1(15)} ) m(), @

denote the workload arrival rate at the jth gateway by
Aj(t) = [0, Ajmax), and the workload is dispatched to data
center 7 at a rate of \; ;(¢) that we shall optimize. Given a cer-
tain number of servers, the delay performance intuitively
becomes worse with more dispatched workloads. Here, we
consider the overall delay performance by modeling the ser-
vice process at each server as an M/M/1 queue [29], [30].
Specifically, the total delay in data center i can be written as

J 1 +
Z Aij - [m +1ij— dth:| ) 3)

my

di(ahmi) =

where the operator [ - |" = max{0, -} indicates that the rev-
enue/profit loss is negligible when the average delay is
smaller than the threshold dy;, (i.e., little user experience
improvement when the delay is already sufficiently
small), and /; ; is average network delay approximated in
proportion to the distance between data center i and the
Jjth gateway [30].

3.3 Problem Formulation

We focus on operational cost rather than capital cost (e.g.,
building data centers), which can be minimized using
separate techniques [42]. Two types of “costs” are consid-
ered: electricity cost and delay “cost”, where the former
takes up a dominant fraction of the operational cost while
the later affects user experiences and revenues [28], [30].
We will investigate the bandwidth cost in the next sec-
tion. As water bill has yet to catch up with electricity cost
and indirect water consumption is “paid” in energy bills,
we do not incorporate water cost in our work. As in the
literature [20], [28], [30], our study considers the follow-
ing parameterized cost

N

g(A Zez i () + B - diai(t), mi(t))];
where )\(L‘) = ()\171(15), RV )\L,](t), RN )\]\r_l(t), e ,)\IV"J(t)) and
m(t) = (my(t),...,mn(t)) represent GLB and power pro-

portionality decisions, respectively, and g > 0 is the weight
parameter converting delay performance to monetary
“cost” (adjusting tradeoff between electricity cost and
delay performance) [28], [30]. Throughout the paper, we
use “operational cost” to represent the parameterized cost.
Next, we formulate the problem as follows

1 K=l
P1: ing = 4
Irﬂng Zg (@)
J
s.t., < Z)\” t) <mn-p;-m(t), Vi,t, (5)
J=1
(t) < M;, Vi, t, (6)
N
Zx (1) = N(0), i t, )
=1
K-1

v
Zwl Z, ®)
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where A represents a sequence of GLB and power pro-
portionality  decisions, ie., A(t) and m(t), for
t=0,1,..., K — 1. The constraints (5), (6) and (7) indicate
no server overloading, over-provisioning or workload
dropping, while the constraint (8) specifies the long-term
water consumption constraint. In constraint (5), n € (0,1)
specifies the maximum server utilization (equivalently,
the worst delay performance). Note that additional
constraints, such as that some workloads may only be
routed to certain data centers, can also be incorporated
into our study. Moreover, we will also consider onsite
water capping for each data center (which is more

related to regional drought) and carbon footprint
capping (another sustainability criterion [20]) in
Section 5.

In P1, the power usage is an affine function of load dis-
tribution \; ;(t) and the number of servers to turn on
m;(t), and so are electricity cost and water footprint. The
delay cost is a convex function of A, ;(t) and m;(t). Thus,
P1 is convex optimization which can be solved in polyno-
mial time [12].

3.4 WATCH

In this section, we develop our water-aware workload man-
agement algorithm WATCH which can be implemented
online without foreseeing offline information.

Main challenge. Addressing data centers’ water foot-
print in the face of extended droughts requires long-
term efforts, but the long-term nature also creates chal-
lenges as the desired water capping constraint in (9) cou-
ples the workload management decisions across different
time slots: while GLB and power proportionality deci-
sions have to be made without foreseeing the far future,
the current decisions will implicitly affect the future
decisions (e.g., using more water at this time slot will
result in less water budget available for future uses).
Accurate prediction of such offline information (e.g., vol-
atile outside wet bulb temperature which affects WUE,
non-stationary workload arrival, etc.) is quite challeng-
ing, if not impossible [19], necessitating an online
approach.

Solution. To address the lack of long-term future infor-
mation, we leverage the sample-path Lyapunov technique
[37] to develop an online algorithm that makes GLB and
power proportionality decisions only based on currently
available information. Originally proposed for establishing
control system stability, Lyapunov technique was later
extended to achieve long-term queueing stability in net-
works [37], with a salient feature that it does not require
future information when making control decisions. Here,
we can treat the data center water footprint in each time
slot as “job arrivals” to a virtual water queue, and view the
desired water usage as “job departures”. Thus, if the vir-
tual queue length can be pushed to zero at the end, then
the desired long-term water footprint capping is achieved
in an online manner.

At the core of our solution is the (virtual) water bud-
get deficit queue which replaces the long-term constraint
(9) and, with an initially empty queue ¢(0) =0, evolves
as follows

t+1) = {q<t> £ wil) - z<t>} )

where ¢(t) is queue length at beginning of time slot ¢,
Zfi L w;(t) is the combined water consumption of all the
data centers and z(t) is the reference water budget for
time slot t. The reference budget z(t) can be a constant
(e.g., 2(t)=Z2/K for t={0,1,...K —1}) or estimated
based on projected workload (which does not need to be
accurate) such that Zf;l 2(t) = Z. However, based on
simulation studies (not included in this paper for brev-
ity), we note that the choice of z(¢t) has a negligible
impact on the outcome of WATCH in terms of the cost
efficiency, provided that the the total water budget is the
same. This is partly due to the fact that z(¢) is only a ref-
erence value that places no enforcement on the execution
of WATCH.

The queue length at any time indicates the deviation of
actual water usage from the total reference water usage,
and we integrate this information (i.e., ¢(¢)) in our optimiza-
tion so that WATCH can act on the deviation to mitigate it.
Specifically, instead of optimizing the original objective
function, we construct in WATCH a new objective function,
V- g(\(8), m(t) + q(t) - N wi(t), which is the original
objective function scaled by a parameter V' plus the water
usage multiplied by the water budget deficit queue ¢(t) in
(9). Thus, there is no decision coupling across different time
slots in the new problem, and hence it can be solved online
requiring only the information (e.g., workload, WUE, etc.)
of current time slot.

The water budget deficit queue acts as a feedback from
past decisions to the current decision, so that deviation
from the long-term water footprint constraint can be
mitigated. The new objective function V - g(A(t), m(t))+
q(t) - 2N wi(t) is devised such a way that the mitigation
takes place gradually so that the feedback does not over-
shadow the main objective of cost minimization. In particu-
lar, the parameter V acts as a control parameter that
determines how much emphasis to put on cost minimiza-
tion compared to the long-term water footprint constraint.
Larger V implies that the data center cares more about cost
minimization than meeting the long-term water budget,
and vice versa. Naturally, when cost minimization is priori-
tized, long-term water consumption constraint is more
likely to be exceeded with a larger gap, which is also
substantiated in analytical study of WATCH presented in
Theorem 1 as well as demonstrated through our simulation
results.

Algorithm input/output. Algorithm 1 only requires online
information as specified in Line 1, which can be readily
obtained: e.g., outside wet bulb temperature can be mea-
sured online, whereas workload arrival rate can be well
estimated using various learning algorithms [30]. We will
also demonstrate in the next section that WATCH is
robust against inaccurate online information. At the
beginning of each time slot, Algorithm 1 outputs the
GLB decision A(t) (i.e., the portion of workloads dis-
patched to each data center) and power proportionality
decision m(t) (i.e., how many servers are turned on in
each data center).
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Algorithm 1. WATCH

1:  Input \;(¢), . p(t), €.1(t), and u;(t) at the beginning of each
timet=0,1,..., K —1,fori=1,2,...,N

2:  Choose \(t) and m(t) subject to constraints (5), (6), (7) to
minimize

N
P2: V.-g(A(t),m(t)) + q(t) - Z wi(t) (10)

3:  Update ¢(t) according to (9).

Analysis. The following theorem formally shows the per-
formance of WATCH.

Theorem 1. For any T € Z* and H € Z* such that K = HT,
the following statements hold.
a. The water consumption constraint is approximately
satisfied with a bounded deviation:

K-1 N H-1

D> wit) < Z+ J KO(T) +%Z(G; — Guin), (11)

t=0 i=1 h=0

where C(T) =U+ D(T
finite constants satisfying U > 1 SMaxX;—o1,. K- 1[27\;1 w; (t)—

A0 and D =fmaxi—o1 k{20, wilt), 20}, G
is the minimum average operational cost by the optimal
offline algorithm with T-slot lookahead information over
t=(Mh-1T,...,hT —1, for h=0,1,...,H—1, and gmin
is the minimum posszble operational cost.

b. The average operational cost g* achieved by WATCH
satisfies:

— 1) with U and D being certain

H-1

1 cr
<5 Gt

h=0

(12)

Proof. As a sketch, we only outline the key steps of proving
Theorem 1, while the proof details can be established fol-
lowing Lyapunov-drift-plus-cost technique [37]. Note
first that G} is the minimum cost achieved by the offline
algorithm with T-step lookahead information by solving;:

min G = 3" g(A(t), m(t)) subject to (5) (6) (7)
and “ zh;;)T PV wi(t) < ZthleT " 2(t)”. We need to

define a quadratic Lyapunov function L(q(t)) £ $¢*(¢),
and then derive a finite upper bound on the 7-step Lya-
punov drift, i.e., difference between L(q(t+T)) and
L(q(t)). By adding operational cost into both Lyapunov
drift and upper bound, we will see that P2 in Algorithm 1
is essentially minimizing the upper bound on Lyapunov
drift plus operational cost. Then, after mathematical
manipulations, Theorem 1 will follow. Unlike prior work
[24], [52], we use sample-path techniques without mak-
ing specific probability, i.i.d./Markovian or even “slater”
assumptions [37] over system dynamics and hence, The-
orem 1 holds under arbitrary dynamics. ]

Theorem 1 shows that, given a fixed value of 7" and H,
WATCH can approximately satisfy the long-term water
footprint constraint with a bounded deviation, whereas
the cost of WATCH is within an additive penalty
compared to the minimum cost achieved by the offline
algorithm with T-step lookahead information (which

solves minyGj = 7 ,(h;;)T "g(A(t), m(t)) subject to (5), (6),

7 and “SDTESN ) < ST 1)), From (11)
and (12) we see that when V increases cost performance
of WATCH is closer to the offline algorithm with look-
ahead information while the potential deviation from
long-term water consumption target becomes larger, and
vice versa. Hence, WATCH presents with an online treat-
ment for P1 with an analytical bound on how far WATCH
can be from the optimal solution (with T-step lookahead
information). The analytical observation on WATCH’s
performance is corroborated by our real-life trace-based
simulation studies.

4 PERFORMANCE EVALUATION

This section presents trace-based simulation studies to vali-
date our analysis. We first present our simulation setup and
then show that WATCH can significantly reduce the water
consumption compared to the existing cost-minimizing
GLB algorithm (by 20 percent) while only incurring a small
increase in the operational cost (even compared to state-of-
the-art cost minimizing algorithm). We also show the bene-
fits and robustness of WATCH under different settings.

41 Setup

Considering the practical difficulty in implementing
WATCH in real systems, we resort to simulations follow-
ing the common practice [20], [30], [40].

We consider four geographically distributed data cen-
ters located in: (#1) Mountain View, CA, (#2) Forest City,
NC, (#3) New York, NY, and (#4) Roswell, NM. The num-
ber of servers in these data centers are: 60K, 50K, 40K, 25K,
respectively. To limit the number of free parameters, the
default PUEs for all data centers are chosen as 1.20,
although PUEs may vary over time [10]. While different
data centers typically have different server configurations,
we focus on homogeneous servers and each server has a
normalized service rate of 1.00 (i.e., one unit of workloads
per second). Each server has a maximum power of 400 W,
and static/idle server power takes up 60 percent of the
maximum power. As in the existing work [20], [28], we
consider delay-sensitive workloads. The weight convert-
ing the delay performance to cost is set to f = 12, although
WATCH is applicable for any settings. All the workloads
are distributed to the four data centers by one front-end
gateway located in North Platte, NE, which has compara-
ble distances to all data centers. GLB and power propor-
tionality decisions are updated hourly. Accordingly, all
the operational cost and water consumption are hourly
values unless otherwise stated.

The time horizon is one year. The average water con-
sumption by state-of-the-art cost-minimizing GLB algo-
rithm (presented in [30], which disregards water footprint)
is chosen as our reference value, and in our setting using
default workload traces, it is 177 KL (kilo-liters) per hour.
We choose 142 KL per hour on average (or equivalently,
around 332 million gallons per year) as the default capping
constraint, which is 80 percent of the reference value. This
20 percent water reduction also matches the target set by
California [2]. We also use Low (L), Medium (M), and High
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Fig. 3. Simulation setup. (a) Wikipedia [49] and university workloads. (b)
Average electricity price [47]. (c) Average WUE.

(H) water capping to represent 75, 80 and 85 percent of ref-
erence water consumption.

e  Electricity price: We obtain from [47] hourly whole-
sale electricity prices from four trading nodes closest
to our considered data centers for the year of 2012.
The average electricity prices in our simulations are
shown in Fig. 3b.

e EWIF and direct WUE: Due to the lack of access to
EWIF data in our data center locations, we use the
state-level average EWIF values calculated based on
the data in [32], [45]. For direct WUE, we use the
empirical values in [44] modeled as a function of out-
side wet bulb temperature (see Fig. 1a). The tempera-
ture data for the year of 2012 is obtained from [11].
Different data centers may use different cooling
techniques/towers [5], [10]. Nonetheless, only Face-
book is disclosing its real-time water efficiency infor-
mation [10]. Thus, to reflect geographic diversities of
direct WUE caused by non-weather factors, we
choose to scale the direct WUE (obtained from our
empirical model) differently for these four data cen-
ters. Average direct WUEs and EWIFs are both
shown in Fig. 3c.

e Workloads: As our default workload, we scale the
Wikipedia workload trace [49] and extend it to one
year by adding up to 30 percent random noises. We
also obtain the workload trace by profiling the server
usage log of a large public university from January 1
to December 31, 2012, and scale up the arrival rate.
The workload trace contains request-level records,
such as arrival time, completion time, size of data
sent, service status for each request. The normalized
workload arrival rates are shown in Fig. 3a, where
the values are normalized with respect to the maxi-
mum capacity of all data centers.

Remark. As our research takes an early step to address
data center operation in drought conditions and due to lack
of publicly available data (especially real-time WUE), we
obtain traces and infer data from various sources. Admit-
tedly, if all the data is available to us from production sys-
tems, the specific experimental results may differ, but we
expect that the general trend still holds, as the advantage
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Fig. 4. Comparison among WATCH, COST, and non-GLB. (a) Opera-
tional cost. (b) Water consumption.

and intuition of WATCH have been demonstrated both con-
ceptually and analytically in previous sections. Thus, we do
not intend to emphasize our quantitative results in simula-
tions, but rather we would like to leverage simulations to
provide additional justification to WATCH under reason-
ably realistic settings.

4.2 Results

In this section, we present simulation results using the
above trace data.

4.2.1 Performance Comparison

We first present two widely-studied benchmark algorithms
and then subsequently compare WATCH against them.

e COST: While it is not possible to compare WATCH
against all existing techniques, we choose cost-driven
but water-oblivious algorithm that minimizes the oper-
ational cost [30], referred to as COST, as our bench-
mark, since it is one of the most widely-considered
benchmarks and our objective is also minimizing cost.

e PERFORMANCE (abbreviated as “PERF” to save
space): The current practice is still performance-
driven: turning on all the servers and scheduling
requests to the nearest data center if applicable.
Hence, we consider this approach as the second
benchmark and refer it to as PERF.

Comparable operational cost. Fig. 4a shows the average
hourly operational costs (incorporating both electricity
cost and delay performance) achieved by PERF, COST and
WATCH (with cost-water parameter V = 45). While
WATCH aims at minimizing operational cost, it also con-
siders water consumption as its additional constraint.
Thus, as can be seen from Fig. 4a, WATCH incurs a
slightly higher operational cost (by approximately 3 per-
cent) compared to COST which explicitly minimizes the
operational cost: WATCH and COST are comparable in
both electricity cost and delay performance. As water-effi-
cient data centers are typically different from cost-effective
ones (as discussed in Section 2 and can be seen from
Figs. 3b and 3c), it may not be possible to optimize
workload management decisions for both metrics simulta-
neously: an inherent tradeoff exists between water con-
sumption and operational cost. While PERF incurs higher
energy consumption, it provides the best performance.
Hence, after we convert the delay into cost, the total opera-
tional cost of PERF is almost the same as WATCH, but it is
most water-consuming and hence vulnerable to drought
conditions. Note also that, although not shown for brevity,
WATCH can reduce electricity usage compared to COST
by about 10 percent in our case study.
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Reduced water consumption. WATCH explicitly incorpo-
rates spatio-temporal diversities of water efficiency into its
workload management decisions, and uses water deficit
queue as a guidance towards water capping. Fig. 4b demon-
strates that WATCH can successfully meet the water con-
sumption constraint which, by default, is only 80 percent of
the water consumption by COST. Combined with Fig. 4a,
we see that WATCH can lead to 20 percent saving of water
footprints while incurring nearly no operational cost.
Expectedly, if we set a less aggressive water conservation
target (e.g., 15 percent saving), WATCH will result in a
lower cost.

Water-driven scheduling. Next, we show in Fig. 5 the
average workload distributions across different data cen-
ters. The performance-driven PERF distributes workloads
in proportion to data center server capacity, offering the
same delay performance across data centers. As COST
focuses on minimizing the operational cost, it favors the
data center in NM with the lowest average electricity
price: COST distributes more workloads to the cost-effec-
tive NM data center than to NY, even though the former
has a less capacity than the latter. Now, we turn to
Fig. 5b to show average workload distributions for
WATCH under different water caps (i.e., Low, Medium,
and High). By looking at Fig. 3c, we see that the NM data
center has the highest average WUE, whereas the CA
data center has the lowest one. Thus, WATCH will sched-
ule more workloads to CA when water consumption con-
straint is more stringent (i.e., Low water budget), while
more workloads will be diverted to NM for cost efficiency
when water consumption constraint is less stringent (i.e.,
High water budget), although NM has the highest aver-
age WUE.

4.2.2 Cost versus Water Consumption Tradeoff

As we have formally proved in Theorem 1, the cost-water
parameter V' governs the flexible tradeoff between cost min-
imization and water consumption: the larger V, the more
emphasis on reducing the cost while potentially deviating
more from the desired water footprint constraint, and vice
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Fig. 7. (a) Traffic assignment comparison. (b) Impact of water capping
constraints on operational cost.

versa. To illustrate this point, we show in Figs. 6a and 6b
the impact of V' on the average hourly cost and water con-
sumption, respectively, under different water caps. The
result conforms with our analysis that with a greater V,
WATCH is less concerned with water consumption while
caring more about the cost. In the extreme case in which V'
goes to infinity, WATCH reduces to a water-oblivious algo-
rithm (i.e,, COST) which minimizes the operational cost
without considering water consumption. Clearly, water-
oblivious COST algorithm achieves a cost that is a lower
bound on the cost that can be possibly achieved by any algo-
rithm satisfying the water cap, but it is not desirable in
water-stressed areas.

4.2.3 Bandwidth Cost Comparison

While bandwidth cost has been shrinking in recent years
relative to electricity cost [40], it may still be a non-negligible
portion of data center operational cost. As WATCH may
change the traffic patterns among data centers, the band-
width cost may change as well. In this paper, we focus on
the prevailing 95/5 bandwidth charging model: the 95th
percentile of data center traffic, measured in 5-minute inter-
vals, is used for billing [20], [40]. In our study, we consider
the link traffic between the gateway and the data center is
proportional to the assigned workload (because the average
data size of a job request is relatively constant). We then
measure the workloads assigned to each data center for
every 5 minutes and take the 95-percentile traffic during
each month. Finally, we average the results to get the yearly
average bandwidth cost for different algorithms under the
default 20 percent water reduction target. Fig. 7a shows the
normalized 95/5 traffic assignment (normalized with
respect to the maximum capacity of all data centers). We see
that the 95/5 traffic assignments by WATCH, PERF and
COST are almost the same. Although the data centers in CA
and NC have slightly higher 95/5 traffic by using WATCH
than using PERF or COST, the difference in the resulting
bandwidth cost is almost negligible (within 5 percent). Con-
sidering the decreasing trend of bandwidth cost but surge
in energy cost, we see that WATCH is still attractive in
terms of slashing water while potentially incurring a small
bandwidth cost increase.

4.2.4  Sensitivity Study

We now perform various sensitivity studies, with V' chosen
such that water capping constraint is satisfied.

e Water capping constraint: We now show in Fig. 7b
the impact of water capping constraint (i.e., water
budget) on the operational cost. We normalize the
water budget with respect to the water consumption
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by COST (i.e., average 177 KL per hour). It is seen
that given a 80 percent water budget—equivalent to
using only 80 percent of the water consumed by
COST, WATCH exceeds the water-oblivious COST
algorithm by approximately 3 percent in terms of the
average operational cost, while still being able to sat-
isfy water consumption constraint (which is clearly
violated by COST). More interestingly, when the
normalized water budget increases to 95 percent,
WATCH achieves almost the same cost as COST
(within 1 percent). Hence, by exploiting spatio-tem-
poral diversities of water efficiency, WATCH can
conserve water by 5 percent almost for “free” com-
pared to COST. As a further comparison, we also
show the cost of the optimal offline algorithm,
referred to as OPT, in Fig. 7b, and it can be seen that
WATCH is quite close to OPT in terms of the cost,
demonstrating that WATCH performs remarkably
well by only using online information.

Workload overestimation: In practice, it may not be
possible to perfectly estimate the current workload
arrival rate. To handle possible traffic spikes, data
centers may leave a capacity margin by turning on
more servers than needed as a backup or deliberately
overestimate the workload arrival rate by a certain
overestimation factor ¢ > 1: the higher ¢, the more
overestimates. We choose the later approach, and
scale up workload by ¢ during optimization to
decide the optimum number of servers to be turned
on in each data center and the load distribution.
However, when we determine the cost, power, delay
and water consumption, we still use the actual work-
load. We keep all the other parameters (such as g,
z(t), the electricity price, etc.) as unchanged. Fig. 8a
shows that the total operation cost only increases by
around 4 percent, even when we overestimate the
workloads by 20 percent (which is already suffi-
ciently high in practice, as shown in [19]). This is
because although workload overestimation may
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turn on more servers than needed and incur a higher
electricity cost, it has a lower delay cost as the delay
performance is improved because of increased num-
ber of servers.

Switching cost: Switching servers on/off induces
various costs, such as energy/time waste as well
as “wear and tear”. As in [28], we incorporate all
these factors and use switching cost as the com-
bined cost quantified in terms of energy consump-
tion. We normalize the switching cost (incurred by
turning on/off one server) with respect to the max-
imum hourly energy consumption of a single
server. Fig. 8b shows that even when the switching
cost of one server takes 20 percent of its maximum
hourly energy consumption, the average opera-
tional cost only increases by less than 3 percent
while satisfying water capping.

Different workloads: Now, we use the university
workload trace to drive our simulations for demon-
strating the applicability of WATCH under various
workloads. The results are shown in Fig. 9. As in
Fig. 4, it can be seen that the same message can be
delivered in Fig. 9: WATCH achieves a cost fairly
close to that of water-oblivious COST, and mean-
while significantly slashes the water consumption.
Impact of B: The parameter 8 determines the relative
weight of delay performance as compared to electric-
ity cost. To show the impact of B parameter on data
center’s electricity cost and resulting delay perfor-
mance, we vary the value of g and show the corre-
sponding results in Fig. 10. The water budget for
each g is set to 80 percent of the corresponding water
usage by COST. Thus, when COST increases its own
water usage, the water budget for WATCH also
increases. We see that the average delay decreases
and average electricity cost increases as we increase
B. In our study, we set =12 to have an average
delay cost that is comparable to the average power
cost. Moreover, with our choice of g = 12, the delay
performance of WATCH is fairly close to COST. As
shown in Fig. 10a, setting a larger 8 in our simulation
settings will significantly increase the electricity cost
but only yield a very small decrease in delay (in tens
of millisecond range), which is insignificant for
human perception. Note that specific value of g also
depends on the unit used for measurement as well.
For example, we set g =12 as we use “second” as
the unit for delay, whereas if we use “millisecond”
we would get the same results for g = 0.012.
Number of data centers: In our study, we consider
four data center locations by default, which is
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reasonable considering that even leading IT compa-
nies, like Facebook, only have a few self-managed
megascale data centers (e.g., four data centers
throughout the world, including two in the US [9)]).
Nonetheless, we have extended our study to more
data centers. We select additional locations for data
centers and follow the same evaluation methodology
as we have used for the default setting. Fig. 11a
shows that WATCH still achieves an average cost
that is very close to COST (cost-minimizing water-
oblivious geographic load balancing). We also see in
Fig. 11b that regardless of the number of data cen-
ters, WATCH can meet the water footprint con-
straint, thereby translating water footprint reduction.

We also study WATCH’s robustness against power,
delay and water consumption modeling error/uncertain-
ties, and see that at even at £20% random modeling error,
average cost only increases by 5 percent while the budget
deficit still remains under 0.08 percent (given the same
V). The supporting figures for this study are omitted for
space limitation.

To sum up, it is not absolutely “free” to achieve water con-
servation due to the inherent tradeoff between water effi-
ciency and cost efficiency. Nonetheless, WATCH exploits
the spatio-temporal diversities of water efficiency and can
cut water consumption by 20 percent while only incurring a
small cost increase, even compared to the cost-minimizing
algorithm COST. While we do not imply that WATCH out-
performs the existing GLB techniques in all aspect, we
emphasize that WATCH is complementary to the existing
research and that it is particularly appealing for data center
operation in water-stressed areas.

5 [EXTENSION

In this section, we extend WATCH in two directions: (1)
capping carbon footprint; and (2) capping onsite cooling
water for each data center.

5.1 Capping Carbon Footprint

It is widely accepted that carbon footprint is an important
aspect of sustainability. Following [20], we express the car-
bon emission of data center i as

ci(t) = hi(t) - piai(t), mi(t)),

where p;(a;(t), m;(t)) is the electricity usage and h;(t) is
the carbon emission rate calculated based on [20], with a
unit of g/kWh, for power plant serving data center i.
Compared to water footprints that are both onsite and
offsite for data centers, carbon emission does not include
the “onsite” component.
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Like in Section 3.4, we incorporate another queue—
carbon deficit queue—which evolves as ¢.(t + 1) = [g.(t) +
SN eilt) — z(t)] T, where z.(t) is the reference carbon bud-
get for time ¢ guiding GLB and power proportionality deci-
sions towards carbon footprint capping. Then, we put an
additional term ¢.(¢) - 32V, ¢;(¢) into Line 2 of Algorithm 1.
The results, including performance analysis, are similar.
Fig. 12 demonstrates that, compared to cost-driven COST,
WATCH can still successfully slash both water and carbon
footprints while just incurring a small cost increase.

5.2 Capping Onsite Water Consumption

As onsite cooling water is more directly related to data cen-
ters” water accounting [6] and drought condition is often
region-specific [4], we extend WATCH to cap onsite water
consumption for each data center. Specifically, instead of
keeping track of only one water budget queue, we construct
N water budget deficit queues, each representing the cur-
rent onsite water deficit for one data center. Specifically, the
water budget queue ¢;(t) for data center i evolves as
gi(t+1) = [qi(t) + wi(t) — z(t)]" and will be added into
Line 2 of Algorithm 1. Fig. 13 demonstrates that WATCH
can still reduce the onsite water consumption of each data
center by 20 percent while keeping operational cost low.

6 RELATED WORK

There has been a significant amount of research in opti-
mizing data center operation from various perspectives
[34], ranging from energy-aware task scheduling and
resource allocation [51], [53], cutting electricity bills (using
GLB and/or power proportionality) [23], [40], [41], mini-
mizing response times [18], brown energy reduction [13],
[30], carbon footprint minimization [15], [20], to address-
ing the thermal/reliability issues [35], [39]. Complimen-
tary to our work, [14], [21] study energy efficiency of the
network infrastructure for implementing GLB in data cen-
ters. Nonetheless, none of these studies have considered
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water consumption which is emerging as a critical concern
for data centers’ survival of drought.

Long-term optimization has been increasingly consid-
ered in the literature. For example, [42] explores the opti-
mal energy portfolio for reducing carbon emissions, and
[27] considers GLB with yearly energy capping. These
studies, however, utilize prediction of offline information,
which may not always be available. Recently, [24], [31],
[50], [52] leverage Lyapunov technique for data centers,
but they do not consider water footprints. Furthermore,
[24], [52] do not address service latency costs and their
analysis primarily builds upon i.i.d./Markovian system
dynamics (e.g., workload arrivals) which may not hold in
practice.

More recently, [43] explores resource management
approaches for optimizing real-time WUE by greedily
exploring the spatio-temporal diversity of water efficiency,
and hence the operational cost may be significantly
increased (by 30 percent). For a single data center, [25]
focuses on delay-tolerant batch jobs for reducing water con-
sumption without considering spatial diversity of water
efficiency, and hence it is not applicable for our study.

To sum up, our work takes an early step to address
data centers’” long-term water conservation, which is
emerging as a critical concern amid extended droughts.
WATCH can slash water footprints while only slightly
increasing the operational cost, even compared to cost-
driven COST.

7 CONCLUSION

In this paper, we took an early step towards long-term
water conservation in data centers and proposed WATCH,
a new water-aware workload management algorithm that
can dynamically dispatch workloads to distributed data
centers for capping water footprint. It was proved that using
only online information, WATCH achieves a close-to-mini-
mum operational cost compared to the optimal offline algo-
rithm with future information, while bounding the
potential violation of water capping. We also performed a
trace-based simulation study to complement the analysis.
The result was consistent with our analysis: it showed that
WATCH significantly reduces the water consumption while
only incurring a small operational cost increase. We also
extended WATCH to cap carbon footprint as well as onsite
water consumption for each data center.

APPENDIX
TERMS IN WATER MANAGEMENT

Wet-bulb temperature. It is the temperature of air with 100%
water saturation. It indicates the lowest temperature achiev-
able by water evaporation. For cooling towers, it is the
theoretical lowest temperature to which the water can be
cooled down.

Waterside economizer. For the cooling systems that use
chilled water to transfer heat from server room to the out-
side, water entering the server room is called “chilled
water” (e.g., cooled down by the mechanical chiller) and
water leaving the server room becomes “warm”. Waterside
economizer refers to using cooling tower, instead of

mechanical chillers, to cool down the warm water returned
from the data center server room. Naturally, waterside
economizer is only applicable when the outside tempera-
ture is cold enough, and thus it is mostly used in winter.

Water blown-down. The cooling tower losses water
through evaporation to dissipate heat to the environment.
In the process, the mineral concentration increases as more
and more water is evaporated. To avoid mineral’s accumu-
lation in the water circulation system, concentrated cooling
tower water is drained at regular intervals, which is called
water blown-down. This is one of the two major compo-
nents of data center direct water consumption (the other
one is evaporation).

Cycle of concentration. To avoid mineral’s building up, the
water cycle in a cooling tower required to be blown down at
regular intervals. Naturally, if the original water source has
more minerals, we can circulate the water fewer times
before the mineral concentration becomes harmful for the
plant. Cycle of concentration refers to the maximum num-
ber of cycles the water can be used before it is blown down.
As blown-down is one of the principal components of water
consumption, more cycles of concentration can lead to
lower water consumption.

Water withdrawal v.s. water consumption. Water with-
drawal refers to the water that is withdrawn but later may
return to the same source. For example, in once-through
cooling systems (used for thermal power plants), water is
usually withdrawn from a nearby lake or river, but the
water simply flows through the cooling system and then
most of the water still returns to the source (with a small
fraction of water evaporated to dissipate heat). Water con-
sumption, on the other hand, refers to the water that is actu-
ally “lost” and not returned to the source. For example,
water evaporation and water blown-down (to, e.g., sewage
systems) are considered “consumption”, since the water is
not returned directly to its source.
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